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A B S T R A C T   

Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to 
its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal 
growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence 
and biofilm formation. 

Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against 
C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) 
and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 μg/mL and 16 μg/mL respec-
tively) and on biofilm formation (BMIC50 of 32 μg/mL and 16 μg/mL respectively) in cultured ATCC 
10,231C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu 
(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella 
larvae.   

Candida albicans is normally present in human microbiota as 
commensal organism, colonizing skin, oral cavity, gastrointestinal and 
genital tracts, but in some conditions, such as impairment of the host’s 
immune system or alterations of its microbiota, it can cause different 
infections, ranging from superficial infections to invasive systemic 
candidiasis.1,2 The majority of clinical manifestations of candidiasis are 
related to biofilm formation on biological and artificial surfaces; 
C. albicans biofilms are formed by cells at different stages of growth 
surrounded by self-produced extracellular matrix and their production 
represents one of the major virulence factors of C. albicans. Indeed, 
C. albicans cells within the biofilms are intrinsically resistant to anti-
fungal drugs, in particular to azole and polyene, and are protected from 
the host’s immune response.1–4 The low efficacy or the toxicity of some 
antifungal drugs have led to the need for new molecules capable of 

acting towards alternative C. albicans targets.5–6 

For C. albicans, as well as for others fungi and bacteria, environ-
mental iron is fundamental for survival, growth and virulence.7–11 For 
this reason, in recent years, various studies have evaluated the effects of 
different iron chelators, alone or in association with antifungal drugs, 
towards C. albicans; these studies revealed that iron chelating agents are 
able to inhibit the growth of the fungus,12–15 to exert a synergism with 
azole or with caspofungin,14–18 to reduce virulence, modulating the 
expression of genes involved in iron metabolism, in adhesion and in the 
response to host innate immunity,19 to inhibit biofilm formation or to 
affect its structural integrity.20–22 Among these molecules there are 
some non-selective iron chelators and their effects may also depend on 
the interference with other metals fundamental for C. albicans. Indeed, 
some compounds reported in the literature are able to exert antifungal 

* Corresponding authors. 
E-mail addresses: fabiana.pandolfi@uniroma1.it (F. Pandolfi), giovanna.simonetti@uniroma1.it (G. Simonetti).  

Contents lists available at ScienceDirect 

Bioorganic & Medicinal Chemistry Letters 

journal homepage: www.elsevier.com/locate/bmcl 

https://doi.org/10.1016/j.bmcl.2021.128087 
Received 17 February 2021; Received in revised form 23 April 2021; Accepted 2 May 2021   

mailto:fabiana.pandolfi@uniroma1.it
mailto:giovanna.simonetti@uniroma1.it
www.sciencedirect.com/science/journal/0960894X
https://www.elsevier.com/locate/bmcl
https://doi.org/10.1016/j.bmcl.2021.128087
https://doi.org/10.1016/j.bmcl.2021.128087
https://doi.org/10.1016/j.bmcl.2021.128087
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bmcl.2021.128087&domain=pdf


Bioorganic & Medicinal Chemistry Letters 42 (2021) 128087

2

effects by targeting the homeostasis of different metal ions, either by 
decreasing the metals bioavailability or by acting as ionophores, leading 
to excessive accumulation of metals into the cells.23–27 Moreover, Polvi 
et al. have demonstrated that the chelator DTPA (diethylenetriamine 
pentaacetic acid) enhances caspofungin activity against an 
echinocandin-resistant clinical isolate of C. albicans by depleting mag-
nesium and induces filamentation in wild-type cells of C. albicans by 
chelation of zinc.28 Overall these results show that metal chelation could 
have a potential role in the treatment of C. albicans infections.29 

In this work we present the activity of some deferiprone (DFP) de-
rivatives against C. albicans planktonic cells and biofilm. DFP (3-hy-
droxy-1,2-dimethyl-4(1H)-pyridinone, Chart 1) is a small molecule 
approved by FDA as iron chelator for the treatment of patients with 
transfusional iron overload due to thalassemia syndromes. DFP was 
already studied towards different strains of C. albicans and it resulted a 
weak inhibitor of fungal growth; differently, DIBI, a hydroxypyridinone 
iron-chelating polymer, inhibits C. albicans growth at very low concen-
tration in comparison to chemical related DFP and its activity can be 
reversed by iron addition.13,14 We decided to modify DFP moiety in N1 
position, in order to increase its lipophilia, introducing aryl–alkyl groups 
of different sizes and polarity. We also connected DFP moiety with 
ketoprofen, ibuprofen or ibufenac respectively, as some authors re-
ported the inhibitory activities of non-steroidal anti-inflammatory drugs 

