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Abstract：：：： In this work, we designed and synthesized a novel asymmetric 

tetraphenylethylene-based fluorescence compound, which can form cholesteryl liquid 

crystal by cooling from the isotropic melt and exhibit typical AIE property with a 

180-fold enhancement of fluorescence intensity in 90% water fraction of THF/water 

mixture than pure THF. This compound can gelate in cyclohexane via both ultrasound 

stimuli and general sol–gel processes accompanied by remarkable enhanced 

fluorescence emission. The self-assembly and gelling properties can be controlled by 

ultrasound stimuli and renewed by a thermodynamic process. The mechanism of the 

process was investigated by UV-Vis absorption, PL emission, scanning electron 

microscopy, wide-angle X-ray scattering analysis, and small-angle X-ray scattering 
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analysis. The results reveal that the cooperation and relative competition of multiple 

intermolecular interactions, which are the main contributors for the formation of gel 

influenced by the sonication or thermal stimulus. 

 

Keywords: aggregation-induced emission, tetraphenylethylene derivatives, 

organogelator, gelation-induced fluorescence enhancement, liquid crystal 

 

1. Introduction 

Research on organic luminescent materials has attracted numerous attentions 

because of their vast potential in fluorescent sensors, organic electronics, 

optoelectronics, and light-emitting diode fabrication.[1-3] However, conventional 

fluorescent molecules containing large planar aromatic rings often suffer from 

aggregation-caused quenching (ACQ) due to their intermolecular π-π interactions in 

the aggregate state or solid state, which will limit their developments and applications 

in fluorescent chemosensors, bioprobes, light detectors, organic light-emitting devices 

(OLEDs), etc.[1, 2, 4] Promisingly, the aggregation-induced emission (AIE) effect, 

which is opposite to the ACQ phenomenon, was first reported by Tang and 

co-workers in 2001. [5] Excitingly, many organic dyes with aggregation-induced 

emission (AIE) characteristics have been found successively.[1, 6-10] 

  In recent years, aggregation-induced emission (AIE) organogelators, which 

exhibited remarkable variation in the fluorescence spectrum accompanying a 

gel-to-sol or sol-to-gel phase transition process, have received much attention from 
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both theoretical and practical viewpoints.[3, 11-27] For example, Park and coworkers 

synthesized a novel fluorescent molecule, 1-cyano-trans-1, 2-bis-(3’, 

5’-bis-trifluoro-methyl-biphenyl)ethylene (CN-TFMBE) without long alkyl chain or 

steroidal substituents, showed a typical aggregation-induced enhanced emission 

(AIEE)  phenomenon.[25] Ihara and Lu reported a new organogelator based on a 

salicylideneaniline derivative with cholesterol units, exhibited strong fluorescence 

enhancement in the gel state relative to a solution of the same concentration because 

of the formation of J aggregations.[26] 

Recently, stimuli-responsive low-weight molecular organogels (LMOGs) has been 

studied extensively in areas ranging from chemistry and biology to materials science 

because of their potential applications in drug delivery, sensors, adaptive materials, 

and nano/micro devices.[28-31] However, most of the reported responsive materials 

were stimulated by light, reaction, and heat, therefore, a smart gel controlled or even 

switched by sound is also very appealing.[28] There are some reports recently 

appeared about the gelation formation by ultrasound stimuli.[28, 29, 32-34] Huang’s 

group reported a novel family of asymmetric cholesterol-based fluorescent 

organogelators, their self-assembly and surface wettability can be controlled by 

ultrasound stimuli and restored by a thermal process.[28, 29] 

