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ABSTRACT: Here we report O-methyl S-aryl thiocarbonates as a versatile esterification reagent for palladium-catalyzed 

methoxycarbonylation of arylboronic acid in the presence of copper(I) thiophene-2-carboxylate (CuTC). The reaction condition is 

mild, and a variety of substituents including sensitive -Cl, -Br, and free -NH2 could be tolerated. Further applications in the late-

stage esterification of some pharmaceutical drugs demonstrate the broad utility of this method.

INTRODUCTION

Aryl carboxylate esters are important structural motifs 

found in pharmaceuticals, agrochemicals, and organic 

materials.1 Many synthetic methods have been developed, 

including traditional condensation of carboxylic acids with 

alcohol, substitution of carbonate derivatives with Grignard 

reagents,2 and carbonylation of aryl (pseudo)halides with CO.3 

Recently, Pd-catalyzed oxidative esterification from broadly 

accessible organometallic reagent has become a powerful 

alternative to traditional synthetic methods.4 Conventionally, 

oxidative esterifications initiate the catalytic circle from Pd(II), 

and terminate with Pd(0) species. Thus stoichiometric amount 

external oxidant are required to regenerate the Pd(II) for 

catalytic turnover (Scheme 1a). In 2010, Lei developed a 

novel palladium-catalyzed aerobic oxidative carbonylation of 

arylboronate esters by using air as the sole oxidant.5 Recently, 

Ge and coworkers successfully applied potassium oxalate 

monoesters in the esterification of potassium 

phenyltrifluoroborate in the present of 2 equiv. of K2S2O8.6 To 

obviate the need for external oxidant, redox-neutral coupling 
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of Ar–M with internally oxidative reagent would be an 

appealing strategy. However, this synthetic strategy is plagued 

by the limited repertoire of compatible esterification reagent. 

Jousseaume and Deng reported the Pd(0)-catalyzed oxidant-

free esterification of arylorganotins and arylboronic acids with 

chloroformate (Scheme 1b).7,8 Wu elegantly utilized the 

dialkyldicarbonates as esterification agents to furnish the 

arylboronic acids.9 Recently, Kakiuchi, 10 Shi,11 and Xu12 

reported Ru- and Pd-catalyzed C–H esterification with 

chloroformate and Boc2O. Although these protocols are often 

effective, both chloroformate and dialkyldicarbonate are very 

reactive and susceptible to nucleophiles, such as free amines. 

Thus, the development of a practical and versatile 

esterification reagent would be highly desirable.

Scheme 1. Esterification of Organometallic Reagent
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Thioesters are versatile building blocks in organic synthesis. 

Due to the feasibility of oxidative addition into the C(O)–S 

bond of thioester, transition-metal-catalyzed C–S bond 

activations of thioester have being one of the most important 

tools for the construction of carbon-carbon and carbon-

heteroatom bonds.13 For example, palladium-catalyzed C-

acylations of organozinc and organoboronic reagents with 

thioester, namely Fukuyama and Liebeskind–Srogl reaction, 

have been widely applied in the ketone synthesis.14 Fukuzawa 

reported the palladium-catalyzed C-formylation of arylzincs 

by utilizing the S-phenyl thioformate as a versatile 

formylating agent.15 Very recently, Kambe, 16 Hosoya, 17 

Sanford18 reported Pd-, Rh-, Ni-catalyzed decarbonylative 

thioetherification and borylation of aromatic thioesters. 

Prompted by these reports, we questioned whether we could 

realize the palladium-catalyzed C-esterification of arylmetallic 

compounds with S-aryl thiocarbonate. Boronic acids are low 

toxic, relatively stable to air and moisture, commercially 

available, and broadly tolerant for functional group. 

Considering these practical advantages, we reported here the 

palladium-catalyzed methoxycarbonylation of aryl boronic 

acids with O-methyl S-aryl thiocarbonate under mild and 

redox-neutral conditions (Scheme 1c).

RESULTS AND DISCUSSION

We commenced our studies by treating aryl boronic acids 1a, 

O-methyl S-p-toluenyl thiocarbonate 2 with 5 mol% Pd2(dba)3, 

0.16 mmol CuTc, 20 mol% PCy3 at 60 oC (Table 1). 

