Exploring the Synthesis and the Reactivity of 4-[4-(Chloromethyl)styryl]-1,2dimethyl-5-nitro-1*H*-imidazole in TDAE Strategy

Nicolas Primas, Kévin Neildé, Youssef Kabri, Maxime D. Crozet, Thierry Terme, Patrice Vanelle*

Aix-Marseille Université, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire,

Faculté de Pharmacie, 27 Boulevard Jean Moulin – CS 30064, 13385 Marseille Cedex 05, France

Fax +33(4)91794677; E-mail: patrice.vanelle@univ-amu.fr

Received: 10.10.2013; Accepted after revision: 19.11.2013

Abstract: We describe herein the preparation of 4-[4-(chloromethyl)styryl]-1,2-dimethyl-5-nitro-1*H*-imidazole via a Stille crosscoupling reaction. After determining the best reaction conditions, we investigated the reactivity of this activated chloromethyl compound in a TDAE [tetrakis(dimethylamino)ethylene] strategy toward 10 various electrophiles, obtaining 4-(4-substituted)styryl-1,2-dimethyl-5-nitro-1*H*-imidazoles in moderate to good yields.

Key words: nitroimidazole, Stille reaction, TDAE, carbanions, cross-coupling

The discovery of the trichomonacide properties of azomycin (2-nitroimidazole) in 1956¹ led to the development of the 5-nitroimidazole series, well known for their wide spectrum of anti-infectious activity.² The first-in-class molecule is metronidazole (1961),³ which is widely used for the treatment of infections caused by protozoa such as Trichomonas vaginalis, Entamæba histolytica, and Giardia intestinalis, and infections induced by anaerobic bacteria. Several 5-nitroimidazoles are also currently used in drugs, such as secnidazole or ornidazole. These chemotherapeutic agents inhibit the growth of both anaerobic bacteria and some anaerobic protozoa.⁴ However, 5-nitroimidazoles have been found to exhibit mutagenic activity in prokaryotic microorganisms.⁵ Although mutagenicity has not been demonstrated in eukaryotic cells, new nitroimidazole derivatives possessing good pharmacological activity with no mutagenicity⁶ would be of great interest not only for patient care, but also to shed light on the mode of action and the mechanism of expression of mutagenicity. Moreover, the emergence of metronidazole-resistant T. vaginalis has resulted in decreased success of current therapies.⁷ These refractory cases are usually treated with higher doses of metronidazole, which increases the occurrence of side effects.8 Recently, small nitro-groupcontaining heterocyclic derivatives, including 5-nitroimidazole series (fexinidazole), have gained attention in other biological applications such as Trypanosoma cruzi (Chagas disease)⁹ or Mycobacterium tuberculosis.¹⁰ Straightforward access to new derivatives belonging to the biologically relevant 5-nitroimidazole scaffold is therefore likely to be of interest to the scientific community.

SYNTHESIS 2014, 46, 0348–0356 Advanced online publication: 02.12.2013 DOI: 10.1055/s-0033-1338572; Art ID: SS-2013-T0672-OP © Georg Thieme Verlag Stuttgart · New York Tetrakis(dimethylamino)ethylene (TDAE) is an organic reducing agent that reacts with halogenated derivatives to generate a carbanion under mild conditions.¹¹ Since 2003, we have undertaken a program directed toward the development of original synthetic methods using TDAE methodology in medicinal chemistry.¹²

In continuation of our research program centered on the design and synthesis of novel bioactive molecules using TDAE methodology¹² or S_{RN} 1 reactions,¹³ we focused our studies on the synthesis and evaluation of heterocyclic compounds displaying notably antiparasitic activity.¹⁴ We report herein the preparation of new 5-nitroimidazoles, bearing a 4-substituted styryl group at the 4-position, in order to extend the anti-infectious pharmacomodulation in this series of compounds. The 4-styrylimidazole scaffold can have applications in inhibitors of protein farnesyltransferase,¹⁵ ligands of histamine H-3 receptors,¹⁶ or antiparasitic agents.^{17,18} These derivatives have previously been prepared via Heck reaction,¹⁵ Horner-Wadsworth-Emmons reaction,¹⁶ condensation between an aromatic aldehyde with the appropriate 4-methyl-5-nitroimidazole,¹⁷ or Suzuki-Miyaura reactions with the appropriate styrylboronic acid, respectively.¹⁸ To the best of our knowledge, 4-(4-substituted)styryl-1,2-dimethyl-5nitro-1H-imidazoles are poorly represented in the literature and in order to prepare these derivatives, we first synthesized the key intermediate 4-[4-(chloromethyl)styryl]-1,2-dimethyl-5-nitro-1H-imidazole (9) via a multistep synthesis. Then, we used our knowledge of the reactivity of activated chloromethyl groups in TDAE methodologies to investigate the reactivity of intermediate 9 under similar conditions.

Starting from 4-bromobenzyl alcohol (1), Sonogashira cross-coupling reaction with (trimethylsilyl)acetylene afforded the TMS-protected alkyne 2 which was deprotected to give 4-alkynylbenzyl alcohol 3 using tetrabutyl-ammonium fluoride in tetrahydrofuran (Scheme 1).¹⁹ Protection of benzyl alcohol 3 using 3,4-dihydro-2*H*-pyran afforded the O-THP alcohol 4.²⁰ We first tried to prepare the corresponding styrylboronic acid pinacol ester 5" by hydroboration of the alkyne using catecholborane in tetrahydrofuran.²¹ Unfortunately, although this type of reaction was clearly reported in the literature, all attempts failed in our hands and this suitable compound was not isolated. To overcome this problem, we chose to perform an analogous procedure using tin chemistry instead of boron chemistry. Thus, radical hydrostannylation of the

