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ABSTRACT: Allene (C3H4) gas is produced and separated on 
million-metric-ton scale per year during petroleum refining 
but is rarely employed in organic synthesis. Meanwhile, the 
addition of an allyl group (C3H5) to ketones is among the most 
common and prototypical reactions in synthetic chemistry. 
Herein, we report that the combination of allene gas with 
inexpensive and environmentally benign hydrosilanes, such as 
PMHS, can serve as a replacement for stoichiometric 
quantities of allylmetal reagents, which are required in most 
enantioselective ketone allylation reactions. This process is 
catalyzed by copper catalyst and commercially available 
ligands, operates without specialized equipment or 
pressurization, and tolerates a broad range of functional 
groups. Furthermore, the exceptional chemoselectivity of this 
catalyst system enables industrially relevant C3 hydrocarbon 
mixtures of allene with methylacetylene and propylene to be 
applied directly. Based on our strategy, we anticipate the 
rapid development of methods that leverage this unexploited 
feedstock as an allyl anion surrogate.

The production of valuable compounds from simple and 
widely available building blocks constitutes a core mission of 
synthetic chemistry. To date, considerable resources have 
been dedicated to the development of new organic 
transformations, intended to augment the space of products 
that chemists can access.1 Meanwhile, as our community 
enters the age of sustainability, improving the ideality of 
starting materials and reagents has become an increasingly 
important focus of synthetic research.2 Particularly in the 
context of the most widely practiced reactions, the elimination 
of costly, inefficient, or dangerous reactants in favor of 
alternative precursors carries the potential for broad, long-
term impact. In the past decade, a number of methods that 
employ widely available chemicals such as methane,3,4 
ethane,4 ethylene,5,6 2-butene,7 and butadiene8 in organic 
synthesis have been developed. Inspired by these collective 
efforts, we wondered whether we could take advantage of 
other underutilized feedstock chemicals that, despite their 
availability and advantageous properties, currently lack 
avenues for productive utilization.
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Figure 1. Overview of Allene-Based Ketone Allylation. For experimental details, see the Supporting Information.
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Hydrocarbon cracking is among the largest-scale 
chemical processes in operation worldwide, converting over 
500 million metric tons of material per year to products such 
as valuable α-olefins (Fig. 1A).9a Allene, or 1,2-propadiene, is a 
cumulene byproduct that constitutes 0.3–0.6 mass percent 
(wt%) of this total output, or roughly 6 mole percent (mol%) 
of the crude C3 fraction.9b The development of synthetic 
methods that employ substituted allenes has been very 
successful, as evidenced by the large number of catalytic 
reactions that use these compounds.10a-g In contrast, useful 
transformations of the parent compound allene are 
significantly more challenging to discover for several reasons: 
it is a gas at room temperature, it is highly reactive, and it is 
often available as a mixture with other reactive compounds 
such as propylene or methylacetylene, which are difficult to 
separate completely (vide infra). Accordingly, synthetically 
useful transformations of parent allene are exceedingly 
rare.10h-k Without pathways for productive use, allene is 
currently considered to be an undesired contaminant in the 
supply of propylene. Therefore, allene-containing mixtures 
are generally processed via catalytic hydrogenation to 
propane and recycled back into the cracking plant in an 
energy-intensive operation. In the context of our ongoing 
research on hydrofunctionalization of olefins, we considered 
whether this largely unexploited hydrocarbon feedstock 
might be productively engaged as an economical low-
molecular-weight C3 source in chemical synthesis. 

We selected allylation of ketones as the model reaction 
due to the prevalence and versatility of the homoallylic 
alcohol products in organic synthesis, as well as the unique 
chemical challenges presented.11 Despite the ubiquity of this 
transformation in chemical research and manufacturing, 
many existing methods for the parent allylation of ketones are 
far from ideal (Fig. 1B). First, the high reactivity and basicity 
of organometallic allylation reagents can lead to poor 
chemoselectivity and incompatibility with functionalized 
substrates. For instance, Woerpel has shown that 
allylmagnesium chloride reacts at the diffusion limit, 
indiscriminately attacking esters, ketones, and aldehydes.12b,c 
In addition, the generation of insoluble metal salts and large 
quantities of heat limit the utility of these reactions on scale.13 
Finally, asymmetric reactions of ketones in general are 
difficult to achieve due to the reduced steric differentiation 
between carbonyl substituents and attenuated reactivity in 
relation to aldehydes. Many stereoselective ketone allylation 
reactions exist, either using stoichiometric chiral controllers14 
or asymmetric catalysis.15-17 However, highly enantioselective 
installation of the parent allyl group is particularly challenging 
due to the existence of multiple potential pathways leading to 
the minor enantiomer (see the Supporting Information for 
additional discussion). Most crucially, even these “catalytic” 
reactions almost always require the prior generation, in a 
separate operation, of superstochiometric quantities of 
allylmetal reagents, which is intrinsically wasteful in terms of 
energy, time, and material. In comparison, an alternative 
allylation method that relies directly on feedstock chemicals 
as reagents, eliminating the necessity of organometallic 
intermediates, would be highly desirable. 

