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Abstract. A procedure for practical synthesis of CuNPs from CuSO4�5H2O is established, under appropriate

reaction conditions, using rice (Oryza sativa) as an economic source of reducing as well as a stabilizing agent.

Optical and microscopic techniques are employed for the characterization of the synthesized CuNPs and the

sizes of the particles were found to be in the range of 8 ± 2 nm. The nanoparticles are used as a catalyst for

chemoselective reduction of aromatic nitro compounds to corresponding amines under ambient conditions

and water as a reaction medium.
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1. Introduction

Aromatic amino derivatives are important raw mate-

rials and pivotal intermediates for the synthesis of

pharmaceuticals, agrochemicals, dyes, polymers and

various other industrially important chemicals.1 In

general the required aromatic amines are achieved by

reductions of their corresponding nitroarenes using a

stoichiometric amount of metals such as Mn, Fe, Zn,

etc.2 Use of stoichiometric amounts of transition

metals as a source of reduction agent leads to the

production of a large amount of waste. There are

several catalytic methods to carry out the reduction

process. But, the selective reduction of the nitro group

in presence of other reducible functional groups in a

nitroarene is a challenging task. The use of noble

metal catalysts (Pd, Pt, Au, Ir, Rh, etc.) for chemose-

lective reduction of nitroarenes using various reducing

agents such as NaBH4, H2, N2H4�H2O and isopropyl

alcohol is well documented.3 Regardless of the high

activities displayed by noble metal catalysts, their use

is limited due to low abundance, high price and toxi-

city.4 This fact motivated researchers to shift their

attention towards the developments of earth-abundant

metal (Fe, Co, Ni and Cu) based catalysts. Immense

progress has been made towards the development of

non-noble metal-based active and chemoselective

catalysts for the reduction of nitroarenes to their cor-

responding amines.5 In spite of that, for many catalytic

systems drastic conditions such as elevated tempera-

ture and high pressure are often required.5f,6 Alterna-

tive catalysts that are cheap, simple and active at room

temperature for chemoselective nitroarene reduction to

corresponding amines is, therefore, highly appreciated.

In the last few decades, synthesis and applications

of copper-based nanoparticles have attracted great

attention, as compared to noble metal-based nanopar-

ticles, from an economic viewpoint. Further, the

functional diversity and low toxicity have boosted the

synthesis of Cu-based functional nanomaterials

enthusiastically all over the world. Copper-based

nanoparticles have potential applications in catalysis,

health and the environment. In catalysis, it is used to

carry out various organic transformations.7 Copper-

based nanoparticles are also employed in the poly-

merization reaction,8 decompositions of toxic dye,9

CO oxidation,10 hydrogen evolution reaction,11 and

conversion of CO2 to CO.12 Sensing property of cop-

per nanoparticles have also been well explored. Ma

et al. developed CuNPs@NiF electrode and explored

their glucose sensing potential with a low detection

limit of 0.5 lM.13 On the other hand, Li et al.,
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developed copper nanoparticles based colorimetric

sensor for Hg(II) ion with a limit of detection of

0.052 lM.14 On top of that copper holds a position in

the list of micronutrients and it is essential for plants,

animals and human health.15 Hence, exposure of

copper from the workspace to the environments

resulting in its entry into the food chain is not a matter

of great concern.

Herein, we report a simple and economical method

for the synthesis of copper nanoparticles-based mate-

rial and its use in the chemoselective reduction of

nitroarenes to their corresponding amines in water.

2. Experimental

2.1 Synthesis of copper nanoparticles (CuNPs)

A mixture of 3 g of rice and 10 mL of water was taken

in a 100 mL round bottom flask followed by slow

addition of 1 mL of concentrated H2SO4. The reaction

mixture was heated at 100 �C for 1 h with continuous

stirring and then 10 mL of 5 N NaOH (aq) was added

dropwise to neutralize (pH= 7, checked using pHpaper)

the acid content. Subsequently, 1.25 g CuSO4�5H2O

dissolved in 20 mL water was added to the above-

mentioned reaction mixture followed by the addition

of 2.5 mL of 5 N NaOH and the resulting mixture was

stirred at the same temperature for another one hour

whereupon a reddish-brown coloured solid (CuNPs)

was formed. The reaction mixture was cooled to room

temperature and the product was collected by cen-

trifugation, washed twice with water and dried under

vacuum at room temperature. The material was char-

acterized by techniques including UV-vis, powder

XRD and TEM.