Gratifyingly, methoxycarbonylation of aryl boronic acids 1 

occurred smoothly, giving the desired product 3a in 10% 

yields (entry 1). Further screening of various phosphine 

ligands showed that PPh3 and TFP could also promote the 

reaction, and TFP was the optimal choice (entry 2-5). Cu salts 

are proposed to form strong Cu–S bound with thioester, thus 

facilitating the transmetalation in Liebeskind-Srogl cross-

coupling reaction. However, the yields decreased when we 

replaced CuTC with other Cu salts (entries 6-8). Lowering or 

increasing the reaction temperature lead to the decreased yield 

of esterated products (entries 9-11). The yield could be further 

improved to 80% by using 1,4-dioxane as the reaction solvent 

(Table 1, entry 12-17). For further investigation the effect of 
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different S-substituents, we screened a variety of 

electronically and sterically diverse O-methyl S-phenyl 

thiocarbonates, and found O-methyl S-p-toluenyl 

thiocarbonate 2 was the optimal esterification agent (see 

supporting information).

Table 1.Optimization of the Reaction Conditionsa

B(OH)2
+

Pd2dba3, Ligand, [Cu]

Solvent, Temp

O

OMe

1a 2

Entry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17b

Ligand [Cu] Yield/%cSolventTemp/oC

PCy3

PPh3

TFP
dppe
Johnphos
TFP
TFP
TFP
TFP
TFP
TFP
TFP
TFP
TFP
TFP
TFP
TFP

CuTC
CuTC
CuTC
CuTC
CuTC
CuOAC
CuMeSal
CuCl
CuTC
CuTC
CuTC
CuTC
CuTC
CuTC
CuTC
CuTC
CuTC

60
60
60
60
60
60
60
60
rt
40
80
60
60
60
60
60
60

THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
Toluene
DCE
Acetonitrile
DMSO
Dioxane
Dioxane

10
47
50
trace
18
24
29
trace
22
45
40
17
15
21
9
75
80

3a

p-TolS OMe

O

a Reaction conditions: 1a (0.12 mmol), 2 (0.1 mmol), Pd2(dba)3 (5 mol%), Ligand (20
mol%), [Cu] (1.6 equiv.), Solvent (1 mL), temp, N2, 16 h. TFP = Tri(2-furyl)phosphine.
dppe = 1,2-Bis(diphenylphosphino)ethane, JohnPhos = (2-biphenyl)di-tert-
butylphosphine.b1a (0.1 mmol), 2 (0.12 mmol). cThe yield was determined by 1H NMR
analysis of crude product using CH2Br2 as internal standard.

With the optimized reaction conditions in hand, we examined 

the scope of various aryl boronic acids. As shown in Table 2, 

under the optimized conditions (5 mol% Pd2(dba)3, 20 mol% 

TFP, 0.16 mmol CuTc, 60 oC), the methoxycarbonylation of 

aryl boronic acid 1 with esterification agent 2 appeared to be 

quite general with respect to the substituents. Aryl boronic 

acid bearing electron-donating and -withdrawing groups (-Me, 

-OMe, -OCF3, -Ph, -F, -Cl, -Br, -CN, -CF3) were smoothly 

esterificated, giving the desired product 3a-3w in moderate to 

good yields. Due to the mild and base-free reaction conditions, 

very sensitive -Br (3j, 3t) and -TMS (3w) could be tolerated in 

the presence of Pd(0), thus offering additional opportunity for 

further functionalization. 3,5-, 2,4-dimethoxy phenylboronic 

acid gave the corresponding disubstituted methyl benzoate 3x

Table 2. Substrate Scope of Arylboronic Acidsa

R
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O
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O
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O

OMe
MeO

OMe
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OMe

O
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MeO
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O OMe
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O
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O

OMe

TMS
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N

3ag, 49%c 3ai, 65%c

N

O OMe

3ae, 45%c

3aj, 60%c

N

MeO
O

OMe

3ah, 50%c

MeO

OMe

O O

OMe

N
H O

O
OMe

3n, 65%b

H2N
OMe

O

1a-1aj 2 3a-3aj

3aa,70% 3ab,70%

3ac, 81%

OMe

O

O

OMe

3ad, 50%b

O
OMe

N

O OMe

3af, 44%c

+ p-TolS OMe

O

O

OMe

aArylboronic acid 1 (0.1 mmol), 2 (0.12 mmol), Pd2(dba)3 (5 mol%), TFP (20 mol%), CuTC
(0.16 mmol), 1,4-dioxane (1 mL), 60 oC, N2,16 h. b2 (0.2 mmol). c 2 (0.15 mmol).