Groundbreaking research on reductive C–C bond 
formation by Krische,8,18 Montgomery,19 and Jamison,20 and 
elegant examples of copper-catalyzed borylative21 couplings 
have been described the past few years. Among these 
impressive precedents, however, the use of allene gas remains 
largely unexplored: in the only report of such a process, 
Krische was able to effect the racemic coupling reaction with a 

single, activated aldehyde electrophile, albeit in low yield.18b 
Our laboratory has recently developed several classes of 
copper-catalyzed stereoselective reactions of in situ generated 
olefin-derived nucleophiles with carbon-22 and nitrogen-
centered electrophiles.7,23 We thought that the mildness and 
chemoselectivity of CuH catalysis might allow for more 
efficient coupling reactions using parent allene. As an 
additional advantage, while Ir- and Ru-catalyzed procedures 
work well for addition of many nucleophiles to aldehydes and 
imines, the Cu-catalyzed methods developed in our laboratory 
are among the few that can engage ketones.24 Thus, we saw 
the opportunity to develop an important complement to the 
existing olefin-carbonyl reductive coupling toolbox: a 
practical, asymmetric parent allylation of ketones using allene 
gas.

Our proposed transformation might proceed through the 
following catalytic mechanism, postulated on the basis of 
previous mechanistic and computational studies (Fig. 1C).22a,b 
Initially, insertion of allene (II) into a hydride complex I, 
formed in situ from a phosphine ligand, copper source, and 
silane reductant, could generate an allylcopper(I) species III. 
This nucleophilic species could react with a ketone IV through 
a six-membered, cyclic transition state to form alkoxide V. 
Subsequent metathesis with the hydrosilane VI would 
regenerate I, while releasing the desired product VII in a silyl-
protected form, which would be deprotected during work-up.

Using copper(II) acetate as the precatalyst, a variety of 
commercially available ligands were evaluated for the 
proposed allylation process, using 2-acetonaphthone as a 
model substrate (Figure 1D, see the Supporting Information 
for details). An atmospheric pressure of allene gas was 
applied over the reaction mixture with the aid of aballoon. At 
ambient temperature, reactions using the inexpensive racemic 
BINAP ligand provided the desired product with high 
efficiency. Meanwhile, when P-stereogenic ligand QuinoxP*, 
which is also commercially available, was employed, the same 
product was produced with high enantiomeric excess, which 
was further enhanced upon lowering the temperature to –40 
°C and changing the solvent to MTBE. At cryogenic 
temperatures, we found that using copper(I) tert-butoxide, 
generated in situ from copper(I) chloride and sodium tert-
butoxide, the active catalyst is formed more efficiently than 
when using common copper(II) salts. It is notable that direct 
reduction of the ketone, often an extremely rapid and 
competing reaction in the presence of copper–hydride 
complexes,22c is not observed in these experiments.

Using 0.5 mol% each of BINAP and copper(II) acetate, a 
range of symmetrical and unsymmetrical ketones were 
effectively allylated on a 1 mmol scale (Table 1). Simple linear 
and cyclic ketones reacted cleanly and in near-quantitative 
isolated yield (2a, 2b). A cyclopropyl ketone was converted 
efficiently without any observable ring opening byproducts 
(2c). A carbamate protecting group (2d), an aryl chloride 
(2e), and free hydroxyl groups (2f), which are rapidly silyl-
protected under our reaction conditions, were tolerated by 
the mild conditions of this procedure. Furthermore, 
haloperidol, a common anti-psychotic ketone drug bearing a 
tertiary alcohol, a tertiary amine, an aryl fluoride, and an aryl 
chloride, reacted in high yield (2g). In addition, Rotenone, a 
broad-spectrum insecticide, underwent allylation with high 
substrate-controlled diastereoselectivity (2h, >20:1 dr). 

Table 1. Scope of copper-catalyzed allylation of 
ketones using allene gas.a
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a Average results from two identical runs on 1 mmol scale of 
ketone. For experimental details, see the Supporting 
Information.

Next, we examined the scope of the enantioselective 
allylation procedure. Aryl methyl ketones bearing sulfur- (3b), 
oxygen- (3c), and nitrogen-based (3d) substituents 
performed the desired reaction in high yield and with good 
enantioselectivity. Substitution at the meta (3f) and ortho 
(3g) positions were well tolerated. Highlighting the 
chemoselectivity of this reaction, a methyl ester (3e) and a 
heteroaryl bromide (3h) reacted cleanly, with useful 
enantioselectivity, and without undesired reaction at these 
non-participating functional groups. Both five- (3f, 3h, 3j, 3k) 
and six-membered (3i) heterocyclic ketones were employed 
successfully. In addition, ketones with substituents other than 
methyl were suitable substrates for this reaction. For instance, 
an ethyl ketone (3l) and cyclic ketones (3m, 3n) provided the 
corresponding homoallylic ketone products with good-to-
excellent enantioselectivity. A hindered dialkyl ketone also 
reacted stereoselectively (3o) and in high yield, despite 
bearing a very acidic α-proton. Finally, a vinyl ketone was 
found to be an effective substrate, providing 3p in high optical 
purity and without generating undesired 1,4-allylation or 
conjugate reduction byproducts.

