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A B S T R A C T   

Two series of 3,5-disubstituted isoxazoles (6a–e) and 1,4-disubstituted triazoles (8a–e) derivatives have been 
synthesized from tyrosol (1), a natural phenolic compound, detected in several natural sources such as olive oil, 
and well-known by its wide spectrum of biological activities. Copper-catalyzed microwave-assisted 1,3-dipolar 
cycloaddition reactions between tyrosol-alkyne derivative 2 and two series of aryl nitrile oxides (5a–e) and 
azides (7a-e) regiospecifically afforded 3,5-disubstituted isoxazoles (6a–e) and 1,4-triazole derivatives (8a–e), 
respectively in quantitative yields. Synthesized compounds were purified and characterized by spectroscopic 
means including 1D and 2D NMR techniques and HRMS analysis. The newly prepared hybrid molecules have 
been evaluated for their anticancer and hemolytic activities. Results showed that most derivatives displayed 
significant antiproliferative activity against human glioblastoma cancer cells (U87) in a dose-dependent manner. 
Compounds 6d (IC50 ¼ 15.2 ± 1.0 μg/mL) and 8e (IC50 ¼ 21.0 ± 0.9 μg/mL) exhibited more potent anticancer 
activity. Moreover, most derivatives displayed low hemolytic activity, even at higher concentrations which 
suggested that these classes of compounds are suitable candidates for further in vivo investigations. The obtained 
results allow us to consider the newly synthesized isoxazole- and triazole-linked tyrosol derivatives as promising 
scaffolds for the development of effective anticancer agents.   

1. Introduction 

Hybrid constructs from entities with known biological activity using 
“click” chemistry can be an important source for molecular diversity, 
making this a promising approach for the development of leads for 
medicinal chemistry applications [1,2]. Among these hybrids five 
membered heterocycles, such as 1,2,3-triazole/ isoxazole derivatives, 
have attracted special attention over the past decade and found wide 
applications in medicinal chemistry [3,4]. Isoxazoles have attracted 
considerable attention from organic and medicinal chemists due to their 
significant biological activities [4]. Successful applications of devel-
oping isoxazole compounds have resulted in multiple marketed drugs 
with diverse therapeutic activities such Sulfamethoxazole 

(Antibacterial), Cycloserine (Antitubercular), Risperidone (Antipsy-
chotic), Leflunomide (Antirheumatic) and Acivicin (Antitumor) [5]. In 
addition, more than thirty patents have been published describing the 
possible use of isoxazole compounds to treat several diseases, in 
particular cancer [4]. For example, Luminespib (resorcinylic isoxazole 
amide NVP-AUY922), an experimental anticancer drug candidate, is 
currently under 28 phase I/II clinical trials which most of them are 
completed [6]. It has shown promising activity in preclinical testing 
against several different tumor types by inhibiting the heat shock pro-
tein 90 (Hsp90), a chaperone protein that plays a role in the modifica-
tion of a variety of proteins implicated in oncogenesis [7]. Others 
isoxazole derivatives showed an anticancer activity through apoptosis 
induction and cell cycle arrest [8–11]. 
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On the other hand, triazoles are a class of N-heterocyclic compounds 
with great importance in medicinal chemistry based on their ability to 
act as pharmacophores and linkers between two or more substances of 
interest in molecular hybridization approaches [12]. These compounds 
exhibited an attractive wide range of targets biological potentials 
including anti-proliferative and anticancer against a panel of human cell 
lines [13–18]. Some of them, such as Cefatrizine and 

Carboxyamidotriazole, have already been used in clinics or under clin-
ical evaluation for cancer treatment [15]. Mechanistic exploration 
revealed that triazole derivatives induced apoptosis and cell cycle arrest 
[15,19]. Recently, several studies have reported that new triazole/iso-
xazole derivatives, with different pattern of substitution, exhibited sig-
nificant anticancer activity against various malignant glioma cell lines 
including glioblastoma, the most malignant and invasive type of 

Entry Hydroximyl chlorides (%) b Isoxazoles c Time (min) Yield (%) d

1 4 98

2 8 90

3 6 94

4 8 88

5 4 96

Scheme 1. Synthesis of dipolarophiles 2–4a and tyrosol-3,5-disubstituted isoxazoles (6a–e).  
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primary brain [20–22]. 
Interestingly, hybridization of 1,2,3-triazole / isoxazole with 

phenolic compounds has provided a new anticancer molecules [15]. A 
flavone/isoxazole fused heterocycles and flavone/1,2,3-triazole hybrid 
heterocycles compounds were synthesized via an intramolecular cycli-
zation and Cu(I)-catalyzed click 1,3-dipolar cycloaddition and showed 
an antiproliferative activity against human breast cancer cell line [23]. 
Other 1,2,3-triazole-coumarin/flavone hybrids were synthesized and 
displayed potent anticancer activity against several human cell lines 
[24,25] via induction of apoptosis in cancer cells after accretion of 
reactive oxygen species (ROS) or reduction in mitochondrial membrane 
potential –––[26,27]. Olive oil phenolic compounds are also an attrac-
tive moieties that could be important to drug design, given their wide 
variety of biological activities [28]. Among these compounds, the 
tyrosol (2-(4-hydroxyphenyl)-ethanol) (1), present also in wine [29], 
Rhodiola rosea [30], and marine fungi [31]. Tyrosol (1) and some of its 
derivatives have gained research interest due to their antiplatelet [32], 
antioxidant, anti-stress [33], anticancer [34] and antibacterial [35] 
activities. These data encourage to continue the hybridization of tyrosol 
with other pharmcophores such as 1,2,3-triazole / isoxazole moieties 
which may provide novel anticancer candidates. 