Thus, combining an AIE luminogen and a stimulus-responsive organogelator would 

be a promising strategy for constructing smart luminescent systems. In 2016, 

Srivatsan and coworkers reported a family nucleolipid gels displayed 

aggregation-induced enhanced emission and their gelation behavior and photophysical 
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properties could be reversibly switched by external stimuli such as temperature, 

ultrasound and chemicals.[35] However, low-weight molecular organogel reversibly 

switched by ultrasound and thermal stimuli with aggregation-induced emission 

property is very rare thus far to the best of our knowledge.[28, 29, 36] It is reported 

that the balance of the hydrogen-bonds with other interactions (such as hydrophobic 

interactions and π-π interactions, as well as the steric hindrance) are necessary to 

satisfy the requirements of ultrasonic stimuli for gelation.[28, 36] Herein, we report a 

novel AIE compound derived from tetraphenylethylene and cholesterol moieties with 

the structural character of ALS (aromatic group A, linker L, steroidal group S)[28, 29], 

the gelling ability, aggregation behavior, and response to ultrasound stimuli are also 

elucidated. 

Scheme 1 

2. Experimental  

2.1 Materials and instruments 

4-Aminophenylboronic acid, 2-bromo-1,1,2-triphenylethylene, cholesterol, succinic 

anhydride, aliquat 336, tetrakis (triphenylphosphine) palladium (0) were purchased 

from Aladdin company and used as received. 4-dimethylamiopryidine (DMAP), 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC-HCl) were 

purchased from Shanghai Darui company (China) used as received. Ultra-pure water 

was used in the experiments. Tetrahydrofuran (THF) was distilled from 

sodium/benzophenone. All other reagents and solvents were purchased as analytical 

grade from Zhangjiang Kangbai Company (China) and used without further 
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purification. 4-(1,2,2-triphenylvinyl)benzene-amine (TPE-NH2)[12] was prepared 

according to the literature methods. 

The IR spectra were measured on a Nicolet-6700 FT-IR spectrometer by 

incorporating the samples in KBr disks. Proton and carbon nuclear magnetic 

resonance (1H NMR and 13CNMR) spectra were measured on a Bruker AVANCE III 

spectrometer [CDCl3, tetramethylsilane (TMS) as the internal standard]. The 

electronic spray ionization (ESI) high-resolution mass spectra were tested on a HP 

5958 mass spectrometer. The SEM images were obtained by using a Hitachi S-4800 

spectrometer. The AFM images were obtained by using Veeco/DI Scanning Probe 

Microscope and the TEM Images by using JEM-1400 Plus (JEOL Ltd., Japan) at 120 

kV. The UV/Vis spectra were determined on a Shimadzu-2550 spectrophotometer. 

Wide-angle X-ray diffraction (WAXD) measurement was performed by using a 

Philips X’Pert Pro diffractometer with an X-ray source of Cu Ka (λ=0.15406 nm) at 

40 kV and 40 mA, at scan rates of 2.4 ° per 1 min. Small-angle X-ray diffraction 

(SAXD) measurement was performed by using a Rigaku D/max 2550V with an X-ray 

source of Cu Ka (λ=0.15406 nm) at 40 kV and 100 mA, at scan rates of 0.6o per 1 min. 

Canon EOS 60D and EOS 70D digital camera was used to take photographs. The 

sonication gel (S-gel) was gained by using SK5210HP (Shanghai Kedao Company, 

working frequency: 53 kHz, ultrasonic power: 200 W, the power can vary from 40% 

to 100%). 

The calculations were performed with the periodic density functional theory (DFT) 

method using the DMol3 module in the Materials Studio 7.0 software package.[37] 
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The DMol3 calculation: Task: Geometry Optimization; Quality: Medium; Functional: 

GGA, PW91. Basis set: DND; Basis file: 3.5. The DMol3 electronic options: SCF 

tolerance: 1.0 × e−5; Max. SCF cycles: 500. 

2.2 Synthesis of 3-Cholesteryloxycarbonylpropanoic acid (1):  

A solution of cholesterol (5.80 g, 15 mmol), succinic anhydride (1.50 g, 15 mmol), 

pyridine (1.00 mL), and dry heptane (150 mL) were heated to reflux for 21 h and 

cooled to room temperature. The resulting precipitate was recrystallized twice from 

acetone. Yield: 70%. 