Scheme 1 Preparation of key intermediate 9. *Reagents and conditions*: (i) (trimethylsilyl)acetylene, $PdCl_2(PPh_3)_2$, Et_3N , 70 °C, 36 h, 93%; (ii) 1 M TBAF in THF, r.t., 12 h, 95%; (iii) 3,4-dihydro-2*H*-pyran, PTSA, CH_2Cl_2 , 12 h, 96%; (iv) Bu_3SnH , AIBN, toluene, 80 °C, 12 h, 5: 65%, 5': 14%; (v) 1 M catecholborane in THF, 70 °C, 5'' not obtained; (vi) $PdCl_2(PPh_3)_2$, CuI, PEG-400, MW 150 °C, 1 h, 91%; (vii) PTSA, MeOH, r.t., 12 h, 8: 98%; (viii) $SOCl_2$, r.t., 12 h, 96%.

terminal alkyne of **4** in presence of 2,2'-azobis(isobutyronitrile) provided (*E*)-styrylstannane **5** in good yield.²² It must be pointed out that radical hydrostannylation of alcohol **3** provided the corresponding compound **5'** in only 14% yield.²³ Then, stannane **5** was engaged in a microwave-assisted Stille cross-coupling reaction²⁴ with 4-bromo-1,2-dimethyl-5-nitro-1*H*-imidazole²⁵ (**6**) affording the O-THP protected compound **7**, which was further deprotected in presence of 4-toluenesulfonic acid, leading to compound **8**. Finally, chlorination of benzyl alcohol **8** was performed in thionyl chloride at room temperature to give to the expected key intermediate **9** in 47% overall yield in seven steps. The assignment of the alkene configuration was made by X-ray structural radiocrystallography.²⁶

Table 1 summarizes the optimization of the Stille coupling reaction between styrylstannane 5 and 4-bromo-5-nitroimidazole 6.

Our first attempt to perform the Stille reaction was under typical conditions in dimethylformamide using dichlorobis(triphenylphosphine)palladium(II) (2 mol%) as the palladium source and without any base or co-catalyst under microwave heating in a sealed vial. Under these conditions, starting from stannane 5' the yield was promising (Table 1, entry 1). Since 5' was obtained in a very low yield, further experiments were based on the more accessible stannane 5. Under the same conditions, the yield was only 46% (entry 2). Increasing the temperature of the reaction appeared to us crucial to improve the reaction yield. In order to avoid the thermal decomposition of dimethylformamide, we chose PEG-400 as solvent.²⁷ Using 3% of catalyst and microwave heating at 150 °C for 1.5 hours, the target compound was obtained in 70% yield (entry 3). Addition of copper(I) iodide as co-catalyst slightly improved the yield (entry 4). With 3 mol% of catalyst instead of 2 mol%, the reaction yield reached 86% (entry 5). The use of lithium chloride as co-catalyst²⁴ decreased the yield (entry 6), whereas the use of tetrakis(triphenylphosphine)palladium(0) as catalyst was disappointing (entry 7). In the end, the best reaction conditions were obtained by using 4 mol% of dichlorobis(triphenylphosphine)palladium(II) in presence of 4 mol% of copper(I) iodide in PEG-400 at 150 °C under microwave heating for one hour (entry 8).

Having secured a good access to the key intermediate 4-[4-(chloromethyl)styryl]-1,2-dimethyl-5-nitro-1*H*-imidazole (**9**), we next investigated its reactivity with TDAE methodology.

The first attempt was made using three equivalents of *N*-tosylbenzylimine²⁸ as electrophile in presence of one equivalent of TDAE in anhydrous dimethylformamide at -20 °C for one hour followed by stirring at room temperature for 1.5 hours. The expected addition compound **10a** was isolated in 47% yield (Table 2, entry 1). If the amount of TDAE was increased to 1.3 equivalents, the yield of

 Table 1
 Optimization of the Stille Coupling Reaction of Styrylstannane 5 and 5' with 4-Bromo-5-nitroimidazole 6

Entry	Catalyst (mol%)	Co-catalyst (mol%)	Solvent	Temp ^a (°C)	Time (h)	Yield (%) of 7
1	$PdCl_2(PPh_3)_2(2)$	_	DMF	100	1	79 ^b
2	$PdCl_2(PPh_3)_2(2)$	-	DMF	100	1	46
3	$PdCl_2(PPh_3)_2(3)$	-	PEG-400	150	1.5	70
4	$PdCl_2(PPh_3)_2(2)$	CuI (4)	PEG-400	150	1	75
5	$PdCl_2(PPh_3)_2(3)$	CuI (4)	PEG-400	150	1	86
6	$PdCl_2(PPh_3)_2(3)$	LiCl (6)	PEG-400	150	1	71
7	$Pd(PPh_3)_4(3)$	-	PEG-400	150	1.5	57
8	$PdCl_2(PPh_3)_2(4)$	CuI (4)	PEG-400	150	1	91

^a Microwave heating at the specified temperature.

^b Starting from unprotected styrylstannane 5' to afford 8.

10a was slightly enhanced (entry 2). Electron-donating groups such as the methoxy group afforded 10b with a slightly lower yield than previously, even though the reaction time was considerably increased. Under the same conditions, a similar yield of **10c** was obtained with *N*-tosyl-4-fluorobenzylimine (entry 4). Using aldehydes as electrophiles, the yield of 10d increased using a longer reaction time (entry 6), and also by heating the reaction mixture (entry 7). The structure of this compound was confirmed by X-ray structural analysis (Figure 1). The resolution of the structure gives an average picture of the crystal showing two enantiomers based on chiral carbon C13. The major enantiomer is the structure containing the oxygen O3A and hydrogen H3A representing an abundance of about 80% of (S)-10d in the crystal.²⁶ In the case of 4-formylbenzonitrile, heating the reaction mixture at 70 °C resulted in a lower yield of **10e** than the same reaction conducted at room temperature (entries 8 and 9). Strong electron-withdrawing groups such as the nitro group did not improve the yield of this reaction, leading to only 42% yield of **10f** after 24 hours at room temperature. The reaction also worked with ortho-substituted substrates like 2bromobenzaldehyde (entry 12). It must be pointed out that this same experiment conducted in tetrahydrofuran instead of dimethylformamide was unsuccessful: no trace of the target compound 10g was observed by LC-MS analysis. We therefore investigated other substrates bearing carbonyl function, and found that diethyl oxomalonate afforded the expected derivative **10h** in 55% yield at room temperature in only one hour (entry 13). However, when ethyl pyruvate was used, the reaction mixture had to be heated to improve the reaction yield from 31% to 71% of 10i (entries 14 and 15), while ethyl glyoxylate only led to the target derivative **10j** in 37% yield (entry 16). The global observed yields remained slightly lower when using 4-[4-(chloromethyl)phenyl]-1,2-dimethyl-5-nitro-1Himidazole as the starting material probably due to the greater number of bonds between the nitro electron-withdrawing group and the chlorine atom which plays the role of leaving group in the formation of the benzylic anion.²⁹ Globally in these reactions, byproducts observed by LC-MS analysis were mainly due to the reduction of compound 9.