and 3y in 70% and 53% yields, respectively. It is worth noting 

that the substrates containing unprotected amine (3n, 3ai) 

could be tolerated with the esterification reagents 2. For 

polycyclic arene substrates, including naphthyl, phenanthrenyl, 

and pyrenylboronic acid, esterificated products 3z-3ac were 

obtained in yields of 70-80%. When alkenyl boronic acid 1ad 
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was employed in the reaction, the methyl cinnamate 3ad could 

be obtained in 50% yield. To our delight, the protocol could be 

extended to heterocycle compounds, including quinolone, 

pyridine, unprotected indole, and benzofuran, giving the 

esterated products (3ae-3aj) in 44-65% yields.

To demonstrate the broad utility of this method, we further 

applied this protocol in the late-stage esterification of some 

drugs and bioactive molecules, including estrone, clofibrate, 

and epiandrosterone, furnishing the corresponding derivatives 

3ak-3am in 61-70% yields (Table 3).

Table 3. Late-stage Esterification of Drugs Moleculesa 

MeO

H H

H

O

Me

H

O Me

H

Me

H

3al, 61%3ak,70%
f rom Epiandrosteronef rom Clof ibrate f rom Estrone

3am, 64%

O

O

EtO

1ak-1am 2 3ak-3am

R
B(OH)2 Pd2dba3, TFP, CuTC

1,4-dioxane, 60 oC
R

O

OMe
+ p-TolS OMe

O

a Reaction conditions: Arylboronic acid 1 (0.1 mmol), 2 (0.12 mmol), Pd2(dba)3 (5 mol%), TFP
(20 mol%), CuTC (0.16 mmol), 1,4-dioxane (1 mL), 60 oC, N2,16 h.

To illustrate the feasibility of this transformation for gram-

scale reaction, we carried out the reaction of substrate 1o with 

2 on a 8.0 mmol scale. The desired product 3o was isolated in 

73% yields (Scheme 2).

Scheme 2. Gram-scale Synthesis

1o 2 3o

+
Pd2dba3, TFP, CuTC

1,4-dioxane, 60 oC, 34 h

O

OMe

Me

B(OH)2

Me

8.0 mmol, 1.09 g 0.88 g, 73% yield

p-TolS OMe

O

Based on the previous reports,13,14d a plausible mechanism 

for the methoxycarbonylation of aryl boronic acid is depicted 

in Scheme 3. First, O-methyl S-p-toluenyl thiocarbonate 2  

coordinated with CuTC, forming the CuTC-bound thiolester 

complex I. Then palladium species II was formed by 

oxidative addition of Pd(0) into C(O)–S bond of thiolester. 

The coordinated copper salts were proposed to act as an 

activator to enhance the reactivity of II in the cross coupling. 

The subsequent transmetallation of arylboronic acid with 

intermediate II afforded the complex III, which then 

underwent the reductive elimination to furnish the final 

product 3a with the regeneration of Pd(0) species.

Scheme 3. Possible Mechanism
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CONCLUSIONS

In summary, we developed a palladium-catalyzed, copper-

promoted methoxycarbonylation of aryl boronic acid with O-

methyl S-p-toluenyl thiocarbonate. The reaction condition was 

mild and the substrate scope was broad.  A variety of 

substituents including sensitive -Cl, -Br, and free -NH2 groups 

could be tolerated. The protocol could also be applied to the 

late-stage esterification of some drugs, illustrating the broad 

utility of this method.

EXPERIMENTAL SECTION

General Information.

All commercial reagents were purchased from TCI, 

Sigma-Aldrich, Adamas-beta, and Energy Chemical of the 

highest purity grade. They were used without further 

purification unless specified. 1H and 1 3C NMR spectra were 
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recorded on Bruker AVANCE III 400, Bruker AVANCE III 

500 instruments. The peaks were internally referenced to 

TMS (0.00 ppm) or residual undeuterated solvent signal. EI-

double focus magnetic-sector high resolution MS (EI-DFS-

HRMS) were recorded on a DFS-Thermofischer instrument at 

the Center for Mass Spectrometry, Shanghai Institute of 

Material Medica. S-p-toluenyl  thiocarbonate 219, 1ak20, 1al21, 

1am20 are known products and synthesized according to the 

literature. 