2.3 Synthesis of TPE-Ch: 

TPE-NH2 (0.30 g, 0.86 mmol) and 1 (0.42 g, 0.99 mmol) were dissolved in THF 

(50 mL), and then EDC-HCl (0.01 g) and DMAP (0.01 g) were added. The solution 

was stirred at room temperature for 12 hours. After removing the solvent under 

reduced pressure, the residue was crystallized from ethanol to give white crystalline 

powder TPE-Ch (0.44 g, 62.8% yield). IR (KBr): υ=3433 cm-1(N-H), 2946 cm-1 

(-CH2-), 2857 cm-1 (-CH3), 1732 cm-1 (C=O at COOR), 1698 cm-1 (C=O at 

RCONHR’), 1670 cm-1 (C=C), 1597, 1525, 1492 cm-1 (phenyl); 1H NMR (400 MHz, 

CDCl3) δ 7.65 (s, 1H), 7.27 (s, 1H), 7.18 – 6.95 (m,16H), 5.39 (d, J = 3.9 Hz, 1H), 

4.73 – 4.59 (m, 1H), 2.73 (t, J = 6.2 Hz, 2H), 2.62 (t, J = 6.3 Hz, 2H), 2.33 (d, J = 7.7 

Hz, 2H), 2.01 (t, J = 16.0 Hz, 2H), 1.85 (t, J = 15.8 Hz, 3H), 1.55 – 0.84 (m, 33H), 

0.70 (s, 3H); 13C-NMR (CDCl3, 75MHz) δ (ppm):172.8, 169.5, 143.9, 140.6, 140.1, 

139.7, 132.1, 131.1, 127.8, 126.2, 122.7, 118.8, 74.5, 56.6, 56.3, 49.8, 42.5, 39.7, 37.8, 

36.9, 36.4, 36.1, 35.9, 32.6, 31.6, 29.0, 28.0, 24.3, 23.7, 22.4, 20.9, 19.4, 18.4, 12.1; 
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MALDI-TOF MS (ES+): m/z 816.53 ([M+H]+, calcd for C57H69NO3, 815.53). 

3. Result and discussion 

3.1 Synthesis 

The target compound was synthesized according to the routes depicted in Scheme 1. 

The molecular structure of the target compound with the structural character of ALS 

(aromatic group A, linker L, steroidal group), in which a tetraphenylethylene (TPE) 

unit was used as aromatic group A and cholesterol was used as steroidal group S. The 

TPE core, a propeller-like luminogen, as a prototypical AIEgen, is expected to make 

the molecule display aggregation-induced emission.[2, 6, 13, 38, 39] Cholesterol is 

favorable for facilitating gelation of solvents and thus been widely used for designing 

new LMOGs.[18, 19] The TPE group and cholesterol group were linked by an alkyl 

chain with an acyl amino linkage. Therefore, it can be expected that three kinds of 

intermolecular interactions, including hydrogen bonding, π-π interactions, and 

hydrophobic interactions, would be involved in the formation of the gelation process. 

Their molecular structures were confirmed by 1H and 13C NMR spectroscopy, mass 

spectrometry (MS) and Fourier-transform infrared spectroscopy (FT-IR). 

3.2 AIE properties 

The UV-Vis absorption and PL emission behaviors of the diluted mixtures of the 

compound were studied in a mixture of THF/water with different water fractions to 

determine their AIE properties. The PL spectra of 2.5 × 10-5M compound TPE-Ch in 

THF/water mixtures with different water contents was shown in Figure 1. The figure 

shows that the PL intensity was very weak and essentially did not change as the water 
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fraction of the THF/water mixture increased from 0% to 80%.Very interesting, a 

dramatic enhancement in luminescence was observed when the water fraction reached 

90%, which was approximately 180 times higher than that in the pure THF. This result 

indicated that this compound exhibited strong AIE activity. The AIE activity may be 

attributed to the restriction of intramolecular rotations (RIR) of the 

tetraphenylethylene (TPE) when in aggregation state.[9] 

Figure 1 

The UV-vis absorption spectra of compound TPE-Ch in the THF/water mixtures 

(2.5 × 10-5M) are shown in Figure S1. The spectra displayed absorption tails 

extending well into the long wavelength region, indicating that the molecules 

aggregated into nanoparticles in the mixtures. The Mie effect of the nanoparticles has 

been considered to cause such leveling-off of tails in the absorption spectra. [12, 39, 

40]Therefore, the increase in PL intensity can be attributed to an AIE effect caused by 

the formation of molecular aggregates, in which the restriction of intramolecular 

rotations increased the fluorescent emission. 