In this study, we used tyrosol (1) as a starting material to synthesize 
new tyrosol-3,5-disubstituted isoxazoles (6a–e) via 1,3-dipolar cyclo-
addition using various aromatic hydroximyl chlorides, and access to 1,4- 
disubstituted triazole derivatives (8a–e) via CuAAC. Additionally, we 
developed a regiospecific, simple, and versatile Cu(I)-catalyzed, micro-
wave-assisted procedure for preparation of these series. Based on the 
above cited findings and the potential anticancer activity of isoxazoles 
and triazoles, the newly synthesized compounds have been evaluated for 
their antitumor effect against human glioblastoma cells (U87) as well as 
for their hemolytic activity. 

2. Results and discussion 

2.1. Chemistry 

2.1.1. Synthesis of tyrosol-alkyne derivatives 2–4 as dipolarophiles 
Tyrosol (1) was subjected to a propargylation in dry DMF at room 

temperature in the presence of NaH and propargyl bromide for 3 h. The 
reaction was monitored by TLC and yielded a mixture of differently 
propargylated compounds in a 97% global yield (Scheme 1). Chro-
matographic separation of this mixture over a silica-gel column afforded 
compounds 2 (76%), 3 (trace), and 4 (21%). The high yield of compound 
2 relative to its analogues (3 and 4) was explained by the higher reac-
tivity of the phenol function compared with alcohol. 

The structures of the propargylated compounds 2–4 were unambig-
uously confirmed by their NMR and ESI-HRMS spectral data. The mo-
lecular formula of compound 2 (C11H12O2) as determined by ESI-HRMS 
(m/z 177. 0925 [M + H]+) agreed with a monopropargylated structure 
of tyrosol (1). Additionally, the molecular formula of compound 4 
(C14H13O2) as determined by ESI-HRMS (m/z 215.1080 [M + H]+) 
agreed with the dipropargylation of tyrosol (1). The position of the 
alkylation in the obtained derivatives was deduced by simple compari-
son of their NMR spectral data (1H and 13C) with those of the starting 
substrate 1. In addition to signals corresponding to the protons and 
carbons of tyrosol (1), new signals related to the alkyl group (methylene 
and methylidyne) were observed in NMR spectra (1H and 13C). 

The distinction between the structure of the propargylated derivative 
2 compared to its analogue 3 was easily deduced by the relatively high 
deshielding of methylenic protons (δH 4.65, Fig. S1) of the propargyl 
moiety in 2 attached to the phenol function of 1 compared to the same 
protons (δH 4.15) in 3 (trace) where the propargyl moiety is attached to 
the primary alcohol function (Fig. S3). This deshielding is undoubtedly 
explained by the donor mesomeric effect + M exerted only by the non- 
binding doublets oxygen atom of the phenol function. Moreover, the 
NOESY spectrum of the cycloadduct 8c (Fig. S21), taken as an example, 

confirms the propargylation of the phenol function in 2 by the obser-
vation of an NOE between the methylenic protons (δH 5.25) of the 
propargyl fragment and the aromatic protons of tyrosol (δH 6.95, 2H, d, 
J = 8.7 Hz). The markedly high yield of 2 (76%) is explained by the 
relatively high acidity of the phenolic proton compared to that of the 
alcohol function, both of which react with the sodium hydride, to pre-
pare in situ the nucleophilic entity which substitute the bromine atom in 
the proaprgyl bromide. We selected this quantitative dipolarophile 2 for 
use in 1,3-dipolar cycloaddition reactions. 

2.1.2. Dipole synthesis 

2.1.2.1. Preparation of hydroximyl chlorides (5a–e). Hydroximyl chlo-
rides (5a–e) are key precursors essential for in situ generation of reactive 
nitrile oxides, which participate in 1,3-dipolar cycloaddition reactions 
for the synthesis of tyrosol-3,5-disubstituted isoxazoles. The precursors 
(5a–e) were already synthesized, in one of our previous works [2], from 
the appropriate aldehydes using a two-step reaction according to the 
general procedure described in the literature [36]. The desired aromatic 
imidoyl chlorides were obtained in yields ranging from 85% to 96% 
(Scheme 1). The intermediate nitrile oxide reagents were formed from in 
situ dehydrohalogenation of the corresponding hydroximyl chlorides 
(5a–e) using triethylamine as a base. 

2.1.2.2. Preparation of aromatic azides (7a–e). The precursors (7a–e) 
were synthesized from the appropriate anilines using a two-step pro-
cedure involving diazotization with sodium nitrite under acidic condi-
tions, followed by displacement with sodium azide [13]. The desired 
aromatic azides (7a–e) were obtained in high yields ranging from 90 to 
98% (Scheme 2). 

2.1.3. Synthesis of tyrosol-3,5-disubstituted isoxazoles (6a–e) 
A regiospecific approach was applied using dipolarophile 2 and 

various aromatic hydroximyl chlorides (5a–e) in the presence of CuI and 
Et3N, resulting in the formation of regiospecific tyrosol-3,5- 
disubstituted isoxazoles derivatives (6a–e) in excellent yields. All re-
actions were performed under microwave irradiation (200 W) and 
completed within 4 to 8 min. The new compounds (6a–e) were obtained 
in good yields (88–98%) (Scheme 1). This method has the advantage of 
being simple, regiospecific, fast (shorter times than those of similar 
previous reactions [37]), and leading to high yields. 