CI Е TDAE (1.3 equiv) electrophile Лe (3 equiv) DMF O₂N O_2N Ме Ňе temp, time 10a-j 9 (1 equiv) Entry Yield (%) of 10 Electrophile Temp Time (h) Product TsHN Ts 1.5 1.5 47^a 1 r.t. N 2 54 r.t. O_2N Мe 10a TsHN SN__Ts 12 49 3 r.t. O₂N MeO Ňе ÓMe 10b TsHN ∠Ts N 4 r.t. 12 52 0, Мe 10c ΗΟ .СНО 21 33 38 1.5 5 6 7 r.t. Me 12 4 r.t. 70 °C O₂N Ňе 10d HO СНО 8 9 12 Лe 52 r.t. 70 °C 4 34 O₂N NC ÌМе ĊΝ 10e HO .CHO Me 10 2 36 r.t. 11 24 42 r.t. O₂N O_2N Me NO2 10f HC Br сно 33^b 12 12 r.t. O₂N Bı Мe 10g

 Table 2
 Addition of Chloromethyl 9 with Various Electrophiles Using TDAE Strategy

 $\mathbb C$ Georg Thieme Verlag Stuttgart \cdot New York

PAPER

^a Using 1 equiv of TDAE.

^b In THF, no trace of product **10g** was observed by LC-MS analysis.

Figure 1 X-ray crystal structure of compound 10d; major enantiomer (S)-10d ca. 80% in the crystal

In conclusion, we have prepared the previously unreported 4-[4-(chloromethyl)styryl]-1,2-dimethyl-5-nitro-1*H*imidazole (9) using a Stille cross-coupling reaction after establishing the best experimental reaction conditions. This new chloromethylated substrate was reacted toward various electrophiles in the presence of TDAE, affording moderate to good yields of original 4-(4-substituted)styryl-1,2-dimethyl-5-nitro-1*H*-imidazole derivatives

ARX 200 spectrometer at the Faculté de Pharmacie de Marseille (200 MHz ¹H NMR: reference CHCl₃ δ = 7.26, DMSO- $d_6 \delta$ = 2.50 and 50 MHz ¹³C: reference CDCl₃ δ = 76.9, DMSO- $d_6 \delta$ = 39.5). Solvents were dried by conventional methods. The following adsor-

ported in due time.

and 50 MHz ¹³C: reference CDCl₃ δ = 76.9, DMSO-*d*₆ δ = 39.5). Solvents were dried by conventional methods. The following adsorbent was used for column chromatography: silica gel 60 (Merck, particle size 0.063–0.200 mm, 70–230 mesh ASTM). TLC was performed on 5 cm × 10 cm aluminum plates coated with silica gel 60F-254 (Merck) in an appropriate eluent. Visualization was made with UV light (234 nm). HRMS spectra were recorded on QStar Elite (Applied Biosystems SCIEX) spectrometer with a PEG matrix. The experimental exact mass is given for the ion that has the maximum isotopic abundance. Purity of synthesized compounds was checked with LC-MS analyses performed at the Faculty of Pharmacy of Marseille with a Thermo Scientific Accela High Speed LC System[®] coupled with a single quadrupole mass spectrometer Thermo MSQ Plus[®]. The RP-HPLC column used was a Thermo

that are of biological interest, notably as anti-infectious agents. It is noteworthy that intermediate 9 could also be an appropriate substrate for long-distance- S_{RN} 1 reactions,³⁰ and further research is in progress and will be re-

Commercial reagents were used as received without additional purification. Melting points were determined on a Kofler bench and are uncorrected. Elemental analysis and HRMS were carried out at the Spectropole, Faculté des Sciences et Techniques de Saint-Jérôme, Marseille, France. NMR spectra were recorded on a Bruker

4-(4-Substituted)styryl-5-nitro-1*H*-imidazoles 353

Hypersil Gold[®] 50 × 2.1 mm (C18 bonded) with particle size: 1.9 µm diameter. The volume of sample injected on the column was 1 µL. The chromatographic analysis, total duration of 8 min, was made with following solvent gradient: t = 0 min, H₂O–MeOH 50:50; 0 < t < 4 min, linear increase in the proportion of H₂O to a ratio H₂O–MeOH 95:5; 4 < t < 6 min, H₂O–MeOH 95:5; 6 < t < 7 min, linear decrease in the proportion of H₂O to return to a ratio H₂O–MeOH 50:50; 6 < t < 7 min, H₂O–MeOH 50:50; 6 < t < 7 min, H₂O–MeOH 50:50. The H₂O used was buffered with 5 mM NH₄OAc. Microwave reactions were performed using a Biotage Initiator Microwave oven using 10–20-mL sealed vials; temperatures were measured with an IR sensor and reaction times given as hold times. The preparation of compounds 2,¹⁹ 3,¹⁹ 4,²⁰ and 6¹⁸ was achieved as described in the literature.

Crystal-Structure Analysis

The X-ray diffraction measurements were carried out on a Bruker-Nonius KappaCCD diffractometer at 293 K. Structures were solved using SIR92 and refinements calculations based on F^2 were performed using SHELXL-97. The compounds **8** and **10d** were crystallized by slow evaporation of an MeCN solution to provide desired single crystals.