2.2 General procedure for aromatic nitro
compounds reduction

In a typical procedure, a mixture of 5 mL of water,

an aromatic nitro compound (1 mmol) and CuNPs

(5 mg) was taken in a 50 mL round-bottomed flask

and then stirred at room temperature followed by the

addition of NaBH4 (200 mg) with constant stirring.

Progress of the reaction was monitor by TLC, after

completion of the reaction the product was extracted

by ethyl acetate and purified by column chromatog-

raphy on silica gel to afford the amine. A variety of

amines were prepared in this manner and character-

ized by analyzing their 1H and 13C NMR spectral

data. The reported compounds were confirmed by

comparing the spectral data with literature values

whereas new compounds were additionally charac-

terized by analyzing HR-MS data.

2.3 Characterization techniques

UV-vis spectra of samples were recorded using a

JASCO V-650 Bio instrument. Powder XRD patterns

were obtained using a Bruker D8 Advance instrument.

CuNPs samples suitable for TEM studies were pre-

pared by the dip and lift-off methods. In a typical

procedure, a sample was dispersed in distilled water by

sonicating and a TEM grid was dipped into it with the

help of Forceps and then lifted off air-dried. 1H NMR

and 13C NMR spectra of the amines were recorded on

Bruker Avance 400 MHz NMR or Bruker Avance 500

MHz NMR instruments. Mass spectral data of new

compounds were obtained using a High-Resolution

Q-Tof Mass instrument.

3. Results and Discussion

3.1 Copper nanoparticles

Reducing sugar present in hydrolysed rice played a

dual role of, under optimized conditions, reduction of

Cu(II) to Cu(0) as well as stabilization of ensuing

nanoparticles. Glucose acts as a reducing agent and its

oxidised form, gluconate, acts as a stabilizing agent

(Scheme 1). and In our previous report, it has been

observed that the use of 1 g of rice and 1.25 g of

CuSO4�5H2O (5 mmol) produced spherical Cu2ONPs

(9-10 nm) exclusively.16 In this work we observed

that, with 2 g of rice and other conditions being

unchanged a mixture of Cu2ONPs and CuNPs is

formed. However, increasing the amount of rice to 3 g

produced CuNPs exclusively. The formation of NPs

was confirmed by analysing UV-Vis absorption spec-

tra of the samples where a characteristic surface res-

onance peak at 478 nm indicates the formation of

Cu2ONPs and that at 600 nm confirms the presence of

CuNPs (Figure 1a). Hung et al., reported spherical

CuNPs of 8 nm size where the UV-Vis absorption

spectrum showed a peak at 600 nm.17 Formation of a

mixture of Cu2ONPs and CuNPs by using 2 g of rice

may be correlated to insufficient amount of hydrolysed

rice constituent that caused an incomplete reduction of

Cu2O to Cu. Powder X-Ray diffraction (Figure 1b) for

Cu2ONPs shows the entire characteristic of Bragg’s

reflection at appropriate 2h, (110), (111), (200), (220),
(311) and (222) (JCPDS No. 05-0667). For CuNPs,

Powder X-Ray diffraction show 2h pick position cor-

responding to Cu, which is in good agreement with
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JCPDS card no. 04-0836. TEM image of CuNPs

(Figure 2) shows a particle size distribution in the

range of 8 ± 2 nm which is consistent with the peak

observed in the corresponding UV-Vis spectrum.

The relation between the quantity of rice and the

formation of Cu2ONPs and CuNPs can also be

understood from redox chemistry. As described ear-

lier, rice is a source of glucose (reducing sugar). The

Scheme 1. Schematic representation of gluconate stabilized (oxidized product of glucose, rice) CuNPs.

Figure 1. Monitoring the formation of CuNPs by (a) UV-Vis absorption and (b) Powder X-Ray diffraction techniques.
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standard reduction potential of Cu(II) to Cu(I),

Cu(I) to Cu(0), and gluconic acid to glucose are 0.16,

0.52 and 0.05 V, respectively.25 The following redox

reaction takes place between copper precursor and

glucose (Schemes 2 and 3). Eo
cell for production of

Cu2O and Cu are 0.11 and 0.47 V, respectively.