The synthesized tyrosol-3,5-disubstituted isoxazoles (6a–e) were 
characterized by 1H, 13C NMR and ESI-HRMS analysis. The absence of 
the 1H NMR signal relative to the terminal alkyne group in dipolarophile 
2 at δH 2.51 (1H, t, J = 2.4 Hz) and the observation of a new signal at δH 
~ 6.58–6.65 (1H, s) corresponding to the C–H proton of the isoxazole 
ring supported the progress of the cycloaddition reaction to yield the 
desired 3,5-disubstituted isoxazoles 6a–e. Their structures were also 
supported by their 13C NMR spectra, showing the disappearance of the 
terminal carbon signal of the alkyne group at δC ~ 75–78, and the 
appearance of a new signal relating to the tertiary carbon in the iso-
xazole ring at δC ~ 100 , 1–100.8. 

2.1.4. CuAAC for the synthesis of tyrosol-1,4-disubstituted triazoles (8a–e) 
A regiospecific approach using a Huisgen 1,3-dipolar cycloaddition 

reaction (CuAAC) of alkyne 2 with various aromatic azides (7a–e) in the 
presence of CuI and Et3N resulted in formation of regiospecific 1,4- 
disubstituted triazoles derivatives (8a–e) in excellent yields (85–96%) 
(Scheme 2). All the reactions were performed under microwave irradi-
ation (250 W) and achieved within 2 to 6 min under solvent-free con-
ditions. The formed products were easily obtained from the reaction 
mixture by simple extraction [38]. 

The structures of the tyrosol-1,4-disubstituted triazoles regioisomers 
were established according to their spectral data. The 1H NMR spectra of 
compounds 8a–e showed a singlet at δH ~ 8.00–8.08 attributable to the 
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H-5 proton of the triazole ring, and signals were observed in the aro-
matic region (δH 6.90–7.80 attributable to the new aromatic protons 
introduced by the azides. These structures were further supported by 13C 
NMR and DEPT spectra, which showed all of the expected carbon signals 
corresponding to the tyrosol-triazole derivatives, including the new ar-
omatic carbons resonating at δC ~ 114.0–160.0 introduced by the 
azides. The regiospecificity of this reaction leading exclusively to 1,4- 
regioisomers was supported by the dipolar interactions (NOE) 
observed between H-5triazole/Hmethylene and H-5triazole/Harom, and the 
absence of any NOE between Hmethylene/Harom [39,40]. HRMS data of all 
of the prepared derivatives were also in agreement with the proposed 
structures. 

2.2. Pharmacological screening and/or biological evaluation 

2.2.1. Antitumor activity 

2.2.1.1. Antiproliferative activity. The antitumor potential of the newly 
synthesized compounds was evaluated against the human glioblastoma 
cell line (U87). Cells were incubated with different concentrations of 

tyrosol (1) and its derivatives (6a–e) and (8a–e) for 24 and 72 h. 
Compared with natural tyrosol (1), all of the synthesized compounds 
decreased U87 cell viability in a dose and time-dependent manners 
(Figs. 1, 2). Interestingly, tyrosol-coupled 3,5-disubstituted isoxazole 
derivatives (6a–e) (IC50 = 52–80 µg/mL) (Fig. 1A) were more active 
towards U87 cells than tyrosol-coupled 1,4-disubstituted triazoles 
(8a–e) (IC50 > 100 μg/mL, except for 8e) after 24 h treatment (Fig. 1B). 
These findings suggested that changing substitutions in the aromatic 
system and differences in triazole or isoxazole rings influenced the 
cytotoxic activity against glioblastoma cells. 

When the treatment was extended for 72 h, all derivatives at 
increasing concentrations (0–100 µg/ mL) exerted potent anti-
proliferative activity against U87 cells (Fig. 2). Moreover, the results 
showed that the junction of tyrosol (1) with isoxasoles (6a–e) (Fig. 2A) 
and triazoles (8a–e) (Fig. 2B) through the linker methylene improved its 
antiproliferative activity at lower concentrations. Additionally, tyrosol- 
coupled 3,5-disubstituted isoxazole derivatives (6a–e) (IC50 = 15–31 
µg/mL) exhibited a higher degree of growth inhibition against U87 cells 
than tyrosol-coupled 1,4-disubstituted triazoles (8a–e) (IC50 > 30 μg/ 
mL, except for 8e) (Table 1). 