While reagent-grade purified allene gas is affordable on 
scale (<$20/mol), direct utilization of industrially produced 
methylacetylene–propadiene (MAPD) mixtures or ternary 
mixtures involving propane or propylene would render the 
process more practical yet. Although previous attempts to use 
allene gas as a reagent have found even trace (ppm) 
methylacetylene to be detrimental,18b our calculations 
indicated that insertion of allene into hydride complex I 
should be greatly favored over alkynes or terminal alkenes 
(Fig. 2A). Indeed, when a roughly equimolar mixture of 
propylene, methylacetylene, and allene was employed, 
allylation product 3a was obtained with nearly identical yield 
and stereoselectivity as when purified allene was used (84% 
yield, 93:7 er). Furthermore, this reaction was conducted 
using the very inexpensive polymer PMHS (<$1/mol), a waste 
product of the silicone industry, with identical results. The 

allylation process can be scaled easily to produce multigram 
quantities of product without specialized equipment (Fig. 2B). 
Using a reduced catalyst loading of 2 mol%, 3.7 g (19 mmol) of 
3g was obtained with high stereoselectivity (95:5 er). 
Table 2. Scope of enantioselective copper-catalyzed 
allylation of ketones using allene gas.a
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a Average results from two identical runs on 1 mmol scale of 
ketone.For experimental details, see the Supporting 
Information.

We further demonstrated the utility of the reaction in the 
synthesis of anti-psychotic drug Clopenthixol (Sordinol, 4d), 
first introduced by Lundbeck in 1961, and one of several 
structurally related thioxanthene antagonists of dopamine 
receptor D2, commercially available as either a mixture of 
E/Z-isomers or as the pure Z-isomer, obtained by selective 
crystallization25 (Fig. 2C). The traditional synthesis of this 
substance relies on cyclopropyl or allyl Grignard reagents, 
presenting challenges for scale-up or implementation in 
continuous flow processes14 due to large exotherm and 
formation of insoluble magnesium salts. In our synthesis, the 
unpurified reaction mixture resulting from the allene–ketone 
coupling reaction was directly subjected to copper-catalyzed 
hydroamination conditions previously reported by our 
group.26 Acidic work-up efficiently removed the Boc 
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protecting group and eliminated an equivalent of silanol to 
yield intermediate 4c, observed by high performance liquid 
chromatography (HPLC) but not purified before proceeding. 
Direct SN2 alkylation of this mixture with 2-bromoethanol 
yielded Clopenthixol (4d) in 54% overall yield with only one 
chromatographic separation. Finally, the allylation procedure 
was also employed to synthesize alcohol 5, a core building 
block in elegant synthetic efforts toward the Veratrum 
alkaloid family, which previously required a three-step 
iodination/allylation/Kumada coupling sequence starting 
from 2-cyclohexene-1-one (Fig. 2D).27
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Figure 2. Extensions and applications of the allylation 
process. Np = 2-naphthyl, for experimental details, see the 
Supplementary Information.

Density functional theory (DFT) calculations suggested 
an intuitive model for rationalizing the stereoselectivity of the 
allylation process. The steric profile of the C2-symmetric (S,S)-
QuinoxP* ligand is illustrated by a quadrant diagram (Fig. 3, 
top right). In the preferred transition state (Favored TSIIIV), 
the smaller ketone substituent (Me) occupies the pseudoaxial 
position of the chair-like cyclic construction, positioned in less 
sterically hindered quadrant I, thus forming the observed (S)-
product. Due to the unsubstituted nature of the allyl 
nucleophile, the catalyst must destabilize two minor 
pathways, both of which lead to the undesired (R)-product. 
Relative to the favored transition state, rotation of the ketone 
to place the large group (Ph) pseudo-axial (Disfavored 

TS1IIIV, +1.3 kcal/mol) incurs an energetic penalty due to 
increased steric interaction with the ligand Me group in 
quadrant I. Alternatively, inversion of the entire chair-like 
structure (Disfavored TS2IIIV, +2.5 kcal/mol) is also 
disfavored since a ketone substituent is now directed toward 
the ligand t-Bu group in quadrant II.

Figure 3. Model for the enantioselectivity of the ketone 
allylation process. Energy values represent relative Gibbs 
free energies for transition states calculated using the M06/6-
311+G(d,p)-SDD(Cu)/SMD(PhMe)//B3LYP/6-31G(d)-
SDD(Cu). 

In summary, we describe the application of allene, an 
underutilized hydrocarbon feedstock, as a surrogate for 
traditional allylmetal reagents in copper-catalyzed 
enantioselective ketone addition reactions. We anticipate that 
allene gas will serve as a versatile and economical reagent in a 
variety of additional carbon–carbon and carbon–heteroatom 
coupling reactions soon to be discovered.
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7

R1 R2

O
+

LCuH

(MeO)2MeSiH
or PMHS

ketone allene

R1

HO R2

tertiary alcohol

(1 atm)

 over 106 tons per year of allene produced
 use of industrially relevant C3 hydrocarbon mixtures
 no pressurization required
 all materials commercially available
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