Based on E�cell values shown in Schemes 2 and 3,

the conversion of Cu(I) to Cu(0) is more spontaneous

than Cu(II) to Cu(I). However, increases in rice

content by two-fold resulted in only a mixture of

Cu2ONP and CuNPs. This may be attributed to the

fact that hydrolysed rice contents are not sufficient to

stabilize the formed CuNPs and reverse reaction

(aerial oxidation) takes place as the reaction was

carried out at 100 �C in open air. By increments of

the rice content to three-fold, the production of

CuNPs got optimized.

3.2 Chemoselective reduction of nitroarenes

Reduction of nitroarenes to corresponding anilines

using sodium borohydride require hazardous solvent

(DMSO, sulfolane) and high temperature (85-100

�C).26 Catalytic activity of the synthesized CuNPs for

reduction of nitroarenes was evaluated by reacting a

model nitroarene with NaBH4 (as a reducing agent).

The reaction was carried out in a flask containing an

aqueous suspension of CuNPs at room temperature

and under open air with continuous stirring. First, we

chose 4-nitrophenol as a model substrate and the

progress of the reaction was monitored by TLC.

Another set of reactions was carried out in glass vials

without and with CuNPs (Scheme S1, Supplementary

Information). At the end of 30 mins, the products of

each reaction were analysed by 1H NMR and it was

Figure 2. TEM image of CuNPs (a) with scale 100 nm (b) with scale 50 nm.

Scheme 2. Redox reaction between Cu(II) and glucose
(with 1 g rice).

Scheme 3. Redox reaction between Cu(II) and glucose
(with 2 g and 3 g rice).
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Table 1. Chemoselective reduction of aromatic nitro compounds to aromatic amines.

NO2

R NaBH4
CuNPs (5 mg)
Water (5 mL)

NH2
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H2N N

1b, 2 h, 95% 1c, 1 h, 95% 1d, 0.5 h, 95%

1e, 1 h, 94% 1f, 0.5 h, 96% 1g, 1.5 h, 89% 1h, 2 h, 85%

1i, 1.5 h, 88% 1j, 4 h, 87% 1k, 6 h, 84% 1l, 18 h, 89%

1m, 18 h, 90% 1n, 15 h, 83% 1o, 15 h, 82% 1p, 24 h, 88%

1t, 3 h, 82%

1v, 4 h, 81% 1w, 4 h, 92%1u, 4 h, 79% 1x, 4 h, 90%

1z, 1 h, 87% 1aa, 1 h, 91% 1ab, 1 h, 89%

1ac, 5 h, 91%

1q, 1 h, 92% 1r, 3 h, 87%

1y, 4 h, 90%

NH
O

NH2

O
OHH2N

1ad, 4 h, 79%

O

1ae, 18 h, 83% 1af 18 h, 81%

O
OH

NH2
1s, 3 h, 81%

OH

NH2

NH2

NH2

79-98 %a

Reaction condition: Nitro-arene (1 mmol), NaBH4 (200 mg), Room temperature, open air, 0.5-24 h;
aIsolated yield.
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found that the reaction did not move forward in

absence of CuNPs catalyst (Figure S1, Supplementary

Information). As we moved ahead with a variety of

substrates, reaction time appears to be substrate-de-

pendent. The substrate with high solubility in water

required less time and substrates which are less soluble

or insoluble required a longer time. This is possibly

due to variation in catalyst-substrate interaction fre-

quency with a variety of substrate, as a highly soluble

substrate will have high catalyst-substrate interaction

frequency and less soluble substrate will have less of

this interaction frequency. Excellent chemoselective

reduction of nitro to amine was achieved for substrates

containing additional functional groups (chloro,

bromo, ether, thioether, acetamides, carboxylic acid

and ester) as shown in Table 1. Most of the substrates

used here are raw materials for the synthesis of

industrially important and biologically active mole-

cules. Reduction of 4-nitrophenol to 4-aminophenol is

the first step for the synthesis of paracetamol.18 We too

obtain an excellent yield of 4-aminophenol from

4-nitrophenol (Table 1, entry 1a). 3-Aminophenol

(Table 1, entry 1b), (3-aminophenyl)methanol

(Table 1, entry 1h) and 2-(3-aminophenoxy)ethanol

(Table 1, entry 1r) are also important ingredients for

the synthesis of macrocyclic compounds bearing

kinase inhibition potential and antineoplastic

agents.1d,19 Halogen substituted nitroarenes were

selectively reduced to corresponding haloaromatic

amines (Table 1, entry 1j and 1k) without undergoing

dehalogenation. 4-chloroaniline is an important con-

stituent for the synthesis of proguanil, an antimalarial

drug.20 Bhagwat et al., in 2019 claimed 4-chloroani-

line (Table 1, entry 1j), 4-bromoaniline (Table 1, entry

1k), N-(4-aminophenyl)acetamide (Table 1, entry 1w)