Entry Aromatic azides (%)b 1,4-disubstituted triazoles Time (min) Yield (%) c

1 3 92

2 3 94

3 5 85

4 3 96

5 5 92

Scheme 2. Tyrosol-1,4-disubstituted triazoles (8a–e) prepared by the CuAACa.  
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For the 3,5-disubstituted isoxazole (6a–e) derivatives, compounds 
6a (4-OCH3), 6d (4-t-Bu), and 6e (4-Cl) displayed the highest anti-
proliferative activity towards U87 cells, with IC50 values of 22.1 µg/mL 
(67.6 µM), 15.2 µg/mL (42.8 µM) and 20.3 µg/mL (61.4 µM), respec-
tively. Previous studies reported the antiproliferative activity of iso-
xazole derivatives against human glioblastoma cell lines [22,41]. In the 
series of the 1,4-disubstituted triazole derivatives (8a–e), compounds 8b 
(4-Cl) and 8e (2,4,5-trichlo) exhibited the most potent antiproliferative 
activity against U87 cells, with IC50 values of 30.0 µg/mL (90.8 µM) and 
21.0 µg/mL (52.7 µM), respectively. In agreement with our results, it has 
been shown that 1,4-disubstituted-1,2,3-triazole derivatives exhibited 

antitumor potential against U87, GBM02 and GBM95 cell lines with IC50 
values ranging from ~20 to 190 μM for 72 h treatments [20]. 

Interestingly, all these isoxazole and triazole derivatives exhibits 
higher antiproliferative activity than Temozolomide (Table 1), the most 
widely used chemotherapy for patients with glioblastoma [42]. 

Given this activity profile, we generated a structure–activity rela-
tionship showing that compounds with methyl, methoxy, or chlorine 
substitution at R groups in isoxazole derivatives and compounds with a 
chlorine substitution at R groups in triazole derivatives were more 
effective against U87 cells. Furthermore, we observed that the presence 
of more than one methyl group or chlorine atom (three in these cases) 

Fig. 1. Tyrosol derivatives affect U87 cell viability. (A) U87 cells treated with tyrosol (1) and the synthesized isoxazoles (6a–e). (B) Cells treated with tyrosol (1), 
tyrosol-alkyne 2, and the synthesized triazoles (8a–e). Cells were treated with increasing concentrations for 24 h, and their viability was determined by metabolic 
rate using the MTT assay. Absorbance values were measured at 560 nm and normalized against untreated cells. Data represent the mean ± SEM of three independent 
experiments performed in triplicate. All the data were statistically significant (p < 0.05) except tyrosol (1) (at 12.5 and 25 µg/ mL) and 6b, 6c, 6d and 8a at 12.5 µg/ 
mL. MTT, 3,4,5-dimethylthiazol-2-yl, 2,5 diphenyltetrazolium bromide; SEM, standard error of the mean. 

Fig. 2. Effect of tyrosol (1) and its derivatives on U87 cell proliferation. (A) U87 cells treated with tyrosol (1) and the synthesized isoxazoles (6a–e) for 72 h. (B) U87 
cells treated with tyrosol (1), tyrosol-alkyne 2, and the synthesized triazoles (8a–e) at various concentrations for 72 h. Data represent the mean ± SEM of three 
independent experiments performed in triplicate. All the data were statistically significant p < 0.05.SEM, standard error of the mean. 

Table 1 
IC50 Values (µg/mL and µM) of compounds 1, (6a-e) and (8a-e) against U87 tumor cell proliferation.  

Compounds 1 6a 6b 6c 6d 6e 3 8a 8b 8c 8d 8e Temozolomide 

IC50 (µg/ 
mL) 

>100 22.1 ±
0.5 

31.0 ±
0.9 

22.5 ±
0.8 

15.2 ±
1.0 

20.3 ±
0.4 

72.1 ±
0.8 

78.0 ±
1.2 

30.0 ±
0.5 

72.3 ±
0.2 

34.2 ±
0.8 

21.0 ±
0.9 

– 

IC50 (µM) >400 67.6 ±
1.5 

104.5 ±
3.0 

72.4 ±
2.5 

42.8 ±
2.8 

61.4 ±
1.2 

406.4 ±
4.5 

263.4 ±
4.0 

90.8 ±
1.5 

233.1 ±
0.6 

104.8 ±
2.3 

52.7 ±
2.2 

53.85[42]  
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played a significant role in enhancing the antiproliferative activity. In 
the present study, a benzene ring substituted at three positions (8e) 
resulted in higher activity than the derivative with a benzene ring 
substituted only at a para-position (8b). 

2.2.1.2. Analysis of cell morphology. To investigate the effect of tyrosol 
derivatives on U87 cells, we examined changes in cell morphology 
(Fig. 3). After 72 h and compared with controls, treated U87 cells with 
isoxazole (Fig. 3A) and triazole (Fig. 3B) derivatives exhibited decreased 
cell density and morphological changes, such acquisition of around 
shape, shrinkage and spherical cellular protrusions. These abnormal 
morphological characteristics provided insight into the anticancer effect 
of these compounds. 

2.2.1.3. Pro-apoptotic activity on U87 cells. Based on the promising 
antiproliferative effect against U87 cells, compounds 6a, 6d, 8b, and 8e 
were chosen for deeper evaluations aimed at better understanding its 
mechanism of action. These compounds were evaluated for a possible 
pro-apoptotic effect determined by Annexin V / PI assay. U87 cells were 
treated with 6a, 6d, 8b (4-Cl), or 8e (2,4,5-trichlo) at their respective 
IC50 values (22.1, 15.2, 30.0, and 21.0 µg/mL) for 72 h. Among the four 
tested compounds, all were found to possess the ability to induce 
apoptosis on U87 cells (percentage of apoptotic cells = 56%, 20%, 47%, 
and 53%, respectively) (Fig. 4). These results suggested that the newly 
synthesized compounds exerted its anticancer activity through the in-
duction of apoptosis in U87 cells. As it has been shown previously, 
several triazole/ isoxazole derivatives trigger antiproliferative effects 
through the induction of apoptosis. For example, anticancer isoxazole 
derivatives have been shown to activate apoptotic pathways in U251- 
MG and T98G glioma cell lines [22]. In addition to this, a pyrazolo 
[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles compound 
exhibited significant anti-proliferative and pro apoptotic effect on gli-
oma cells (U87) by the cleavage of Caspase-3, PARP and up regulation of 
p53 [43]. Further investigation should be conducted in order to fully 
elucidate the pro-apoptotic activity. 