Quantum mechanical computations were conducted using the Materials Studio 7.0 

software to study the lowest energy spatial conformation of the compound.[6] The 

energy of the molecule with different conformation was calculated by GGA/PW91 

method. The highest occupied molecular orbitals (HOMOs) and the lowest 

unoccupied molecular orbitals (LUMOs) of the compound were obtained (Figure 2) 

after structural optimization. As shown in Figure 2, the electron cloud distributions in 

HOMO and LUMO of TPE-Ch was mainly localized on the tetraphenylethylene and 
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the amide moieties with the energy gap between the HOMO and LUMO of 0.79 ev. 

Figure 2 

3.3 Gelation property 

The gelation tests on TPE-Ch were carried out in various solvents with 3.0% (w/v) 

as a standard concentration by using a test-tube-inversion method[29]. (Table 1) A 

mixture TPE-Ch and solvent was heated until the solid was dissolved. A 

thermodynamic gel (T-gel) was obtained after the hot solution had been cooled to 

room temperature and aged for at least 30 min. A sonication gel (S-gel) was identified 

when the hot solution was allowed to cool to room temperature (25oC) and was 

treated immediately with ultrasound (200 W, 53 kHz, 25oC).[28, 29] The gelation was 

then checked visually at about 25oC (Figure 3). 

                              Table 1 

Figure 3 

It is interesting to note that gelation occurred in cyclohexane solution of TPE-Ch 

by ultrasonic treatment (200 W, 53 kHz) for 5 minutes (designated as S-gel). To our 

surprise, TPE-Ch could also form gel by directly cooling the hot solution (above 75 

oC) to room temperature and aging for about 30 min (designated as T-gel). The critical 

gelation concentration (CGC) (tested by using the “stable to inversion of a test tube” 

method[41] ) was significantly decreased from 60 mg mL-1 in the cooling process to 

17 mg mL-1 in the ultrasonic process, and the gel–sol transition temperature (Tg) 

(determined by the“falling drop” method[20] ) of S-gel was higher than that of the 

T-gel for the same concentration. (Table 2) In addition, the power and the 
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concentration can influence the time to form the S-gel. The stronger the power was, 

the shorter the time needed to form the S-gel. The higher the concentration was, the 

shorter the time needed to form the S-gel, too.(Figure 4) At the same time, after 

undergoing sonication, a reversed gel (R-gel) was obtained by heating the S-gel to a 

sol and then cooling it to room temperature. 

Table 2 

Figure 4 

The gelator was found to be initially insoluble in these solvents at room 

temperature, but the mixtures became clear after heating. Upon cooling or ultrasonic 

process of these solutions to room temperature, the formation of immobile gels was 

observed. This thermo-reversible gelation process, which is characteristically 

accompanied by enhanced fluorescence emission, can easily be distinguished even by 

naked eyes from the photographic images (in Figure 5A). 

To investigate the interrelationship between the emission and aggregation modes 

along with the sol-gel transition, the temperature dependent fluorescence spectra in 

the cyclohexane (60 mg mL-1) was measured from 70 to 25 oC. As shown in Figure 

5B, the initial solution exhibited almost non-fluorescence, but the fluorescence 

intensity increased along with the decrease in temperature. The remarkable 

fluorescence enhancement from the gels was possibly due to the formation of 

self-assembly aggregates belonged to gelation-induced fluorescence enhanced 

emission.[42] 

Figure 5 
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In order to gain better insight into the molecular organization in the gel specimens, 

the morphologies of xerogels obtained from TPE-Ch were investigated by scanning 

electron microscopy (SEM), Atomic Force Microscope (AFM) and Transmission 

electron microscope (TEM) (Figure 6, Figure S2). Interestingly, we found that the 

morphologies of TPE-Ch xerogels strongly depend on external stimuli. The T-gel 

xerogel of cyclohexane generated the formation of sheets consisting of porous 

aggregates, while tightly arranged three-dimensional branch-like fibers of 

approximate width 100 nm to form entangled networks were obtained from the S-gel. 