(E)-{4-[2-(Tributylstannyl)vinyl]phenyl}methanol (5')²³

A 50-mL round-bottomed single-neck flask equipped with a condenser, an argon gas inlet, and a magnetic stir bar was charged with (4-ethynylphenyl)methanol (**3**, 661 mg, 5.0 mmol), Bu₃SnH (1.35 mL, 5.0 mmol), AIBN (25 mg), and toluene (10 mL). The flask was heated to 80 °C overnight. The mixture was then cooled to r.t., and all volatiles were removed under reduced pressure to give a crude product that was purified by column chromatography (PE–EtOAc, 7:3) to give **5'** as a colorless oil; yield: 290 mg (14%).

¹H NMR (200 MHz, CDCl₃), 7.42 (d, J = 8.2 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H), 6.88 (s, 2 H, CH=CH), 4.66 (s, 2 H), 1.66–0.75 (m, 27 H, SnBu₃).

¹³C NMR (50 MHz, CDCl₃): δ = 145.7, 140.2, 138.4, 129.9, 127.3, 126.3, 65.2, 29.2, 27.4, 13.8, 9.7.

(*E*)-Tributyl(4-{[(tetrahydro-2*H*-pyran-2-yl)oxy]methyl}styryl)stannane (5)

A 100-mL round-bottomed single-neck flask equipped with a condenser, an argon gas inlet, and a magnetic stir bar was charged with 2-[(4-ethynylbenzyl)oxy]tetrahydro-2*H*-pyran (4, 4.0 g, 18.5 mmol), Bu₃SnH (4.98 mL, 18.5 mmol), AIBN (121 mg), and toluene (45 mL). The flask was heated to 80 °C overnight under argon. The mixture was then cooled to r.t., and all volatiles were removed under reduced pressure to give a crude product that was purified by column chromatography (PE then PE–EtOAc,9:1) to give **5** as a colorless oil; yield: 6.1 g (65%).

¹H NMR (200 MHz, CDCl₃): δ = 7.42 (d, *J* = 8.3 Hz, 2 H), 7.34 (d, *J* = 8.3 Hz, 2 H), 6.88 (s, 2 H, CH=CH), 4.88–4.66 (m, 2 H), 4.51 (d, *J* = 12.2 Hz, 1 H), 4.02–3.86 (m, 1 H), 3.63–3.49 (m, 1 H), 1.96–1.22 (m, 19 H), 1.03–0.88 (m, 14 H).

¹³C NMR (50 MHz, CDCl₃): δ = 145.8, 138.3, 137.7, 129.6, 128.2, 126.1, 97.7, 68.6, 62.2, 30.7, 29.2, 27.4, 25.6, 19.5, 13.8, 9.7.

(*E*)-1,2-Dimethyl-5-nitro-4-(4-{[(tetrahydro-2*H*-pyran-2-yl)oxy]methyl}styryl)-1*H*-imidazole (7)

To a PEG-400 (15 mL) soln of 4-bromo-1,2-dimethyl-5-nitro-1*H*imidazole (6, 1.34 g, 6.08 mmol, 1 equiv) and styrylstannane 5 (4.01 g, 7.9 mmol, 1.3 equiv) was added PdCl₂(PPh₃)₂ (171 mg, 0.24 mmol, 4 mol%) and CuI (46 mg, 0.24 mmol, 4 mol%) in a microwave vial. The mixture was degassed with argon for 15 min and the vial was sealed with a septum. Then, the mixture was heated in a microwave oven at 150 °C for 1 h. After cooling, the mixture was quenched with sat. aq NaHCO₃. The mixture was extracted with EtOAc and the organic layer was washed with 5% KF solution and brine. The organic layer was dried (Na₂SO₄) and the volatiles were removed under vacuum. The crude was column chromatographed (silica gel, CH_2Cl_2 -acetone, 10:0 then 9:1) provided 7 as a yellow solid; yield: 1.98 g (91%); mp 135 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.75 (s, 2 H, CH=CH), 7.60 (d, *J* = 7.3 Hz, 2 H), 7.38 (d, *J* = 7.3 Hz, 2 H), 4.91–4.64 (m, 2 H), 4.52 (d, *J* = 12.4 Hz, 1 H), 3.98–3.89 (m, 4 H), 3.66–3.41 (m, 1 H), 2.49 (s, 3 H), 1.95–1.38 (m, 6 H).

¹³C NMR (50 MHz, CDCl₃): δ = 149.4, 142.6, 139.5, 136.5, 135.8, 128.3, 127.7, 117.9, 97.9, 68.6, 62.3, 34.2, 30.7, 25.6, 19.5, 14.4; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_{\rm R} = 3.55$ min; m/z = 358.24 [M + H]⁺.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{19}H_{24}N_3O_4$: 358.1761; found: 358.1762.

(E)-{4-[2-(1,2-Dimethyl-5-nitro-1H-imidazol-4-yl)vinyl]phenyl}methanol (8)²⁶

To a soln of THP-protected alcohol 7 (1.98 g, 5.54 mmol) in MeOH (80 mL) was added a catalytic amount of PTSA (a spatula tip) under an argon atmosphere. The mixture was stirred overnight at r.t. The volatiles were removed under vacuum and the resulting mixture was triturated (minimal amount of Et₂O and a drop of CH₂Cl₂). Filtration of the suspension led to **8** as a yellow solid; yield: 1.48 g (98%); mp 177 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.75 (s, 2 H, CH=CH), 7.60 (d, *J* = 8.1 Hz, 2 H), 7.37 (d, *J* = 8.1 Hz, 2 H), 4.71 (s, 2 H), 3.90 (s, 3 H), 2.49 (s, 3 H).

¹³C NMR (50 MHz, CDCl₃): δ = 149.4, 142.5, 141.9, 136.4, 135.9, 127.9, 127.5, 118.0, 65.2, 34.2, 14.4; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_{\rm R} = 1.17$ min; m/z = 274.30 [M + H]⁺.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{14}H_{16}N_3O_3$: 274.1186; found: 274.1185.