2.2.2. Hemolytic activity 
The promising anticancer activity shown by the synthetic com-

pounds demanded further safety analysis. In fact, hemolytic activity is a 
major limitation on the development of chemical compounds as phar-
maceutical agents. Indeed, numerous therapeutic compounds do not 
enter the clinical trials due to their high hemolytic activity [44]. 
Therefore, the hemocompatibility evaluation of the tyrosol derivatives 

was performed using hemolytic test on human erythrocytes (Fig. 5). All 
of the isoxazole (Fig. 5A) and triazole (Fig. 5B) compounds induced <
10% hemolysis, even at a higher concentration of 400 µg/mL, except 6d 
(this compound bearing an isopropyl group in its isoxazole moiety 
induced ~ 40% hemolysis at 400 µg/mL). These data indicated that the 
triazole and isoxazole derivatives did not induce red blood membrane 
damage and hemoglobin release. This result reinforced the potential of 
these compounds for future in vivo investigations as a new anticancer 
prototype. These finding provide a new insight for designing novel 
anticancer agents with low hemolytic activity. 

3. Conclusion 

In summary, we synthesized novel 3,5-disubstitued isoxazole and 
1,4-disubstitued triazole tyrosol conjugates (6a-e) and (8a-e), respec-
tively using microwave irradiation. The synthesized derivatives 
exhibited higher antiproliferative activities towards human glioblas-
toma cells (U87) with slight hemolytic activity relative to the parent 
tyrosol. Among the tested compounds, 6d and 8e exhibited the highest 

Fig. 3. Morphological changes of U87 cells treated with (A) tyrosol (1) and its derivatives (6a–e) or (B) tyrosol (1), tyrosol-alkyne 2, and its derivatives (8a–e). 
Morphological differences were observed by inverted phase-contrast microscopy (magnification: 10 × ) after treatment with chemical compounds (50 µg/ mL or 100 
µg/ mL) for 72 h. Untreated cells were used as controls. 

Fig. 4. Apoptosis induction in U87 cells treated with 6a, 6d, 8b, and 8e for 72 
h according to Annexin-V and PI staining. Cells treated with 0.5 μM Staur-
osporine were used as positive control and untreated cells as negative control. 
Data represent the mean ± SEM of two independent experiments. The values of 
p < 0.05, p < 0.01 and p < 0.001 were considered as statistically significant (*), 
very significant (**), highly significant difference (***) respectively, unless 
otherwise mentioned. PI, propidium iodide; SEM, standard error of the mean. 
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selective antiproliferative effect. Preliminary results from the Annexin-V 
assay indicate that these compounds induced apoptosis in human glio-
blastoma cancer cell line U87. Future studies are necessary to identify 
and validate a potential lead compound, as well as elucidate the 
mechanism underlying the anticancer effect. 

4. Materials and methods 

4.1. General experimental procedures 

Tyrosol (1) was purchased from Fluka (Bucha, Switzerland). Solvents 
were distilled and dried using standard methods. Melting points were 
determined on a Büchi 510 apparatus using capillary tubes. Commercial 
thin-layer chromatography (TLC) plates (silica gel 60; F254) were used to 
monitor the progress of the reactions. Column chromatography was 
performed with silica gel 60 (particle size: 40–63 μm). High-resolution 
mass spectrometry (HRMS) was performed using an LCT Premier XE 
system [electrospray ionization (ESI) technique, positive mode; Waters, 
Milford, MA, USA]. For ESI experiments, leucine-enkephaline peptide 
was employed as the LockSpray lock mass. 1H (300 MHz; 16–32 scans) 
and BB-decoupled 13C (75 MHz; 256–2048 scans) nuclear magnetic 
resonance (NMR) spectra were recorded at room temperature on an AM- 
300 Fourier transform spectrometer (Bruker Daltonik, Bremen, Ger-
many) equipped with a 10-mm probe in deuterated chloroform with all 
chemical shifts (δ) and reported in ppm (non-deuterated solvent was 
used as a control standard). Coupling constants were measured in Hz, 
with signals denoted, as follows: s, singlet; d, doublet; t, triplet; and m, 
multiplet. 

Cell culture medium [minimum essential medium Eagle (MEM)], 
trypsin-EDTA, phosphate buffer saline (PBS), fetal bovine serum (FBS), 
penicillin and streptomycin mixture, and L-glutamine (200 mM) were 
purchased from GIBCO-BRL (Paisley, UK). Dimethyl sulfoxide (DMSO) 
and 3,4,5-dimethylthiazol-2-yl, 2,5 diphenyltetrazolium bromide (MTT) 
were purchased from Sigma (Saint Quentin Fallavier, France). All other 
reagents were of analytical grade. 