Furthermore, the morphology of such a gel from sonication showed rod-like structure 

of several micrometres and curled sheets changed by a sol–gel process(R-gel). The 

results strongly suggest that the sonication has changed the aggregation action in the 

process of gelation. The morphology of the gel observed by AFM and TEM was in 

agreement with the SEM analysis. 

Figure 6 

The compound TPE-Ch exhibited similar absorption spectra for the S-gel, T-gel 

and R-gel, particularly, the maximum absorption in TPE-Ch in THF solution (2.5 × 

10-5 mol L-1 was located at 318 nm and 253 nm in the gel (6.8 × 10-2 mol L-1), 

irrespective of sonication or cooling (Figure S3), The blueshifted absorption indicated 

an H aggregation of TPE-Ch molecules in the gel.[28] The emission of S-gel 

occurred at 477 nm was shifted to 470 nm for the T-gel and R-gel, respectively 

(Figure 7). The redshift of the emission in the S-gel with respect to that in T-gel and 

R-gel suggested the sonication treatment may strengthen the π-π interaction.[29] 
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Figure 7 

To check the contribution of hydrogen bonds in the amide and ester groups to the 

gelation process, the infrared spectra of TPE-Ch before and after gelation were 

measured, and the NH stretching bands (ʋNH) and C=O stretching bands (ʋC=O) were 

carefully examined(Figure 8). The results were summarized in Table 3. The sample 

before gel showed a relatively weak NH stretching band at 3413 cm-1 and a weak 

C=O stretching band at 1733 cm-1.However, the gel samples of T-gel and R-gel 

showed a strong NH stretching band at 3331 cm-1 and a strong C=O stretching band at 

1733 cm-1 for intermolecular hydrogen bonding. Moreover, in the S-gel sample of 

TPE-Ch, the NH stretching bands at 3433 and 3343cm-1 also indicates the existence 

of hydrogen bonding in the S-gel.[43] The NH stretching bands were obviously 

blueshifted compared with the T-gel and the R-gel, which suggests that the sonication 

may releases the self-lock and induces the formation of semistable initial aggregates, 

leading to accelerated gelation rates and formation of higher-order nanostructures.[28, 

29, 32, 34] 

Table 3 

Figure 8 

The molecular packing of the TPE-Ch xerogels under different external stimuli 

was further investigated by powder X-ray diffraction spectra (Figure 9). For SAXD, 

the neat solid of TPE-Ch showed peak at 2.52 corresponding to d spacing of 3.50 nm, 

and the T-gel xerogel and S-gel xerogel of TPE-Ch displayed similar X-ray 

diffraction profiles, with two peaks corresponding to d spacings of 5.58 nm, 2.68 nm 
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and 5.25 nm, 3.11 nm, respectively, these values indicate that T-gel may form a 

lamellar structure.[28, 43, 44] The two peaks for the R-gel xerogel correspond to 5.48 

nm and 2.74 nm, similar to those of the T-gel xerogel. From WAXD, T-gel and R-gel 

displayed similar X-ray diffraction profiles at the peak about 0.52 nm, but the neat 

solid and S-gel showed another peak corresponding to d spacing of 0.45 and 0.43 nm, 

respectively. It is suggested that the aggregation depends on the gelling stimuli and 

can be recovered without noticeable changes.[28] 