General Procedure for Palladium-Catalyzed 

Methoxycarbonylation.

To a 25 mL sealed tube was added substrates 1a (0.1 

mmol), Pd2dba3 (4.6 mg, 0.005 mmol, 5 mol%), CuTC (30.5 

mg, 0.16 mmol, 1.6 equiv.), 2 (21.8 mg, 0.12 mmol, 1.2 

equiv.) and 1,4-dioxane (1 mL). The reaction vessel was 

purged with nitrogen three times. Then the tube was placed in a 

preheated oil bath at 60 oC for 16 h. Upon completion, EtOAc 

was added to dilute the mixture and washed with NH3·H2O 

and saturated NaCl (aq). The organic fraction was dried over 

anhydrous Na2SO4. Then the solvent was evaporated and 

the residue was purified by a silica gel packed flash 

chromatography column using ethyl acetate/hexane as the 

eluent.

Procedure for Gram-scale Synthesis

To a 250 mL round-bottomed flask was added substrates 1o 

(1.09 g, 8 mmol), Pd2dba3 (0.37 g, 0.4 mmol, 5 mol%), CuTC 

(2.44 g, 12.8 mmol, 1.6 equiv.), 1,4-dioxane (80 mL) and 2 

(1.75 g, 9.6 mmol, 1.2 equiv.). The reaction vessel was purged 

with nitrogen three times. Then the flask was placed in a 

preheated oil bath at 60 oC for 34 h. Upon completion, 

EtOAc was added to dilute the mixture and washed with 

NH3·H2O and saturated NaCl (aq). The organic fraction was 

dried over anhydrous Na2SO4 The solvent was evaporated 

and the residue was purified by a silica gel packed flash 

chromatography column using ethyl acetate/hexane as the 

eluent.

Methyl benzoate (3a).22 Following the general procedure, the 

reaction was conducted with 1a (12.2 mg, 0.1 mmol). The 

product was obtained through silica gel chromatography (ethyl 

acetate/hexane 1/100) as a light yellow oil (10.9 mg, 80%). 1H 

NMR (400 MHz, CDCl3) δ 8.10-8.00 (m, 2H), 7.59-7.48 (m, 

1H), 7.44-7.40 (m, 2H), 3.90 (s, 3H). 

Methyl 2-methylbenzoate (3b).23 Following the general 

procedure, the reaction was conducted with 1b (13.6 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a colorless oil 

(9.8 mg, 65%). 1H NMR (400 MHz, CDCl3) δ 7.93 (dd, J = 

8.0, 1.6 Hz, 1H), 7.42 (td, J = 8.0, 1.6 Hz, 1H), 7.33-7.18 (m, 

2H), 3.92 (s, 3H), 2.63 (s, 3H). 

Methyl 2-methoxybenzoate (3c).22 Following the general 

procedure, the reaction was conducted with 1c (15.2 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (11.6 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 7.82 (dd, J 

= 8.0, 2.0 Hz, 1H), 7.51-7.47 (m, 1H), 7.06-6.92 (m, 2H), 3.93 

(s, 3H), 3.91 (s, 3H). 

Methyl 2-fluorobenzoate (3d). 32 Following the general 

procedure, the reaction was conducted with 1d (14.0 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (6.2 mg, 40%). 1H NMR (400 MHz, CDCl3) δ 7.96-7.92 (m, 

1H), 7.59-7.43 (m, 1H), 7.25-7.07 (m, 2H), 3.94 (s, 3H). 
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Methyl (1,1’-biphenyl)-2-carboxylate (3e).24 Following the 

general procedure, the reaction was conducted with 1e (19.8 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.6 mg, 50%). 1H NMR (400 MHz, CDCl3) δ 7.85 (dd, J 

= 7.6, 1.2 Hz, 1H), 7.56 (td, J = 7.6, 1.6 Hz, 1H), 7.48-7.37 (m, 

5H), 7.37-7.32 (m, 2H), 3.66 (s, 3H). 