4.2. Chemistry 

4.2.1. General procedure for the synthesis of tyrosol-alkyne derivatives 2–4 
To a solution of tyrosol (1) (2 g; 14.5 mmol) in dry N,N-dime-

thylformamide (DMF; 4 mL), sodium hydride (29 mmol) and propargyl 
bromide (43.5 mmol) were added, and the reaction mixture was stirred 
at room temperature for 3 h, with the reaction monitored by TLC. After 
reaction completion, the residue was diluted with water (200 mL), and 
the mixture was extracted with ethyl acetate (3 × 100 mL). The com-
bined organic layer was dried over anhydrous sodium sulfate and 
evaporated to dryness, followed by purification over a silica gel column 
and elution with petroleum ether/ethyl acetate (6:4 then 1:1) to obtain 

the alkyl derivatives 2 (76%), 3 (trace), and 4 (21%). 

4.2.1.1. 2-(4-Propargyloxyphenyl)-ethanol (2). White solid; mp: 
112–114 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.14 (2H, d, J = 8.7 Hz), 6.91 
(2H, d, J = 8.7 Hz), 4.65 (2H, d, J = 2.1 Hz), 3.77 (2H, t, J = 6.6 Hz), 
2.78 (2H, t, J = 6.6 Hz), 2.51 (1H, t, J = 2.4 Hz), 2.06 (1H, s); 13C NMR 
(75 MHz, CDCl3): δ 155.7, 131.1, 129.5, 114.5, 78.2, 75.0, 63.1, 55.4, 
37.8; HRMS (ESI+): calcd. for (C11H13O2)+ [M + H]+ 177.0924, found 
177.0925. 

4.2.1.2. 1-(propargyloxy)-4-(propargyloxyethyl)-benzene (4). White 
solid; mp: 105–107 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.16 (2H, d, J =
8.4 Hz), 6.91 (2H, d, J = 8.4 Hz), 4.66 (2H, d, J = 2.4 Hz), 4.15 (2H, d, J 
= 2.4 Hz), 3.72 (2H, t, J = 7.2 Hz), 2.87 (2H, t, J = 6.9 Hz), 2.50 (1H, t, J 
= 2.1 Hz), 2.41 (1H, t, J = 2.4 Hz); 13C NMR (75 MHz, CDCl3): δ 155.6, 
131.2, 129.3, 114.4, 79.3, 78.2, 74.8, 73.8, 70.5, 57.6, 55.3, 34.6; HRMS 
(ESI+): calcd. for (C14H15O2)+ [M + H]+ 215.1081, found 215.1080. 

4.2.2. General procedure for the synthesis of 3,5-disubstituted isoxazoles 
(6a–e) 

To a mixture of selected alkyne 2 (0.102 g; 0.57 mmol), triethyl-
amine (1.14 mmol), and 0.1 equiv. Cu(I) iodide (CuI) in dry DMF, the 
appropriate hydroximyl chlorides 5 (2 equiv.) were added at room 
temperature with stirring, after which the mixture was subjected to 
microwave irradiation at 200 W for 4 to 8 min. The crude mixture was 
then diluted with water, extracted with ethyl acetate (3 × 40 mL), and 
the organic layer was dried over anhydrous Na2SO4. After removal of 
solvent in vacuo, the resulting residue was purified by silica gel column 
chromatography and eluted with petroleum ether/ethyl acetate (1:1) to 
obtain the new 3,5-disubstituted isoxazoles (6a–e) in 88% to 98% yields. 

4.2.2.1. 2-(4-((3-(4-methoxyphenyl)isoxazol-5-yl)methoxy)phenyl) 
ethanol (6a). Yellowish solid; mp: 101–103 ◦C; 1H NMR (300 MHz, 
CDCl3): δ 7.79 (2H, d, J = 6.3 Hz), 7.75 (2H, d, J = 6.6 Hz), 7.21 (2H, d, 
J = 6.6 Hz), 6.94 (2H, d, J = 6.6 Hz), 6.58 (1H, s), 5.17 (2H, s), 3.94 (3H, 
s), 3.85 (2H, t, J = 6.9 Hz), 2.84 (2H, t, J = 6.9 Hz); 13C NMR (75 MHz, 
CDCl3): δ 168.3, 161.6, 160.6, 156.0, 131.5, 131.4, 129.6, 128.2, 127.7, 
126.2, 125.5, 114.6, 114.5, 100.5, 63.1, 61.1, 55.7, 37.7; HRMS (ESI+): 
calcd. for (C19H20NO4)+ [M + H]+ 326. 1401, found 326.1392. 

4.2.2.2. 2-(4-((3-phenylisoxazol-5-yl)methoxy)phenyl)ethanol (6b). 
White solid; mp: 100–102 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.83 (2H, 
m), 7.47 (3H, m), 7.18 (2H, d, J = 6.6 Hz), 6.97 (2H, d, J = 6.6 Hz), 6.65 
(1H, s), 5.20 (2H, s), 3.85 (2H, t, J = 6.6 Hz), 2.84 (2H, t, J = 6.6 Hz); 13C 
NMR (75 MHz, CDCl3): δ 168.1, 162.0, 156.1, 131.5, 129.6, 129.5, 
128.4, 128.3, 126.3, 114.5, 100.1, 63.1, 61.1, 37.8; HRMS (ESI+): calcd. 
for (C18H18NO3)+ [M + H]+ 296. 1295, found 296.1299. 