Figure 9 

On the basis of the spectral study and XRD results, combined with the CPK model 

of TPE-Ch, the molecular packing of the xerogels was conjectured as shown in 

Figure 10. In the thermal process, the gradual formation of the intermolecular H 

bonds takes place at amide group and the tetraphenylethylene (TPE) units are packing 

by face-to-face. The molecules are further connected in the direction perpendicular to 

the intermolecular H bonds through van der Waals forces between the cholesterol 

groups with a resulting layer distance of 5.58 nm (structure B in Figure 10). However, 

in the sonication process, the TPE-Ch molecule unwind, as a result, the 

intermolecular H bonds takes place between NH(amide) and C=O(ester) groups, and 

the tetraphenylethylene (TPE) units are packing by side-by-side (structure C in Figure 

10). It may be the reason that sonication provides heat and pressure on the 

nanosecond scale and extreme cooling rates, leading to rapid and spontaneous 

aggregation through interpenetrating H-bond interactions.[28] 

Figure 10 
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3.4 Mesomorphic behavior 

The mesomorphic behavior of TPE-Ch was evaluated using differential scanning 

calorimetry (DSC) and hot-stage polarized optical microscopy (POM). Figure 11 

shows the first heating, cooling and second heating DSC curves of TPE-Ch. For the 

first heating curve, the lower peak temperature at 126 oC was the transition between 

crystalline solid phase and liquid crystalline (LC) phase, and the other transition at 

184 oC belonged to liquid crystalline phase to isotropic phase transition, while a 

significant cold crystallization at 154 oC was possibly one liquid crystalline phase to 

the other crystalline phase transition. The POM observations showed that by heating 

the temperature above 126 oC, the sample began to flow with color birefringence, 

suggestive of a liquid, indicating the sample really turned into the liquid crystalline 

state. According to the textures obtained during cooling from the isotropic melt and 

observed by POM (Figure 12), the fingerprint texture formed from TPE-Ch may 

belong to the cholesteryl liquid crystal. The results of DSC and POM studies showed 

that the characteristics of the phase transitions observed in the DSC curves for 

TPE-Ch are consistent with those found by POM observations 

Figure 11 

Figure 12 

3.5 Thermal property  

The thermal property of TPE-Ch was investigated by thermogravimetric analysis 

(TGA). TPE-Ch exhibited high thermal stability. The decomposition temperature with 

5% weight loss under a N2 atmosphere (5% Td ) was 286.5 oC.  
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Figure 13 

 

4. Conclusion 

In summary, a novel gelation-induced enhanced emission compound TPE-Ch 

based on tetraphenylethylene and cholesterol derivative has been designed and 

synthesized. The compound exhibits AIE behavior, as indicated by the significant 

fluorescence enhancement in the aggregated state and gel state. Moreover, the 

fluorescence intensity can be reversibly changed with gel-solution transition by 

alternate cooling and heating. Furthermore, it is surprising that the self-assembly of 

the compound can be controlled by ultrasound stimuli and restored by a thermal 

process through intermolecular H bonds, π-π interaction and van der Waals forces. 

The POM and DSC studies revealed that TPE-Ch can form cholesteryl liquid crystal 

by cooling from the isotropic melt. The self-assembly controlled by the sonication or 

thermal process may have potential applications in biodelivery systems, responsive 

materials and etc. 
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Table 1 Gelation properties in various solvents 

Solvents Phase Solvents Phase 

Cyclohexane G Toluene S 

DMF S Chloroform S 

DMSO S Hexane I 

p-Xylele S Petroleum ether I 

1,4-Dioxane S Ethanol I 

Actonitrile PG THF S 

Ethyl acetate S Dichloromethane S 

Actone S Ethylene glycol S 

Diethyl ether S Methyl alcohol I 

G: stable gel formed at room temperature; PG: partial gel; S: soluble; I: insoluble; P: 

precipitate.  
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Table 2. the CGC and Tg of S-gel and T-gel in cyclohexane solvent 

 CGC(mg mL-1) Tg (
o
 C) 

S-gel 17 65~68 

T-gel 60 62~66 
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Table 3 The wavelengths of the IR band related to amide and ester groups of TPE-Ch 
before gel and after gel. 