(*E*)-4-[4-(Chloromethyl)styryl]-1,2-dimethyl-5-nitro-1*H*-imidazole (9)

To a 100-mL dry round-bottomed single-neck flask equipped with a condenser was introduced alcohol **8** (1.52 g, 5.55 mmol) and freshly distilled SOCl₂ (15 mL) under an argon atmosphere. The yellow mixture was vigorously stirred overnight at r.t. The excess SOCl₂ was distilled off. The crude product was triturated (PE–CH₂Cl₂ and a drop of MeOH), filtered, and thoroughly washed with PE leading to chloride **9** as a yellow solid; yield: 1.55 g (96%); mp 199 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.62 (s, 2 H, CH=CH), 7.46 (d, *J* = 8.1 Hz, 2 H), 7.27 (d, *J* = 8.1 Hz, 2 H), 4.48 (s, 2 H), 3.77 (s, 3 H), 2.41 (s, 3 H).

¹³C NMR (50 MHz, CDCl₃): δ = 149.3, 141.6, 138.3, 136.5, 136.3, 129.1, 127.9, 118.0, 46.0, 34.2, 14.2; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_{\rm R} = 3.60$ min; m/z = 292.06 [M + H]⁺.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{14}H_{15}N_3O_2Cl$: 292.0847; found: 292.0848.

(*E*)-4-(4-Substituted)styryl-1,2-dimethyl-5-nitro-1*H*-imidazoles 10a–j; General Procedure

A Schlenk tube equipped with a septum was charged with (E)-4-[4-(chloromethyl)styryl]-1,2-dimethyl-5-nitro-1*H*-imidazole (9, 120 mg, 0.41 mmol, 1 equiv) and electrophile (1.23 mmol, 3 equiv). The tube was purged and filled with argon gas, and then anhydrous DMF (6 mL) was added. The solution was stirred at -20 °C and TDAE (125 μ L, 0.53 mmol, 1.3 equiv) was added dropwise via a syringe and the mixture was kept at this temperature for 1 h under vigorous stirring. The solution was then warmed to the required temperature and for the required time (see Table 2); TLC analysis showed the to-tal consumption of **9**. The mixture was quenched with H₂O (5 mL) and EtOAc (15 mL) was added. The organic layer was washed with $\rm H_2O~(3\times15~mL),$ dried (Na_2SO_4), and finally concentrated under vacuum. Purification of the crude product by column chromatography (silica gel, CH_2Cl_-acetone, 10:0 then 9:1) gave the corresponding compound 10.

(*E*)-*N*-(2-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-1-phenylethyl)-4-methylbenzenesulfonamide (10a) Yellow solid; yield: 114 mg (54%); mp 232 °C.

¹H NMR (200 MHz, DMSO-*d*₆): δ = 8.30 (d, *J* = 7.2 Hz, 1 H, NH), 7.61 (s, 2 H_{alkene}), 7.39 (d, *J* = 8.1 Hz, 2 H), 7.30 (d, *J* = 8.2 Hz, 2 H), 7.19–7.15 (m, 5 H), 7.13–7.00 (m, 4 H), 4.43 (d, *J* = 7.4 Hz, 1 H), 3.81 (s, 3 H), 2.83 (d, *J* = 7.5 Hz, 2 H), 2.44 (s, 3 H), 2.24 (s, 3 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 150.3, 142.2, 141.7, 141.3, 139.0, 138.5, 135.5, 134.5, 134.0, 129.8, 129.0, 128.0, 126.9, 126.8, 126.6, 126.1, 117.2, 59.1, 43.1, 33.8, 20.9, 13.8.

LC-MS (ESI+): $t_{\rm R} = 4.06$ min; m/z = 517.17 [M + H]⁺.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{28}H_{29}N_4O_4S; \ 517.1904;$ found: 517.1903.

(*E*)-*N*-(2-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-1-{4-methoxyphenyl}ethyl)-4-methylbenzenesulfonamide (10b)

Yellow solid; yield: 110 mg (49%); mp 235 °C.

¹H NMR (200 MHz, DMSO- d_6): $\delta = 8.19$ (d, J = 8.7 Hz, 1 H, NH), 7.60 (s, 2 H), 7.35 (dd, J = 16.4, 7.9 Hz, 4 H), 7.21–6.91 (m, 6 H), 6.71 (d, J = 8.3 Hz, 2 H), 4.38 (dd, J = 15.7, 7.6 Hz, 1 H), 3.80 (s, 3 H), 3.68 (s, 3 H), 2.83 (d, J = 7.2 Hz, 2 H), 2.43 (s, 3 H), 2.25 (s, 3 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 158.1, 150.3, 141.6, 141.3, 139.1, 138.6, 135.5, 134.5, 134.0, 133.9, 129.8, 129.0, 127.8, 126.9, 126.1, 117.2, 113.3, 58.6, 55.0, 43.1, 33.8, 20.9, 13.8.

LC-MS (ESI+): $t_{\rm R} = 3.90$ min; m/z = 546.43 [M + H]⁺.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{29}H_{31}N_4O_5S$: 547.2010; found: 547.2010.

(*E*)-*N*-(2-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-1-{4-fluorophenyl}ethyl)-4-methylbenzenesulfonamide (10c)

Yellow solid; yield: 115 mg (52%); mp 240 °C.

¹H NMR (200 MHz, DMSO- d_6): δ = 8.30 (d, J = 8.8 Hz, 1 H), 7.60 (s, 2 H), 7.43–6.91 (m, 12 H), 4.46 (dd, J = 16.0, 7.6 Hz, 1 H), 3.79 (s, 3 H), 2.83 (d, J = 7.4 Hz, 2 H), 2.43 (s, 3 H), 2.24 (s, 3 H).

¹³C NMR (50 MHz, DMSO- d_6): $\delta = 161.1$ (d, J = 242.6 Hz), 150.3, 141.9, 141.3, 138.8, 138.4, 138.2 (d, J = 3.0 Hz), 135.5, 134.5, 134.0, 129.8, 129.0, 128.6 (d, J = 8.2 Hz), 126.9, 126.1, 117.3, 114.6 (d, J = 21.3 Hz), 58.4, 43.1, 33.8, 20.9, 13.8.

LC-MS (ESI+): $t_{\rm R} = 4.12$ min; m/z = 534.96 [M + H]⁺.

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₈H₂₈N₄O₄SF: 535.1810; found: 535.1810.

(*E*)-1-(4-Chlorophenyl)-2-{4-[2-(1,2-dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}ethanol (10d)²⁶

Yellow solid; yield: 78 mg (38%); mp 192 °C.