1-Methoxycarbonyl-3-methylbenzene (3f).23 Following the 

general procedure, the reaction was conducted with 1f (13.6 mg, 

0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (12.2 mg, 81%). 1H NMR (400 MHz, CDCl3) δ 7.96-7.79 

(m, 2H), 7.46-7.18 (m, 2H), 3.93 (s, 3H), 2.47-2.34 (m, 3H). 

Methyl 3-methoxybenzoate (3g).23 Following the general 

procedure, the reaction was conducted with 1g (15.2 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (11.6 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 7.66 (dt, J 

= 7.6, 1.2 Hz, 1H), 7.58 (dd, J = 2.8, 1.6 Hz, 1H), 7.37 (t, J = 

8.0 Hz, 1H), 7.12 (ddd, J = 8.4, 2.8, 1.2 Hz, 1H), 3.94 (s, 3H), 

3.88 (s, 3H). 

Methyl 3-fluorobenzoate (3h).25 Following the general 

procedure, the reaction was conducted with 1h (14.0 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.1 mg, 65%). 1H NMR (400 MHz, CDCl3) δ 7.85 (dt, J 

= 8.0, 1.2 Hz,1H), 7.74 (ddd, J = 9.2, 2.8, 1.6 Hz, 1H), 7.46-

7.41 (m, 1H), 7.33-7.21 (m, 1H), 3.95 (s, 3H). 

Methyl 3-chlorobenzoate (3i).25 Following the general 

procedure, the reaction was conducted with 1i (15.6 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (11.4 mg, 67%). 1H NMR (400 MHz, CDCl3) δ 8.03 (t, J = 

2.0 Hz, 1H), 7.94 (dt, J = 8.0, 1.2 Hz, 1H), 7.54 (ddd, J = 8.0, 

2.0, 1.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 3.94 (s, 3H). 

Methyl 3-bromobenzoate (3j).22 Following the general 

procedure, the reaction was conducted with 1j (20.1 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (13.3 mg, 62%). 1H NMR (400 MHz, CDCl3) δ 8.20 (t, J = 

1.6 Hz, 1H), 7.99 (dt, J = 8.0, 1.2 Hz, 1H), 7.70 (ddd, J = 8.0, 

2.0, 1.2 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 3.95 (s, 3H). 

Methyl 3-(trifluoromethyl) benzoate (3k).26 Following the 

general procedure, the reaction was conducted with 1k (19.0 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.8 mg, 53%). 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 

1.6 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.89-7.73 (m, 1H), 7.67-

7.53 (m, 1H), 3.97 (s, 3H). 

Methyl 3-cyanobenzoate (3l).27 Following the general 

procedure, the reaction was conducted with 1l (14.7 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a white solid 

(9.7 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 8.34-8.33 (m, 

1H), 8.28 (dt, J = 8.0, 1.2 Hz, 1H), 7.85 (dt, J = 8.0, 1.2 Hz, 

1H), 7.60 (td, J = 8.0, 0.8 Hz, 1H), 3.97 (s, 3H). 

Methyl 3-phenylbenzoate (3m).28 Following the general 

procedure, the reaction was conducted with 1m (15.6 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (17.0 mg, 80%). 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 

2.0 Hz, 1H), 8.09-8.00 (m, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.65 
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(dd, J = 7.2, 2.0 Hz, 2H), 7.56-7.47 (m, 3H), 7.43-7.39 (m, 

1H), 3.97 (s, 3H). 

Methyl 3-aminobenzoate (3n).29 Following the general 

procedure, the reaction was conducted with 1n (13.7 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (9.8 mg, 65%). 1H NMR (400 MHz, CDCl3) δ 7.45 (dt, J = 

7.6, 1.2 Hz, 1H), 7.37 (t, J = 2.0 Hz, 1H), 7.24 (t, J = 7.8 Hz, 

1H), 6.88 (ddd, J = 8.0, 2.4, 1.2 Hz, 1H), 3.91 (s, 3H), 3.80 (s, 

2H). 

Methyl 4-methylbenzoate (3o).22 Following the general 

procedure, the reaction was conducted with 1o (13.6 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (12.0 mg, 80%). 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 

8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 3.91 (s, 3H), 2.41 (s, 

3H). 