(NSAIDs) against C. albicans.30–32 In particular ibuprofen showed 
interestingly activity on different strains of Candida, both alone and in 
association with antifungal drugs.33–40 Moreover, in our previous work 
we studied some hybrids between tryptamine and NSAIDs, which 
showed interesting activities against C. albicans biofilm.41 Finally, we 
also tested compounds obtained by molecular duplication of DFP group, 
that have been selected from some previously synthesized molecules 
(Chart 1).42 

The synthesis of all compounds required the protection of maltol 
with a benzyl group to obtain the intermediate 1, as shown in Scheme 1. 
The benzyl-protected maltol 1 was reacted in water / ethanol mixture, in 
presence of sodium hydroxide (pH = 13), with the suitable alkyl-aryl 
amine or alkyl-imidazole amine to give the compounds 2a-5a that 
were debenzylated by treatment with aqueous 6 M HCl to obtain the 
salts 2b-5b. 

The syntheses of the compounds 2b and 3b were previously reported 
in literature, but with very low yields;43 here we described new synthetic 
procedure that allows to obtain them in higher yields. A different syn-
thetic procedure to give the compound 5b was previously reported in 
literature.44 

Compounds 7b-10b were synthesized as illustrated in Scheme 2; 
benzylated maltol 1 and 1,4-diaminobutane were reacted in a mixture of 
ethanol and aqueous sodium hydroxide (pH = 13) to give the double 

Chart 1. DFP derivatives studied in this work.  
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Michael addition product 6, which was furtherly coupled with different 
carboxylic acid, via carbonyldiimidazole (CDI) intermediates, to obtain 
the amide derivatives 7a-10a. The subsequent removal of the benzyl 
group by catalytic hydrogenation in presence of 10% Pd/C gave the 
amides 7b-10b. 

Compounds 11a,b-13a,b were synthesized as previously reported 
(Scheme 3).42 

The detailed synthetic procedures, the analytical and spectroscopic 
data of the synthesized compounds are reported in the supplementary 
material and are in agreement with the proposed structures. 

In order to verify the chelating capability of synthesized DFP 

derivatives, chelation studies of Fe3+ and Cu2+ were performed using an 
UV–visible spectrophotometer on four selected compounds, two amine 
derivatives (3a, 3b) and two amide derivatives conjugated with 
ibuprofen (9a, 9b). These molecules were chosen to evaluate whether 
the presence of benzyl group linked to oxygen of DFP may influence the 
chelating abilities of the studied compounds. Since the molecular frag-
ment responsible for the chelating activity is DFP, it is quite reasonable 
to assume that the chelating behaviour of these selected compounds can 
be extended to the other benzylated and debenzylated derivatives. The 
UV spectra of the pure ligands were recorded and compared with the 
spectra obtained by adding an excess of metal ion, maintaining the same 

Scheme 1. Reagents and conditions: a) benzyl bromide, EtOH, NaOH, reflux, 6 h; b) H2N-R, EtOH/H2O, NaOH (pH = 13), reflux, 18 h; c) 6 N HCl, reflux, 2 h.  

Scheme 2. Reagents and conditions: a) EtOH/H2O, NaOH (pH = 13), reflux, 18 h; b) CDI, AcOEt, reflux, 5 h; c) 6, reflux, 12 h; d) 10% Pd/C, Zn, MeOH, H2SO4.  

Scheme 3. Reagents and conditions: a) EtOH/H2O, NaOH (pH = 13), reflux, 18 h; b) 6 N HCl, reflux, 2 h.  
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concentration of ligand. The variation of the UV spectra of the ligand in 
presence of metal ions is indicative of the complex formation. These 
spectra showed that benzylated derivatives 3a and 9a can chelate only 
Fe3+, while debenzylated compounds 3b and 9b chelate both Fe3+ and 
Cu2+ (Fig. S1–S8 supporting information). 