and 4-(2H-1,2,3-triazol-2-yl)aniline (Table 1, entry

1m) as indispensable intermediates for the synthesis of

various valuable compounds used to treat or prevent

Figure 3. Proposed catalytic reaction mechanism of nitroarene reduction.
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diseases in need of heparin sulphate biosynthesis

inhibition.21 In addition, nitroarene bearing ether as

additional functional group (ether, acid and ester)

remained unaffected after completion of reaction and

corresponding amines were isolated with good yields.

Wang et al., used 2-(4-aminophenoxy)ethanol

(Table 1, entry 1q) and 2-(4-aminobenzyloxy)ethanol

(Table 1, entry 1t) as an intermediate component for

the synthesis of antitumor agent.22 Our synthesized

catalyst also showed a selective reduction of nitro

group to amine in presence of reducible functional

groups like carboxylic acid and ester. Nitrobenzoic

acid was also reduced to corresponding aminobenzoic

acid (Table 1, entry 1z, 1aa and 1ab) with excellent

selectivity and conversion, which is a vital interme-

diate often used in drug evolution and drug discov-

ery.23 Esters of aminobenzoate (Table 1, entry 1ac,

and 1ae) are also used by many researchers as

important intermediate molecules for the synthesis of

antibacterial agents and other biologically active

molecules.24 Table S1 (Supplementary Information)

describe the importance of substrates as starting

material for the synthesis of few industrially important

and bio-active molecules.

3.3 Proposed mechanism for reduction
of nitroarenes compounds

The proposed mechanism of nitroarenes reductions is

described in Figure 3. The addition of NaBH4 to the

reaction mixture resulted in copper nanoparticles-hy-

dride complex (CuNPs-H). The CuNPs-H complex

reduced nitro to nitroso and then to hydroxylamine

which on further hydrogenation ends up with amines

as a final product.

3.4 Recyclability test of the catalyst

For practical applications, the reusability of catalyst is

an important parameter. To study this parameter,

reactions were performed by increasing the nitroarene

constituents (4-nitrophenol, CuNPs, water and NaBH4)

by three-fold. By increasing the constituents, we

experienced minimal loss during the isolation of the

catalyst after each cycles. We successfully reused the

catalyst up to five cycles without significant loss of

product yields (Table 2). A slight lowering of yields

upon reusing the catalyst may be due to agglomeration

of nanoparticles as observed in the TEM image of the

catalyst after the first cycle (Figure 4). Agglomeration

of the catalyst (CuNPs) may be due to the solubility of

the stabilizing agents (gluconate) in water. With the

progress of the reaction, slight loss of stabilizing agent

from the surface of CuNPs may also be another reason

for agglomeration of CuNPs after catalytic reaction

(Figure 4).

Table 2. Recycling of the CuNPs catalyst.

NO2
CuNPs (15 mg)

Water (15 mL), RT
30 mins

NaBH4 (15 equiv.)

HO NH2HO

Runs Yields (%)a

1 96
2 93
3 91
4 91
5 87

4-nitrophenol (3 mmol);
aIsolted yield.

Figure 4. TEM image of CuNPs after first catalytic cycle.

J. Chem. Sci.          (2021) 133:87 Page 7 of 10    87 



4. Conclusions

We have synthesized CuNPs with homogeneous par-

ticle size distribution (8 ± 2 nm) using rice as a source

of reducing and stabilizing agents by cross-fertilizing

the concepts of (i) acidic hydrolysis of starch

(polysaccharides) to give corresponding monosaccha-

ride (glucose) and (ii) Fehling reactions. The catalytic

activity of synthesised CuNPs showed a chemoselec-

tive reduction of nitroarenes to corresponding amines

in good to excellent yields. The catalyst was recycled

up to five cycles without significant loss in yields.

Supplementary Information (SI)

Supplementary information associated with this article is

available at www.ias.ac.in/chemsci.
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