4-Methoxymethylbenzoate (3p). 22 Following the general 

procedure, the reaction was conducted with 1p (15.2 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (13.6 mg, 82%). 1H NMR (400 MHz, CDCl3) δ 8.07-7.95 

(m, 2H), 7.01-6.87 (m, 2H), 3.91 (s, 3H), 3.88 (s, 3H). 

Methyl 4-(trifluoromethoxy) benzoate (3q).30 Following the 

general procedure, the reaction was conducted with 1q (20.6 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (11.7 mg, 53%). 1H NMR (400 MHz, CDCl3) δ 8.18-8.03 

(m, 2H), 7.30-7.27 (m, 2H), 3.95 (s, 3H). 

Methyl 4-flurobenzoate (3r).23 Following the general 

procedure, the reaction was conducted with 1r (14.0 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.8 mg, 70%). 1H NMR (500 MHz, CDCl3) δ 8.11-7.99 

(m, 2H), 7.16-7.06 (m, 2H), 3.91 (s, 3H). 

Methyl 4-chlorobenzoate (3s).22 Following the general 

procedure, the reaction was conducted with 1s (15.6 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.7 mg, 63%). 1H NMR (400 MHz, CDCl3) δ 8.05-7.93 

(m, 2H), 7.48-7.37 (m, 2H), 3.94 (s, 3H). 

Methyl 4-bromobenzoate (3t).23 Following the general 

procedure, the reaction was conducted with 1t (20.0 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (12.9 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 8.01-7.80 

(m, 2H), 7.71-7.49 (m, 2H), 3.94 (s, 3H). 

Methyl 4-(trifluoromethyl) benzoate (3u).31 Following the 

general procedure, the reaction was conducted with 1u (19.0 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (12.2 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 8.18-8.03 

(m, 2H), 7.30-7.27 (m, 2H), 3.95 (s, 3H). 

Methyl 4-phenylbenzoate (3v).31 Following the general 

procedure, the reaction was conducted with 1v (19.8 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (18.0 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 8.17-8.09 

(m, 2H), 7.72-7.62 (m, 4H), 7.49 (t, J = 7.6 Hz, 2H), 7.45-7.39 

(m, 1H), 3.97 (s, 3H). 

Methyl 4-(trimethylsilyl) benzoate (3w).32 Following the 

general procedure, the reaction was conducted with 1w (19.4 
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mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (14.6 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 

8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 3.94 (s, 3H), 0.31 (s, 

9H). 

Methyl methyl 3,5-dimethoxybenzoate (3x).33 Following the 

general procedure, the reaction was conducted with 1x (18.2 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a white solid 

(13.7 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 7.20 (d, J = 2.4 

Hz, 2H), 6.66 (t, J = 2.4 Hz, 1H), 3.92 (s, 3H), 3.84 (d, J = 0.8 

Hz, 6H). 

Methyl 2, 4-dimethoxybenzoate (3y).33 Following the general 

procedure, the reaction was conducted with 1y (18.2 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (10.4 mg, 53%). 1H NMR (400 MHz, CDCl3) δ 7.91-7.84 

(m, 1H), 6.51 (d, J = 8.0 Hz, 2H), 3.91 (s, 3H), 3.87 (d, J = 1.2 

Hz, 6H). 

Methyl 1-naphthoate (3z).33 Following the general procedure, 

the reaction was conducted with 1z (17.2 mg, 0.1 mmol). The 

product was obtained through silica gel chromatography (ethyl 

acetate/hexane 1/100) as a light yellow oil (14.9 mg, 80%). 1H 

NMR (400 MHz, CDCl3) δ 8.98 (dd, J = 8.8, 1.2 Hz, 1H), 8.22 

(dd, J = 7.2, 1.2 Hz, 1H), 8.04 (dt, J = 8.2, 1.2 Hz, 1H), 7.94-

7.85 (m, 1H), 7.68-7.64 (m, 1H), 7.60-7.47 (m, 2H), 4.04 (s, 

3H). 

Naphthalene-2-carboxylate (3aa).33 Following the general 

procedure, the reaction was conducted with 1aa (17.2 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as a light yellow 

oil (13.0 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 8.66-8.62 

(m, 1H), 8.09 (dd, J = 8.4, 1.6 Hz, 1H), 8.02-7.95 (m, 1H), 

7.94-7.88 (m, 2H), 7.64-7.55 (m, 2H), 4.01 (s, 3H). 