The synthesized compounds 2a,b-13a,b have been screened to 
evaluate the activity against C. albicans planktonic cells and biofilm, 
both in formation and mature (48 h), using C. albicans ATCC 10231, a 
strain sensitive to fluconazole on planktonic cells (0.5 µg/mL) and 
resistant in the different phases of biofilm formation (BMIC50 128 µg/mL 
on biofilm formation and > 128 µg/mL on mature biofilm).45 The results 
are reported in Table 1. 

Among the amine derivatives 2a,b-5a,b, the compounds 2b and 3b 
are the most interesting, both for their activity against biofilm formation 
(BMIC50 32 μg/mL and 16 μg/mL respectively), comparable or superior 
to that of the parent compound DFP (BMIC50 32 μg/mL), and for their 
activity against planktonic cells (MIC50 32 μg/mL and 16 μg/mL 
respectively), much higher than that of DFP (MIC50 128 μg/mL). These 
compounds contain a phenyl alkyl moiety connected with DFP; it can be 
noted that passing from three (compound 2b) to four (compound 3b) 
methylene units the biofilm inhibition activity probably increases due to 
the higher lipophilicity of 3b (MLogP = 1.83) compared to 2b (MLogP =
1.58).46,47 

It is noteworthy that the corresponding benzylated molecules 2a and 
3a are not active up to a concentration of 128 μg/mL, indicating that the 
free hydroxyl function in position 3 is of great importance for obtaining 
antibiofilm activity and this could be related to the depletion of metals 
from the cellular environment by a chelation mechanism; indeed, the 
presence of the benzyl protecting group on the oxygen atom in position 3 
of DFP makes the latter less available for the chelation of metals. 

Regarding the amide derivatives 7a,b-10a,b, the most potent in-
hibitors are compounds 9a,b and 10a,b which derive from the 
connection between DFP with NSAIDs, in particular ibuprofen and 
ibufenac respectively. In particular, the benzylated DFP derivatives 9a 
and 10a are active against biofilm formation, with BMIC50 values of 32 

μg/mL and 64 μg/mL respectively, but not towards planktonic cells. The 
corresponding deprotected compounds 9b and 10b show a lower or a 
similar potency against biofilm formation, with BMIC50 values of 128 
μg/mL and 64 μg/mL respectively. These data suggest that their activity 
on biofilm could be due not only to chelation proprieties, but also to 
other inhibition mechanisms, probably related to the NSAIDs moiety. On 
the contrary, the debenzylated derivatives 9b and 10b show a very 
interesting activity against C. albicans planktonic cells, with MIC50 of 4 
μg/mL and 8 μg/mL respectively. 

Finally, none of the compounds obtained by molecular duplication of 
DFP group 11a,b-13a,b were found active against biofilm and plank-
tonic cells up to a concentration of 128 μg/mL. 

In order to support the hypothesis that a chelation mechanism could 
be involved in the activity of the best inhibitor of biofilm formation 3b, 
other experiments were carried out using culture medium enriched with 
increasing concentration of Fe3+ and Cu2+. The obtained data are re-
ported in the Fig. 1. As expected, a dose/related decrease of the activity 
against biofilm formation was observed in presence of increasing con-
centration of the metallic ions. Recently, the relationship between the 
inhibition of biofilm formation and the reduction of available iron in 
C. albicans has also been demonstrated by Hsu et al. These authors 
showed the antifungal activity of a compound, which inhibits yeast-to- 
hyphal transition and biofilm formation of C. albicans by interfering 
with iron ion homeostasis.22 Moreover, Sumant Puri et al. have 
demonstrated that C. albicans cells treated with the iron chelator 
deferasirox have a significantly reduced adhesion ability.19 Adhesion is 
the first step in the formation of the biofilm. This could explain the ac-
tivity of 3b in the formation of the biofilm and not in the dispersion of 
the preformed biofilm. 