Fig. 5. Hemolytic activity of tyrosol (1) and its derivatives on human erythrocytes at different concentrations. (A) Hemolytic activity of tyrosol (1) and its derivatives 
(6a–e). (B) Hemolytic activity of tyrosol (1), tyrosol-alkyne 2, and its derivatives (8a–e). Data are presented as a percentage of hemolysis relative to a positive control 
(100%; 1% Triton X-100). Data represent the mean ± SEM of independent assays performed in triplicate. SEM, standard error of the mean. 
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4.2.2.3. 2-(4-((3-(p-tolyl)isoxazol-5-yl)methoxy)phenyl)ethanol (6c). 
White solid; mp: 107–109 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.71 (2H, d, 
J = 6.9 Hz), 7.27 (2H, d, J = 6.6 Hz), 7.19 (2H, d, J = 6.6 Hz), 6.96 (2H, 
d, J = 6.6 Hz), 6.62 (1H, s), 5.20 (2H, s), 3.85 (2H, t, J = 6.9 Hz), 2.84 
(2H, t, J = 6.9 Hz), 2.42 (3H, s); 13C NMR (75 MHz, CDCl3): δ 167.9, 
161.9, 156.1, 139.7, 131.4, 129.6, 129.4, 129.1, 126.2, 125.5, 114.6, 
114.5, 100.7, 63.1, 61.1, 37.7, 20.8; HRMS (ESI+): calcd. for 
(C19H20NO3)+ [M + H]+ 310. 1452, found 310.1435. 

4.2.2.4. 2-(4-((3-(4-(tert-butyl)phenyl)isoxazol-5-yl)methoxy)phenyl) 
ethanol (6d). White solid; mp: 98–100 ◦C; 1H NMR (300 MHz, CDCl3): δ 
7.72 (2H, d, J = 8.7 Hz), 7.46 (2H, d, J = 8.4 Hz), 7.15 (2H, d, J = 5.4 
Hz), 6.93 (2H, d, J = 6.6 Hz), 6.60 (1H, s), 5.16 (2H, s), 3.81 (2H, t, J =
6.3 Hz), 2.80 (2H, t, J = 6.3 Hz), 1.34 (9H, s); 13C NMR (75 MHz, CDCl3): 
δ 167.9, 161.9, 156.1, 152.9, 131.4, 131.0, 129.6, 129.4, 129.1, 126.2, 
125.4, 114.6, 114.5, 100.8, 63.1, 61.1, 37.8, 34.3, 30.6; HRMS (ESI+): 
calcd. for (C22H26NO3)+ [M + H]+ 352. 1921, found 352.1922. 

4.2.2.5. 2-(4-((3-(4-chlorophenyl)isoxazol-5-yl)methoxy)phenyl)ethanol 
(6e). Yellow paste; mp: 112–114 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.72 
(2H, dd, J = 6.9; 2.1 Hz), 7.41 (2H, dd, J = 6.9; 2.1 Hz), 7.15 (2H, dd, J 
= 6.6; 2.1 Hz), 6.91 (2H, dd, J = 6.6; 2.1 Hz), 6.59 (1H, s), 5.16 (2H, s), 
3.81 (2H, t, J = 6.3 Hz), 2.80 (2H, t, J = 6.3 Hz); 13C NMR (75 MHz, 
CDCl3): δ 168.5, 161.0, 156.0, 135.7, 131.6, 129.6, 129.4, 129.0, 127.6, 
126.8, 114.6, 114.5, 100.6, 63.1, 61.1, 37.7; HRMS (ESI+): calcd. for 
(C18H17ClNO3)+ [M + H]+ 330. 0906, found 330.0886. 

4.2.3. General procedure for synthesizing tyrosol-1,4-disubstituted triazoles 
(8a–e): CuAAC 

Under solvent-free conditions, 0.102 g (0.57 mmol) of dipolarophile 
(2), CuI (0.5 equiv.), and triethylamine (1 equiv.) were mixed at room 
temperature, followed by the addition of aryl-azide 7 (1.14 mmol) and 
exposure to microwave irradiation at 250 W for 2 to 6 min. The crude 
mixture was then extracted with ethyl acetate (3 × 35 mL), and the 
combined organic layer was dried over anhydrous sodium sulfate, 
concentrated under reduced pressure, and purified by column chroma-
tography using a petroleum ether and ethyl acetate mixture as eluents to 
obtain pure (8a–e) in 85% to 98% yields. 

4.2.3.1. 2-(4-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethanol 
(8a). White solid; mp: 120–122 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.06 
(1H, s), 7.73 (2H, d, J = 7.5 Hz), 7.49 (3H, m), 7.16 (2H, d, J = 8.4 Hz), 
6.98 (2H, d, J = 8.4 Hz), 5.28 (2H, s), 3.83 (2H, t, J = 6.6 Hz), 2.82 (2H, 
t, J = 6.6 Hz); 13C NMR (75 MHz, CDCl3): δ 156.4, 144.5, 136.4, 130.8, 
129.6, 129.2, 128.3, 120.4, 120.1, 114.4, 63.2, 61.6, 37.8; HRMS (ESI+): 
calcd. for (C17H18N3O2)+ [M + H]+ 296. 1408, found 296.1381. 