¹H NMR (200 MHz, DMSO- d_6): δ = 7.61 (s, 2 H), 7.50 (d, J = 8.1 Hz, 2 H), 7.33 (s, 4 H), 7.18 (d, J = 8.0 Hz, 2 H), 5.42 (d, J = 4.6 Hz, OH), 4.78 (dd, J = 11.3, 6.1 Hz, 1 H), 3.78 (s, 3 H), 2.89 (d, J = 6.4 Hz, 2 H), 2.42 (s, 3 H).

¹³C NMR (50 MHz, DMSO-*d*₆): δ = 150.3, 144.5, 141.3, 140.0, 135.6, 134.4, 133.7, 131.2, 130.2, 127.9, 127.8, 126.8, 117.1, 72.8, 45.2, 33.8, 13.8.

LC-MS (ESI+): $t_{\rm R} = 3.99$ min; m/z = 398.05 [M + H]⁺.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{21}N_3O_3Cl$: 398.1266; found: 398.1268.

(*E*)-4-(2-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-1-hydroxyethyl)benzonitrile (10e) Yellow solid; yield: 83 mg (52%); mp 227 °C.

¹H NMR (200 MHz, DMSO- d_6): δ = 7.77 (d, J = 8.2 Hz, 2 H), 7.62 (s, 2 H), 7.51 (d, J = 6.9 Hz, 4 H), 7.20 (d, J = 8.0 Hz, 2 H), 5.59 (d, J = 4.7 Hz, OH), 4.88 (dd, J = 11.3, 6.1 Hz, 1 H), 3.80 (s, 3 H), 2.91 (d, J = 6.5 Hz, 2 H), 2.44 (s, 3 H).

¹³C NMR (50 MHz, DMSO- d_6): $\delta = 151.3$, 150.3, 141.3, 139.7, 135.5, 134.5, 133.8, 131.9, 130.2, 127.0, 126.9, 119.0, 117.2, 109.5, 72.8, 44.9, 33.8, 13.8.

LC-MS (ESI+): $t_{\rm R} = 2.97$ min; m/z = 389.10 [M + H]⁺.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{22}H_{21}N_4O_3$: 389.1608; found: 389.1610.

(*E*)-2-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-1-(4-nitrophenyl)ethanol (10f)

Yellow solid; yield: 70 mg (42%); mp 238 °C.

¹H NMR (200 MHz, DMSO- d_6): $\delta = 8.17$ (d, J = 8.7 Hz, 2 H), 7.64– 7.48 (m, 6 H), 7.21 (d, J = 8.0 Hz, 2 H), 5.67 (d, J = 4.7 Hz, OH), 4.95 (dd, J = 11.7, 6.4 Hz, 1 H), 3.80 (s, 3 H), 2.94 (d, J = 6.2 Hz, 2 H), 2.43 (s, 3 H).

¹³C NMR (50 MHz, DMSO-*d*₆): δ = 153.5, 150.3, 146.4, 141.3, 139.5, 135.5, 134.5, 133.9, 130.2, 127.2, 126.9, 123.1, 117.2, 72.6, 44.9, 33.8, 13.8.

LC-MS (ESI+): $t_{\rm R} = 3.39$ min; m/z = 409.01 [M + H]⁺.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{21}N_4O_5$: 409.1506; found: 409.1503.

(*E*)-1-(2-Bromophenyl)-2-{4-[2-(1,2-dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}ethanol (10g) Yellow solid; yield: 60 mg (33%); mp 198 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.72 (s, 2 H), 7.61 (dd, *J* = 7.7, 1.5 Hz, 1 H), 7.53 (d, *J* = 8.0 Hz, 2 H), 7.40–7.24 (m, 4 H), 7.14 (td, *J* = 7.7, 1.6 Hz, 1 H), 5.25 (dd, *J* = 9.3, 3.0 Hz, 1 H), 3.86 (s, 3 H), 3.17 (dd, *J* = 13.8, 3.0 Hz, 1 H), 2.76 (dd, *J* = 13.8, 9.3 Hz, 1 H), 2.43 (s, 3 H).

¹³C NMR (50 MHz, CDCl₃): δ = 149.3, 143.1, 142.4, 142.4, 139.7, 136.9, 134.9, 132.7, 130.1, 129.0, 127.9, 127.8, 127.5, 121.8, 117.3, 73.9, 44.2, 34.2, 14.2.

LC-MS (ESI+): $t_{\rm R} = 4.11$ min; m/z = 441.93 [M + H]⁺.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{21}H_{21}N_3O_3Br$: 442.0761; found: 442.0760.

Diethyl (E)-2-{4-[2-(1,2-Dimethyl-5-nitro-1H-imidazol-4-yl)vinyl]benzyl}-2-hydroxymalonate (10h) Yellow solid; yield: 97 mg (55%); mp 153 °C.

¹H NMR (200 MHz, CDCl₃): $\delta = 7.70$ (d, J = 1.4 Hz, 2 H), 7.50 (d, J = 8.2 Hz, 2 H), 7.25 (d, J = 7.9 Hz, 2 H), 4.24 (q, J = 7.1 Hz, 4 H), 3.87 (s, 3 H), 3.34 (s, 2 H), 2.47 (s, 3 H), 1.28 (t, J = 7.1 Hz, 6 H).

¹³C NMR (50 MHz, CDCl₃): δ = 170.0, 149.4, 142.5, 136.5, 135.8, 135.4, 130.9, 127.4, 117.8, 79.3, 62.8, 40.4, 34.1, 14.3, 14.1; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_{\rm R} = 3.35$ min; m/z = 432.06 [M + H]⁺.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{26}N_3O_7$: 432.1765; found: 432.1764.