Methyl phenanthrene-9-carboxylate (3ab).34 Following the 

general procedure, the reaction was conducted with 1ab (22.2 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as an amorphous 

solid (16.5 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 8.99-8.91 

(m, 1H), 8.80-8.68 (m, 2H), 8.51 (s, 1H), 8.04-7.96 (m, 1H), 

7.82-7.60 (m, 4H), 4.08 (s, 3H). 

1-Pyrenecarboxylic acid methyl ester (3ac).35 Following the 

general procedure, the reaction was conducted with 1ac (24.6 

mg, 0.1 mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/100) as an amorphous 

solid (21.1 mg, 81%). 1H NMR (500 MHz, CDCl3) δ 9.29 (d, J 

= 9.5 Hz, 1H), 8.65 (d, J = 8.0 Hz, 1H), 8.30-8.22 (m, 3H), 

8.17 (dd, J = 8.0, 3.2 Hz, 2H), 8.07 (dd, J = 8.0, 7.2 Hz, 2H), 

4.14 (s, 3H). 

1-Phenylcclohexene (3ad).22 Following the general procedure, 

the reaction was conducted with 1ad (14.8 mg, 0.1 mmol). The 

product was obtained through silica gel chromatography (ethyl 

acetate/hexane 1/100) as a light yellow oil (8.1 mg, 50%). 1H 

NMR (400 MHz, CDCl3) δ 7.72 (d, J = 16.0 Hz, 1H), 7.56-

7.54 (m, 2H), 7.45-7.36 (m, 3H), 6.47 (d, J = 16.0 Hz, 1H), 

3.83 (s, 3H). 

Methyl qunoline-5-carboxylate (3ae).36 Following the general 

procedure, the reaction was conducted with 1ae (17.3 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/40) as a light yellow 

oil (8.4 mg, 45%). 1H NMR (400 MHz, CDCl3) δ 9.36 (d, J = 

Page 8 of 14

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6.0 Hz, 1H), 8.98 (d, J = 4.0 Hz, 1H), 8.39-8.2 (m, 2H), 7.78-

7.74 (m, 1H), 7.54 (dd, J = 8.8, 4.0 Hz, 1H), 4.03 (s, 3H). 

Methyl quinoline-4-carboxylate (3af).37 Following the general 

procedure, the reaction was conducted with 1af (17.3 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/40) as a light yellow 

oil (8.2 mg, 44%). 1H NMR (500 MHz, CDCl3) δ 9.03 (d, J = 

4.5 Hz, 1H), δ 8.77 (dd, J = 8.5, 0.8 Hz, 1H), 8.18 (dd, J = 8.5, 

1.0 Hz, 1H), 7.91 (d, J = 4.5 Hz, 1H), 7.80-7.76 (m, 1H), 7.68-

7.65 (m, 1H), 4.05 (s, 3H). 

Methyl 2-methoxypyridine-5-carboxylate (3ag).38 Following 

the general procedure, the reaction was conducted with 1ag 

(15.3 mg, 0.1 mmol). The product was obtained through silica 

gel chromatography (ethyl acetate/hexane 1/40) as a light 

yellow oil (8.2 mg, 49%). 1H NMR (400 MHz, CDCl3) δ 8.85 

(dd, J = 2.4, 0.8 Hz, 1H), 8.17 (dd, J = 8.8, 2.4 Hz, 1H), 6.78 

(dd, J = 8.8, 0.8 Hz, 1H), 4.02 (s, 3H), 3.93 (s, 3H). 

Methyl 5-methoxypyridine-3-carboxylate (3ah).39 Following 

the general procedure, the reaction was conducted with 1ah 

(15.3 mg, 0.1 mmol). The product was obtained through silica 

gel chromatography (ethyl acetate/hexane 1/40) as a light 

yellow oil (8.4 mg, 50%). 1H NMR (400 MHz, CDCl3) δ 8.84 

(d, J = 1.6 Hz, 1H), 8.49 (d, J = 3.2 Hz, 1H), 7.78 (dd, J = 3.2, 

1.6 Hz, 1H), 3.97 (s, 3H), 3.92 (s, 3H). 

Methyl indole-5-carboxylate (3ai).30 Following the general 

procedure, the reaction was conducted with 1ai (16.1 mg, 0.1 

mmol). The product was obtained through silica gel 

chromatography (ethyl acetate/hexane 1/40) as a white solid 

(11.4 mg, 65%).  1H NMR (400 MHz, CDCl3) δ 8.55 (brs, 1H) 

8.45 (dd, J = 1.6, 0.8 Hz, 1H), 7.94 (dd, J = 8.6, 1.6 Hz, 1H), 

7.43 (d, J = 4.0 Hz, 1H), 7.35-7.22 (m, 1H), 6.68-6.67 (m, 1H), 

3.96 (s, 3H).

