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Enantioselective Copper-Catalyzed Radical Ring-Opening Cyanation of 

Cyclopropanols and Cyclopropanone Acetals 

Lianqian Wu, Lei Wang, Pinghong Chen, Yin-Long Guo,* and Guosheng Liu* 

Abstract: A novel approach for enantioselective cyanation of 

cyclopropanols and their derivatives through copper-catalyzed radical 

relay processes has been developed. Various cyclopropanols and 

cyclopropanone acetals are compatible to the catalytic conditions, 

providing β-carbonyl nitriles with excellent enantioselectivity. These 

products can be readily converted to chiral γ-amino acids derivatives and 

drugs such as (R)-baclofen. Preliminary mechanistic studies have 

supported a ring-opening process for cyclopropanoxy radicals followed by 

copper-catalyzed enantioselective cyanation of benzylic radicals to form 

the C−CN bonds in an enantioselective manner. 

Optically pure organonitriles are found in many bioactive natural 

products and therapeutics.[1] In addition, organonitriles are an 

important class of synthons that are essential precursors to highly 

valuable amines, carboxylic acids and their derivatives.[2] Among them, 

enantiomerically enriched β-carbonyl nitriles are particularly 

prominent targets, because they can be transformed into γ-lactams and 

γ-amino acids, which are widely used as anti-depressant agents  and 

selective agonists of GABA (γ-aminobutyric acids) receptors (Figure 

1).[3] 

 

Figure 1. Representative compounds containing or derived from chiral 

carbonyl nitriles 

A variety of methods have been established for asymmetric 

synthesis of β-carbonyl nitriles, including lewis acid-catalyzed 

conjugate hydrocyanation of α,β-unsaturated compounds,[4] enzyme 

catalyzed bioreduction of cyanoacrylates,[5] and nickel-catalyzed cross-

coupling of α-halonitriles with organozinc reagents.[6] Despite these 

progresses, exploration of efficient approaches to access the chiral β-

carbonyl nitriles is still in strong demand. 

In the last several decades, transition metal-catalyzed ring-opening 

of cyclopropanols have been extensively studied. The -carbon 

elimination of an alkyloxide metal complex int-I (M = Rh, Cu, Pd, Co, 

Ni) involved in these reactions usually occurs preferentially at the less 

substituted carbon centers, resulting in the formation of the -

functionalized carbonyl products through reductive elimination from 

int-II (Scheme 1a, top). Based on this mechanistic hypothesis, a 

variety of methods for the synthesis of -functionalized carbonyl 

compounds have been developed.[7] Alternatively, the 

cyclopropanoxide complex int-I (M = Ag, Mn, etc) could undergo 

homolytic cleavage of the M–O bond to generate the cyclopropoxy 

radical int-III, which subsequently gives the carbon-centered radical 

int-IV through a radical ring-opening process at the more substituted 

carbon centers, thus leading to different β-functionalized carbonyl 

products (Scheme 1a, bottom).[8] For instance, Zhu and coworkers 

reported a series of Ag- and Mn-catalyzed ring-opening processes of 

cyclopropanols and cyclobutanols in conjunction with fluorination, 

azidation and alkynylation reactions.[8c-8f] Furthermore, Chiba and 

coworkers reported the sequential Mn-catalyzed ring opening of 
cyclopropanols and cycloaddition of vinylazides for the synthesis 
of heterocycles.[8g-8h] However, owing to the highly reactive carbon-

centered radical, it is extremely difficult to achieve the stereoselective 

control of radical speices int-IV. Thus far, asymmetric radical ring 

opening of cyclopropanols has not been reported.      
 

 
 

Scheme 1. Transition metal-catalyzed ring opening of cyclopropanols. 

 

As part of our ongoing programs focused on transition metal-

catalyzed asymmetric radical transformations (ARTs),[9] we have 

demonstrated a Cu-catalyzed radical relay process for the asymmetric 
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functionalizations of styrenes,[10]benzylic[11] and allylic C–H bond,[12] 

in which the in situ generated benzylic radicals can be captured by 

chiral Cu(II) intermediates to construct new chemical bonds with 

excellent enantioselectivity. We reasoned that, if a L*Cu(I)/oxidant 

system could be designed to trigger the oxidation of cyclopanols 1 to 

int-III, the generated benzylic radical int-IV might be captured by 

chiral Cu(II) cyanide to give enantiomerically enriched β-carbonyl 

nitriles 2 (Scheme 1b).[13] Herein, we communicates our results as the 

first asymmetric system for radical ring opening of cyclopropanols . 
 