 ʋNH (cm-1) ʋC=O (cm-1) 

Before gel 3413 1733 

S-gel 3433,3343,1670 1733 

T-gel 3331,1671 1733 

R-gel 3331,1671 1733 
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Figure captions 

Figure 1 (A) PL spectra of TPE-Ch in THF/water mixtures with different water 

fractions (Inset: Change in PL peak intensities with different water fractions in 

THF/water mixtures, concentration 2.5 × 10-5M, λem = 474 nm), (B) the images in 

THF/water mixtures with different water fractions were taken under room light (top) 

and 300 nm UV light (bottom). 

Figure 2 Molecular orbital amplitude plots of HOMO and LUMO energy levels of 

TPE-Ch. 

Figure 3 Pictures of S-gel (55.8 mg mL-1, ultrasonic treatment: 200 W, 53 kHz, 5 

minutes); T-gel (133.4 mg mL-1); and R-gel (55.8 mg mL-1) in cyclohexane: under 

room light (left) and 365 nm UV light (right). 

Figure 4 the relationship between the power and the time needed to form S-gel in 

different concentration. 

Figure 5 (A) the emission images in sol (left) and gel (right) state under room light 

(top) and 365 nm UV light (bottom), (B) Temperature-dependent fluorescence spectra 

in cyclohexane (60 mg/ml, λex = 365 nm). 

Figure 6 （A）SEM images of the xerogels from the TPE-Ch in S-gel (55.8 mg mL-1, 

ultrasonic treatment: 200 W, 53 kHz, 5 minutes); T-gel (133.4 mg mL-1); and R- gel 

(55.8 mg mL-1).（B）AFM image of xerogel in S-gel (55.8 mg mL-1), (C) TEM image 

of xerogel in T-gel (114 mg mL-1). 

Figure 7 Normalized fluorescent spectra of TPE-Ch in S-gel (55.8 mg mL-1, 

ultrasonic treatment: 200 W, 53 kHz, 5 minutes); T-gel (133.4 mg mL-1); and R- gel 
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(55.8 mg mL-1). 

Figure 8 IR spectra for xerogel of TPE-Ch in S-gel (55.8 mg mL-1, ultrasonic 

treatment: 200 W, 53 kHz, 5 minutes); T-gel (133.4 mg mL-1); and R- gel (55.8 mg 

mL-1). 

Figure 9 Powder XRD profile of the neat solid and xerogel of TPE-Ch at room 

temperature: (A) Small angle X-ray diffraction (SAXD), (B) Wide angle X-ray 

diffraction (WAXD). 

Figure 10 Perspective structures of TPE-Ch; structure A: isolated TPE-Ch; structure 

B: aggregation in the T-gel; structure C: aggregation in the S-gel; White C, red O, 

blue N. 

Figure 11 DSC curves of compound TPE-Ch. 

Figure 12 Optical micrographs of compound TPE-Ch between crossed polarizers: 

liquid crystalline texture at 140 oC. 

Figure 13 TGA thermograms of TPE-Ch. 
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Scheme 1 

Scheme 1 Synthetic routes for TPE-Ch 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 9 
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Figure 10 
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Figure 12 
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Figure S1. UV absorption spectra in THF/water mixtures with different volume. 

 

 

Figure S2. AFM image of xerogel in R-gel (55.8 mg mL-1) and T-gel (133 mg mL-1), (c) TEM 

image of xerogel in S-gel (26 mg mL-1)and R-gel (26 mg mL-1). 
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Figure S3. Absorption spectra of TPE-Ch in THF solution (2.5 × 10-5 mol L-1), S-gel (55.8 mg 

mL-1, ultrasonic treatment: 200 W, 53 kHz, 5 minutes); T-gel (133.4 mg mL-1); and R- gel (55.8 

mg mL-1). 
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and thermal processing based on tetraphenylethylene and cholesterol 
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Highlights 

� A novel asymmetric tetraphenylethylene-based fluorescence compound was 

synthesized. 

� The compound can form cholesteryl liquid crystal by cooling from the isotropic 

melt. 

� The compound could gelate in cyclohexane exhibiting enhanced emission via 

both ultrasound stimuli and general sol–gel processes. 

 