Ethyl (*E*)-3-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-2-hydroxy-2-methylpropanoate (10i)

Yellow solid; yield: 109 mg (71%); mp 142 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.71 (s, 2 H), 7.51 (d, *J* = 8.2 Hz, 2 H), 7.20 (d, *J* = 8.1 Hz, 2 H), 4.17 (q, *J* = 7.1 Hz, 2 H), 3.87 (s, 3 H), 3.13 (s, 1 H, OH), 3.00 (dd, *J* = 31.5, 13.5 Hz, 2 H), 2.48 (s, 3 H), 1.49 (s, 3 H), 1.27 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (50 MHz, CDCl₃): δ = 176.2, 149.4, 142.5, 137.3, 136.6, 135.1, 130.7, 127.4, 117.6, 75.2, 62.1, 46.2, 34.1, 26.1, 14.4, 14.3; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_R = 3.15 \text{ min}; m/z = 374.14 [M + H]^+$.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{19}H_{24}N_3O_5$: 374.1710; found: 374.1710.

Ethyl (*E*)-3-{4-[2-(1,2-Dimethyl-5-nitro-1*H*-imidazol-4-yl)vinyl]phenyl}-2-hydroxypropanoate (10j)

Yellow solid; yield: 55 mg (37%); mp 112 °C.

¹H NMR (200 MHz, CDCl₃): δ = 7.71 (d, *J* = 1.3 Hz, 2 H), 7.53 (d, *J* = 8.1 Hz, 2 H), 7.23 (d, *J* = 8.2 Hz, 2 H), 4.43 (s, 1 H, OH), 4.22 (q, *J* = 7.1 Hz, 2 H), 3.87 (s, 3 H), 3.13 (dd, *J* = 13.9, 4.5 Hz, 1 H), 3.04–2.85 (m, 2 H), 2.47 (s, 3 H), 1.28 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (50 MHz, CDCl₃): δ = 174.2, 149.4, 142.6, 137.6, 136.5, 135.1, 130.1, 127.6, 117.7, 71.2, 61.9, 40.5, 34.1, 14.4, 14.3; CNO₂ not visible under these conditions.

LC-MS (ESI+): $t_{\rm R} = 2.73$ min; m/z = 360.24 [M + H]⁺.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{18}H_{22}N_3O_5$: 360.1554; found: 360.1555.

Acknowledgment

This work was supported by the CNRS and Aix-Marseille University. The authors thank Michel Giorgi for the X-ray diffraction and structure analysis. We warmly thank V. Remusat for recording ¹H and ¹³C NMR spectra and T. Schembri and D. Lafitte (Marseille Protéomique - PIT2) for HRMS spectra. We thank also O. Khoumeri for providing the *N*-tosylimine derivatives.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) Horie, H. J. Antibiot., Ser. A. 1956, 9, 168.
- (2) (a) Jorgensen, M. A.; Manos, J.; Mendz, G. L.; Hazell, S. L. J. Antimicrob. Chemother. 1998, 41, 67. (b) Upcroft, J. A.; Campbell, R. W.; Benakli, K.; Upcroft, P.; Vanelle, P. Antimicrob. Agents Chemother. 1999, 43, 73. (c) Citron, D. M.; Tyrrell, K. L.; Warren, Y. A.; Fernandez, H.; Merriam, C. V.; Goldstein, E. J. C. Anaerobe 2005, 11, 315. (d) Leitsch, D.; Kolarich, D.; Wilson, I. B. H.; Altmann, F.; Duchêne, M. PLoS Biol. 2007, 5, e211. (e) Crozet, M. D.; Botta, C.; Gasquet, M.; Curti, C.; Rémusat, V.; Hutter, S.; Chapelle, O.; Azas, N.; De Méo, M.; Vanelle, P. Eur. J. Med. Chem. 2009, 44, 653. (f) Kim, P.; Kang, S.; Boshoff, H. I.; Jiricek, J.; Collins, M.; Singh, R.; Manjunatha, U. H.; Niyomrattanakit, P.; Zhang, L.; Goodwin, M.; Dick, T.; Keller, T. H.; Dowd, C. S.; Barry, C. E. III J. Med. Chem. 2009, 52, 1329. (g) Dunn, L. A.; Burgess, A. G.; Krauer, K. G.; Eckmann, L.; Vanelle, P.; Crozet, M. D.; Gillin, F. D.; Upcroft, P.; Upcroft, J. A. Int. J. Antimicrob. Agents 2010, 36, 37.
- (3) Cosar, C.; Ganter, P.; Julou, L. Presse Med. 1961, 69, 1069.
- (4) Celik, A.; Aras Ateş, N. Drug Chem. Toxicol. 2006, 29, 85.
- (5) Mital, A. Sci. Pharm. 2009, 77, 497.
- (6) Walsh, J. S.; Wang, R.; Bagan, E.; Wang, C. C.; Wislocki, P.; Miwa, G. T. J. Med. Chem. 1987, 30, 150.
- (7) Cudmore, S. L.; Delgaty, K. L.; Hayward-McClelland, S. F.; Petrin, D. P.; Garber, G. E. *Clin. Microbiol. Rev.* 2004, 17, 783.