Table 1. Optimization of the reaction parameters[a,b,c] 

 

 
 
On the basis of our mechanistic hypothesis, the initial study was 

focused on the reaction of cyclopropanol 1a. First, a series of oxidants 

were tested in the presence of [Cu(MeCN)4]PF6 and chiral ligand (1R, 

2S)-L1 as the catalyst and trimethylsilyl cyanide (TMSCN) as the 

cyanation reagent. As shown in Table 1, the reaction with PhCO3
tBu 

and (tBuO)2 did not proceed with the substrate being quantitatively 

recovered (entries 1-2). We were delighted to find that,  hypervalent 

iodine PhI(OAc)2 was effective to promote the reaction, and the desired 

product 2a was obtained in 49% yield with 82% ee, along with a 

byproduct benzalacetone (entry 3). Electrophilic fluorination reagents, 

such as N-fluorobenzenesulfonimide (NFSI) or selectfluor, were also 

suitable oxidants for this reaction, but gave poor enantioselectivities 

(38 or 39% ee, entries 4-5). Encouragingly, when benzoyl peroxide 

(BPO) was used as the oxidant, the reaction provided 2a in a nearly 

quantitative yield with good enantioselectivity (82% ee, entry 6). 

Evaluation of different copper catalysts indicated that enantiomeric 

excess could be slightly improved to 85% ee by using CuBr•SMe2 

(entry 7). Solvent screening revealed that the enantiomeric excess was 

further improved to 91% ee in acetone (entry 8). The best result was 

obtained in the presence of 5 mol% of CuTc (Tc = thiophene-2-

carboxylate) in acetone, in which case 2a was produced in 99% yield 

with 91% ee (entry 9).  The absolute configuration of the cyanation 

product 2a was assigned as an R isomer based on the comparation of 

specific rotation with the literature value (see SI). 

With the optimized reaction conditions in hand, we next explored 

the substrate scope of the reaction. As shown in Table 2, 

cyclopropanols with both electron-rich and electron-deficient aryl 

groups were compatible to the reaction conditions, furnishing a variety 

of β-cyano ketones in good to excellent yields (up to 91% yield) with 

excellent ee values (up to 95%). For instance, when substrates have an 

ortho-substituent in the aryl ring, the reactions exhibited a better 

enantioselectivities (91-95% ee) to give 2b-2d in moderate to good 

yields (40-74%). When a substituent was introduced to the meta- or 

para-position of the aryl ring, the reaction performed similarly as 1a to 

give the corresponding cyanation products 2e-2j in 66-84% yields with 

85-92% ee. Moreover, a substrate with 3,5-dichlorobenzene ring also 

proceeded well, providing 2k in good yield and enantioselectivity. 

Cyclopropanol bearing a naphthalene ring was also a viable substrate  

 
Table 2. Scope of cyclopropanols.[a,b] 
 

 
 

for the reaction, giving 2l in 72% yield with 94 % ee. Finally, apart 

from cyclopropanols with a methyl group at the C-1 position, 

substrates with other aliphatic groups, such as ethyl and n-propyl, also 

reacted smoothly and yielded the target compounds 2m-2r in good 

yields (52-86%) with excellent enantioselectivities (90-93% ee). 

Notably, various functional groups, such as halides, ether and 

trifluoromethyl group, were tolerated under the reaction conditions. 

The aforementioned results confirmed that it was possible to use 

copper-catalyzed radical relay strategy for the asymmetric cyanation of 

cyclopropanols via a radical ring-opening process, and -cyanoketones 

with various structures could be obtained with good to excellent 

enantioselectivities. We then turned our attention to investigating the 

cyanation of cyclopropanone acetals for the efficient synthesis of 

optically active β-cyanoesters. 

The acetal 3a was initially used for reaction optimization, and it 

became clear that the previous reaction conditions needed to be slightly 

modified as follows: (1) for a higher enantioselectivity, bis(oxazoline) 

(1S, 2R)-L2 bearing geminal benzyl and methyl groups should be 

employed; (2) NFSI should be used as the oxidant as it performed 

better than BPO (For details, see SI). As shown in Table 3, a large 

number of cyclopropanone acetals showed excellent reactivities to give 

β-cyano propanoic esters 4a-4d in good yields (64-72%) with excellent 

enantioselectivities (90-94% ee). In general, our protocol 

accommodated a broad range of cyclopropanone acetals containing 

electron-poor (4e-4f) or electron-rich aryl groups (4g-4k), delivering 
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enantiomerically enriched esters with a high level of stereocontrol (87-

97% ee). The absolute configuration of 4d was determined to be S by 

X-ray crystallography.[14] 

 

 Table 3. Scope of cyclopropanone acetals.[a,b] 

 

 
 

To demonstrate the synthetic utility of this asymmetric cyanation 

method, the gram-scale reactions of 3a and 3f were conducted. The 

copper catalyst loading could be reduced to 1 mol %, and these 

reactions proceeded smoothly to afford 4a and 4f in 58% yield (93% 

ee) and 61% yield (91% ee), respectively (Table 3). In addition, 

selective hydrogenation of 4a afforded the chiral γ-amino acids 

derivatives 5 in 90% yield (92% ee).[15] Reductive cyclization of 4f 

followed by hydrolysis of the 6 represented a short 3-step synthesis of 

(R)-baclofen,[16] an inhibitory neurotransmitter as a GABA receptor 

agonist (Scheme 2). 
 