The stoichiometry of 3b complexed with Fe3+ and Cu2+ was deter-
mined by the method of continuous variations of Job,48 which is 
described in detailed in supporting information. In Fig. 2 the UV titra-
tion spectra of ligand 3b with Fe3+ and the related Job’s plot obtained at 
302 nm are depicted. Both for Fe3+ and Cu2+ complexes a 1:1 stoichi-
ometry among the ligand and the metal ion was observed. Known the 
stoichiometry, it was possible to calculate the stability constants (Kstab) 
of these complexes using UV–Vis spectroscopy method, as described in 
the supporting information.49 The corresponding logKstab of 3b-Fe3+

and 3b-Cu2+ complexes were 5.16 ± 0.27 and 4.63 ± 0.09 respectively. 
Finally, we evaluated the in vivo toxicity of the most active anti-

biofilm compound 3b on larvae of Galleria mellonella. This is a simple 
and low-cost validated model widely used, because its results correlate 
with those observed in mammals.50 The detailed procedure is reported 
in the supplementary materials. The lethal dose that reduces the number 
of G. mellonella larvae by 50% (LD50) of 3b has not been found even 
when testing a dose more of 10 times higher (512 µg/mL) than the active 
against C. albicans biofilm (BMIC50 16 µg/mL). The results, reported in 
Table 2, showed that G. mellonella larvae treated with 3b at the con-
centration of 512 µg/mL displayed a 100%, 96% and 86% of survival 
rate respectively at 24 h, 48 h and 72 h; no toxic effects were observed at 
lower concentration of 3b (Table 2). 

In conclusion, in this work we describe the synthesis of a new series 
of DFP derivatives with the aim of obtaining compounds able to chelate 
the metal cations Fe3+ and Cu2+ and endowed with antibiofilm activity. 
Two representative compounds of the benzylated series on the oxygen 3 
of DFP (3a, 9a) showed the ability to chelate exclusively the Fe3+ ion, 
while the corresponding debenzylated compounds with free hydroxyl 
group (3b, 9b) resulted chelators of both Fe3+ and Cu2+. 

The data obtained by antifungal and antibiofilm activity tests in 
cultured ATCC 10,231C. albicans indicate that none of the synthesized 
compound resulted active on mature biofilm. Otherwise, among the 
amine derivatives 2a,b-5a,b, only 2b and 3b resulted moderately active 
both on biofilm formation and on planktonic cells, with 3b being the 
most active antibiofilm compound identified (BMIC50 = 16 μg/mL). The 
reduction in the inhibitory effect of compound 3b on biofilm formation 
in the presence of increasing amounts of Fe3+ and Cu2+ suggests that this 

Table 1 
Antifungal activity of the DFP derivatives 2a,b-13a,b against C. albicans ATCC 
10,231 biofilms and planktonic cells.   

BMIC50 (μg/mL) MIC50 (μg/mL) 

Compound Mature biofilm Biofilm formation Planktonic cells 

2a >128 >128 >128 
2b >128 32 32 
3a >128 >128 >128 
3b >128 16 16 
4a >128 >128 >128 
4b >128 >128 >128 
5a >128 >128 >128 
5b >128 >128 >128 
7a >128 >128 >128 
7b >128 >128 >128 
8a >128 >128 >128 
8b >128 128 >128 
9a >128 32 >128 
9b >128 128 4 
10a >128 64 >128 
10b 128 64 8 
11a >128 >128 >128 
11b >128 >128 >128 
12a >128 >128 >128 
12b >128 128 >128 
13a >128 128 >128 
13b >128 >128 >128 
DFP 128 32 128 

BMIC50: the lowest drug concentration producing a 50% decrease of biofilm 
relative to the untreated growth control. MIC50: the lowest drug concentration 
producing 50% growth inhibition. The antifungal activities are the result of 
three independent experiments performed in triplicate. The data were presented 
as median. 
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activity may be related to the chelating properties of 3b observed in UV 
spectrophotometric tests. Among the amide derivatives 7a,b-10a,b, 
compounds 9a and 10a resulted moderately active against biofilm for-
mation, whereas 9b and 10b showed an interesting activity on plank-
tonic cells of C. albicans; in this case, the mechanism of action could be 

related to the combination of the chelating effects of DFP moiety with 
the antifungal activity reported in the literature for some NSAIDs. 

These data, together with the very low toxicity shown in vivo by 3b, 
suggest that this compound can be considered as an interesting hit 
compound for the development of new metal chelating agents with 

Fig. 1. Inhibition of biofilm formation obtained by compound 3b in presence of increasing concentration of Cu2+ (Panel A) and Fe3+ (Panel B). Data are reported as 
percentage of inhibition ± standard deviation. 

Fig. 2. The UV titration spectra of ligand 3b with Fe3+ and the related Job’s plot obtained at 302 nm.  
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antibiofilm properties. 
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