Benzofuran-3-carboxylic acid methyl ester (3aj).40 Following 

the general procedure, the reaction was conducted with 1aj 

(16.2 mg, 0.1 mmol). The product was obtained through silica 

gel chromatography (ethyl acetate/hexane 1/40) as light yellow 

oil (10.6 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 8.29 (s, 1H), 

8.14-8.04 (m, 1H), 7.60-7.51 (m, 1H), 7.43-7.34 (m, 2H), 3.97 

(s, 3H). 

Methyl 4-((1-ethoxy-2-methyl-1-oxopropan-2-yl) oxy) 

benzoate (3ak). Following the general procedure, the reaction 

was conducted with 1ak (25.2 mg, 0.1 mmol). The product was 

obtained through silica gel chromatography (ethyl acetate/hex-

ane 1/100) as light yellow oil (18.6 mg, 70%). 1H NMR (400 

MHz, CDCl3) δ 7.99-7.91 (m, 2H), 6.83 (d, J = 8.8 Hz, 2H), 

4.24 (q, J = 7.2 Hz, 2H), 3.89 (s, 3H), 1.66 (s, 6H), 1.23 (t, J = 

7.2 Hz, 3H). 13C{1H} NMR (125 MHz, CDCl3) δ 173.8, 166.8, 

159.6, 131.2, 123.3, 117.3, 79.3, 61.7, 51.9, 25.4, 14.0. HRMS 

(EI) m/z: [M]+ Calcd for C14H18O5
+ 266.1149; Found 

266.1150.

Methyl (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14, 

15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3-

carboxylate(3al).41 Following the general procedure, the 

reaction was conducted with 1al (29.8 mg, 0.1 mmol). The 

product was obtained through silica gel chromatography (ethyl 

acetate/hexane 1/40) as an amorphous solid (19.0 mg, 61%). 

1H NMR (400 MHz, CDCl3) δ 7.85-7.77 (m, 2H), 7.38 (d, J = 

8.0 Hz, 1H), 3.92 (s, 3H), 3.02-2.93 (m, 2H), 2.60-2.43 (m, 

2H), 2.39-2.33 (m, 1H), 2.26-1.96 (m, 4H), 1.71-1.47 (m, 6H), 

0.94 (s, 3H). 
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Methyl 4-(((3R,8R,9S,10S,13S,14S)-10,13-dimethyl-17-

oxohexadecahydro-1H-cyclo penta[a]phenanthren-3-yl)oxy) 

benzoate(3am) Following the general procedure, the reaction 

was conducted with 1am (41.0 mg, 0.1 mmol). The product 

was obtained through silica gel chromatography (ethyl 

acetate/hexane 1/40) as a brown solid (27.2 mg, 64%). 1H 

NMR (400 MHz, CDCl3) δ 8.04-7.93 (m, 2H), 6.96-6.87 (m, 

2H), 4.64 (t, J = 2.8 Hz, 1H), 3.89 (s, 3H), 2.49-2.42 (m, 1H), 

2.14-2.04 (m, 1H), 2.01-1.87 (m, 2H), 1.83-1.78 (m, 2H), 

1.76-1.40 (m, 9H), 1.40-1.19 (m, 5H), 1.12-0.96 (m, 1H), 0.88 

(d, J = 3.2 Hz, 7H). 13C{1H} NMR (125 MHz, CDCl3) δ 166.9, 

161.6, 131.6, 122.0, 115.2, 72.1, 54.2, 51.8, 51.4, 47.8, 39.6, 

35.9, 35.8, 35.0, 32.5, 32.4, 31.5, 30.7, 28.1, 25.6, 21.7, 20.1, 

13.8, 11.4. HRMS (EI) m/z: [M]+ Calcd for C27H36O4
+ 

424.2608; Found 424.2609.
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