Scheme 2. Synthetic applications.  
 

Recently, Dai and coworkers reported copper-catalyzed 

trifluoromethylation and amination of cyclopropanols, in which -

carbon elimination of the cyclopropanoxide CuII complex int-I was 

proposed to be responsible for the C–C bond cleavage.[17] In that 

particular system, radical scavengers such as TEMPO exhibited a 

negligible effect on the reaction. In contrast, our reaction was 

completely inhibited by TEMPO (see SI) and the product yield 

diminished significantly by the addition of 2,6-(tBu)2-4-MeC6H2OH 

(BHT). In the latter case, the benzylic radical was captured by BHT to 

give the product 7 in 30% yield (Scheme 3a). These observations 

supported a radical ring-opening pathway for our reaction. 

 

 

Scheme 3. Control experiments and mechanistic studies. 

 

For the radical ring opening of cyclopropanols, previous studies by 

Depuy and coworkers showed a significant kinetic isotope effect (KIE 

= kH/kD ranged from 3.6 to 6.6) due to direct hydrogen atom 

abstraction.[18] However, a small kinetic isotopic effect (KIE = 1.6) was 

obtained by comparing the rates for the individual reactions of 1b and 

1b-d1 (Scheme 3b), indicating that the direct hydrogen atom 

abstraction process was less likely involved in our reaction. 

Similar to our previous studies of asymmetric cyanation of 

alkenes,[10a] a induction period was observed in the reaction of 1b, 

which could be shortened by adding 1 mol % Bu4NCN and eliminated 

with 2 mol % Bu4NCN. However, the reaction rate was significantly 

decreased in both cases (Figure 2a), suggesting that the reaction could 

be inhibited in the presence of excess cyanide. In addition, when the 

catalytic reaction was monitored by in situ SAESI-MS spectroscopy, 

signals at m/z 706 and 611 were detected (see SI), possibly which were 

[(int-V) - CN] and [(int-V) - BzO] (for the structure of int-V, see 

Scheme 4a). Taken together these observations, the complex int-V is 

likely to be involved in the catalytic cycle, and the following O–H 

bond cleavage from int-V partially contributes to the rate-determining 

step.  
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Firure 2. a) Effect of cyanide on the reaction of 1b (2 mol% copper 

catalyst) by adding Bu4NCN (0-2 mol %) externally (left); b) 

Electronic effect of aryl acylperoxides (right). 
 

Based on above analysis and our previous studies, [10a] a plausible 

mechanism for the enantioselective cyanation of cyclopropanols is 

outlined in Scheme 4a. The reaction is initiated by a (L*)CuICN 

species, which can be oxidized by BPO to give the copper(II) species 

A. Cyclopropanol 1 then coordinates to the copper center of A, before 

intramolecular deprotonation occurs with int-V to yield a key 

intermediate int-I.[19] After homolytic cleavage of O–CuII bond of int-

I,[20] the generated cyclopopoxy radical int-III undergoes rapid ring-

opening to generate a distal benzylic radical int-IV. Meanwhile, the 

active radical species BzO•, generated from initial SET process,[21] is 
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trapped by (L*)CuI(CN) to form another copper(II) complex A,[22] 

which reacts with TMSCN to give (L*)CuII(CN)2 (B). Finally, the 

benzylic radical int-IV is stereoselectively captured by B to yield the 

desired product 2 with a high level of enantioselective control. [10a, 11] 

Under this mechanistic scenario, owing to the strong binding of 

cyanide, copper complex A can be converted to B quickly in the 

presence of exogenous cyanide, but also exhibits slower coordination 

and deprotonation to give the key intermediate int-I, resulting in a 

decrease in overall reaction rate (Figure 2a).     

 

Scheme 4. Proposed mechanism. 
 

Alternatively, complex int-V could undergo direct hydrogen atom 

abstraction of int-V by BzO• to give the key cyclopropoxy radical int-

III (Scheme 4b). To differentiate these two possible pathways (a 

versus b in Scheme 4), several substituted aryl acylperoxides were 

employed to test the electronic effect of the oxidants, and a small 

negative -value (-0.26) was observed from the Hammett plot, 

suggesting that complex int-V with an electron-rich ArCO2 group 

reacts more rapidly than that with an electron-poor ArCO2 group. We 

prefer the pathway in Scheme 4a because the intramolecular 

deprotonation of int-V O-H moiety by the inner base ArCO2 (Scheme 

4a) should be entropic more favorable. It is also more consistent with 

the observed small Hammett ρ-value and relatively small KIE value 

(1.6).[23]  

In conclusion, we have demonstrated that a copper-catalyzed 

radical relay strategy can be successfully applied to enantioselective 

ring-opening of cyclopropanols and cyclopropanone acetals. This has 

led to a practical and streamlined approach to chiral β-carbonyl nitriles 

that are key synthons in organic synthesis. The mechanistic details and 

further applications based on this new process are ongoing efforts in 

our laboratories. 
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