- (8) (a) Schwebke, J. R.; Burgess, D. Clin. Microbiol. Rev. 2004, 17, 794. (b) Crowell, A. L.; Sanders-Lewis, K. A.; Secor, W. E. Antimicrob. Agents Chemother. 2003, 47, 1407.
- (9) Bahia, M. T.; de Andrade, I. M.; Martins, T. A. F.; do Nascimento, Á. F. D. S.; Diniz, L. D. F.; Caldas, I. S.; Talvani, A.; Trunz, B. B.; Torreele, E.; Ribeiro, I. *PLoS Neglected Trop. Dis.* **2012**, *6*, e1870.
- (10) Carroll, M. W.; Jeon, D.; Mountz, J. M.; Lee, J. D.; Jeong, Y. J.; Zia, N.; Lee, M.; Lee, J.; Via, L. E.; Lee, S.; Eum, S.-Y.; Lee, S.-J.; Goldfeder, L. C.; Cai, Y.; Jin, B.; Kim, Y.; Oh, T.; Chen, R. Y.; Dodd, L. E.; Gu, W.; Dartois, V.; Park, S.-K.; Kim, C. T.; Barry, C. E. III; Cho, S.-N. Antimicrob. Agents Chemother. 2013, 57, 3903.
- (11) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004, 6, 301.
- (12) (a) Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. *Tetrahedron Lett.* 2004, *45*, 5121. (b) Amiri-Attou, O.; Terme, T.; Vanelle, P. *Molecules* 2005, *10*, 545. (c) Amiri-Attou, O.; Terme, T.; Vanelle, P. *Synlett* 2005, 3047. (d) Montana, M.; Terme, T.; Vanelle, P. *Tetrahedron Lett.* 2006, *47*, 6573. (e) Spitz, C.; Khoumeri, O.; Terme, T.; Vanelle, P. *Synlett* 2013, *24*, 1725.
- (13) (a) Crozet, M. P.; Archaimbault, G.; Vanelle, P.; Nouguier, R. *Tetrahedron Lett.* 1985, 26, 5133. (b) Vanelle, P.; Maldonado, J.; Madadi, N.; Gueiffier, A.; Teulade, J.-C.; Chapat, J.-P.; Crozet, M. P. *Tetrahedron Lett.* 1990, 31, 3013. (c) Crozet, M. P.; Giraud, L.; Sabuco, J.-F.; Vanelle, P.; Barreau, M. *Tetrahedron Lett.* 1991, 32, 4125. (d) Crozet, M. P.; Gellis, A.; Pasquier, C.; Vanelle, P.; Aune, J.-P. *Tetrahedron Lett.* 1995, 36, 525. (e) Roubaud, C.; Vanelle, P.; Maldonado, J.; Crozet, M. P. *Tetrahedron* 1995, 51, 9643. (f) Gellis, A.; Vanelle, P.; Kaafarani, M.; Benakli, K.; Crozet, M. P. *Tetrahedron* 1997, 53, 5471.
- (14) (a) Vanelle, P.; De Meo, M. P.; Maldonado, J.; Nouguier, R.; Crozet, M. P.; Laget, M.; Dumenil, G. *Eur. J. Med. Chem.* **1990**, *25*, 241. (b) Delmas, F.; Gasquet, M.; Timon-David, P.; Madadi, N.; Vanelle, P.; Vaille, A.; Maldonado, J. *Eur. J. Med. Chem.* **1993**, *28*, 23. (c) El-Kashef, H.; El-Emary, T. I.; Gasquet, M.; Timon-David, P.; Maldonado, J.; Vanelle, P. *Pharmazie* **2000**, *55*, 572. (d) Verhaeghe, P.; Azas, N.; Gasquet, M.; Hutter, S.; Ducros, C.; Laget, M.; Rault, S.; Rathelot, P.; Vanelle, P. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 396. (e) Kabri, Y.; Azas, N.; Dumètre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. *Eur. J. Med. Chem.* **2010**, *45*, 616. (f) Primas, N.; Verhaeghe, P.; Cohen, A.; Kieffer, C.; Dumètre, A.; Hutter, S.; Rault, S.; Rathelot, P.; Azas, N.; Vanelle, P. *Molecules* **2012**, *17*, 8105.
- (15) Shen, W.; Fakhoury, S.; Donner, G.; Henry, K.; Lee, J.; Zhang, H.; Cohen, J.; Warner, R.; Saeed, B.; Cherian, S. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 703.
- (16) Harusawa, S.; Koyabu, S.; Inoue, Y.; Sakamoto, Y.; Araki, L.; Kurihara, T. *Synthesis* **2002**, 1072.
- (17) Ross, W. J.; Todd, A. J. Med. Chem. 1973, 16, 863.
- (18) Crozet, M. D.; Zink, L.; Remusat, V.; Curti, C.; Vanelle, P. Synthesis 2009, 3150.
- (19) Hiraoka, S.; Hirata, K.; Shionoya, M. Angew. Chem. Int. Ed. 2004, 43, 3814.
- (20) Moszynski, J. M.; Fyles, T. M. Org. Biomol. Chem. 2010, 8, 5139.
- (21) (a) Churches, Q. I.; Stewart, H. E.; Cohen, S. B.; Shröder, A.; Turner, P.; Hutton, C. A. *Pure Appl. Chem.* 2008, *80*, 687. (b) Perner, R. J.; Lee, C.-H.; Jiang, M.; Gu, Y.-G.; DiDomenico, S.; Bayburt, E. K.; Alexander, K. M.; Kohlhaas, K. L.; Jarvis, M. F.; Kowaluk, E. L.; Bhagwat, S. S. *Bioorg. Med. Chem. Lett.* 2005, *15*, 2803.
- (22) Stulgies, B.; Prinz, P.; Magull, J.; Rauch, K.; Meindl, K.; Rühl, S.; de Meijere, A. *Chem. Eur. J.* **2005**, *11*, 308.

Downloaded by: University of Massachusetts Boston. Copyrighted material.

- (23) Maekawa, Y.; Sakaguchi, T.; Tsuchikawa, H.; Katsumura, S. *Tetrahedron Lett.* **2012**, *53*, 837.
- (24) Cebrián, C.; de Cózar, A.; Prieto, P.; Díaz-Ortiz, A.; de la Hoz, A.; Carrillo, J.; Rodriguez, A.; Montilla, F. Synlett 2010, 55.
- (25) Neildé, K.; Crozet, M.; Terme, T.; Vanelle, P. Synthesis 2013, 45, 1349.
- (26) Detailed X-ray crystallographic data are available from the Cambridge Crystallographic Data Centre (compound 8: CCDC 960704 and compound 10d: CCDC 960238). These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

- (27) Zhou, W.-J.; Wang, K.-H.; Wang, J.-X. J. Org. Chem. 2009, 74, 5599.
- (28) (a) Khoumeri, O.; Giuglio-Tonolo, G.; Crozet, M. D.; Terme, T.; Vanelle, P. *Tetrahedron* 2011, *67*, 6173.
 (b) Khoumeri, O.; Montana, M.; Terme, T.; Vanelle, P. *Tetrahedron Lett.* 2012, *53*, 2410.
- (29) Juspin, T.; Zink, L.; Crozet, M. D.; Terme, T.; Vanelle, P. *Molecules* 2011, 16, 6883.
- (30) Benakli, K.; Kaafarani, M.; Crozet, M. P.; Vanelle, P. *Heterocycles* **1999**, *51*, 557.