4.2.3.2. 2-(4-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy) 
phenyl)ethanol (8b). Dark red solid; mp: 116–118 ◦C; 1H NMR (300 
MHz, CDCl3): δ 8.01 (1H, s), 7.67 (2H, d, J = 7.2 Hz), 7.48 (2H, d, J =
7.5 Hz), 7.16 (2H, d, J = 8.7 Hz), 6.98 (2H, d, J = 8.7 Hz), 5.26 (2H, s), 
3.82 (2H, t, J = 6.3 Hz), 2.81 (2H, t, J = 6.6 Hz); 13C NMR (75 MHz, 
CDCl3): δ 156.3, 144.9, 134.9, 134.2, 130.9, 129.6, 129.4, 121.2, 120.2, 
114.5, 63.1, 61.6, 37.8; HRMS (ESI+): calcd. for (C17H17ClN3O2)+ [M +
H]+ 330. 1018, found 330.1018. 

4.2.3.3. 2-(4-((1-(m-tolyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)ethanol 
(8c).. White solid; mp: 112–114 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.01 
(1H, s), 7.55 (1H, s), 7.49 (1H, d, J = 8.1 Hz), 7.37 (1H, t, J = 7.8 Hz), 
7.23 (1H, d, J = 7.8 Hz), 7.15 (2H, d, J = 8.7 Hz), 6.95 (2H, d, J = 8.7 
Hz), 5.25 (2H, s), 3.81 (2H, t, J = 6.6 Hz), 2.80 (2H, t, J = 6.6 Hz), 2.43 
(3H, s); 13C NMR (75 MHz, CDCl3): δ 156.4, 144.4, 139.5, 136.4, 130.8, 
129.5, 129.1, 129.0, 120.7, 120.4, 117.1, 114.4, 63.1, 61.7, 37.8, 20.8; 
HRMS (ESI+): calcd. for (C18H20N3O2)+ [M + H]+ 310. 1564, found 
310.1550. 

4.2.3.4. 2-(4-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy) 
phenyl)ethanol (8d). White solid; mp: 117–119 ◦C; 1H NMR (300 MHz, 
CDCl3): δ 8.00 (1H, s), 7.63 (2H, d, J = 8.9 Hz), 7.17 (2H, d, J = 8.5 Hz), 
7.02 (2H, d, J = 8.9 Hz), 6.97 (2H, d, J = 8.5 Hz), 5.26 (2H, s), 3.87 (3H, 
s), 3.83 (2H, t, J = 6.6 Hz), 2.82 (2H, t, J = 6.6 Hz); 13C NMR (75 MHz, 
CDCl3): δ 159.9, 156.9, 144.8, 131.4, 130.4, 130.1, 122.2, 121.1, 114.9, 
114.8, 63.7, 62.1, 55.6, 38.3; HRMS (ESI+): calcd. for (C18H20N3O3)+

[M + H]+ 326. 1513, found 326.1523. 

4.2.3.5. 2-(4-((1-(2,4,5-trichlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy) 
phenyl)ethanol (8e). White solid; mp: 111–113 ◦C; 1H NMR (300 MHz, 
CDCl3): δ 8.05 (1H, s), 7.76 (1H, s), 7.68 (1H, s), 7.13 (2H, d, J = 8.4 Hz), 
6.93 (2H, d, J = 8.4 Hz), 5.25 (2H, s), 3.80 (2H, t, J = 6.3 Hz), 2.79 (2H, 
t, J = 6.6 Hz); 13C NMR (75 MHz, CDCl3): δ 156.2, 144.1, 139.5, 134.3, 
133.3, 131.9, 131.0, 129.5, 129.4, 128.3, 126.6, 124.0, 115.0, 114.5, 
63.2, 61.5, 37.7; HRMS (ESI+): calcd. for (C17H15Cl3N3O2)+ [M + H]+

398. 0239, found 398.0229. 

4.3. Biological assay 

4.3.1. Anticancer activity 

4.3.1.1. Cell line and cell culture conditions. Human glioblastoma cell 
line (U87 cells) was cultured in MEM medium supplemented with 10% 
fetal bovine serum, L-glutamine and 100 IU of penicillin/ streptomycin 
in a humidified environment with 5% CO2 at 37 ◦C. 

4.3.1.2. Cytotoxic and antiproliferative assays. The anticancer activity of 
tyrosol (1) and its novel derivatives on U87 cell viability and prolifer-
ation was evaluated using an MTT assay [45]. The MTT assay evaluates 
cell metabolism based on the ability of mitochondrial succinatedehy-
drogenase to convert the yellow compound MTT to a blue formazan dye. 
The amount of dye produced is proportional to the number of live 
metabolically active cells. U87 cells at optimal density were seeded into 
96-well microplates (Nunc microplates; Thermo Fisher Scientific, Wal-
tham, MA, USA) and incubated overnight to allow attachment. Tyrosol 
(1) and its derivatives were serially diluted and added to the wells to 
their final respective concentrations and incubated for 24 h or 72 h. 
Additionally, morphological changes in the treated cells were examined 
and recorded under an inverted phase-contrast microscope (Leica, 
Mannheim, Germany). After incubation with different concentrations of 
compounds, MTT solution (500 µg/ mL) was added and the cells were 
incubated for another 4 h. DMSO (100 µL) was then added to dissolve 
the formed violet formazan crystals within metabolically viable cells. 
Absorbance was determined by a microplate reader at 560 nm, and the 
results were expressed as a percentage of cell viability. Cells incubated 
with only medium were used as controls representing 100% viability or 
proliferation. Temozolomide was employed as a positive control [42], 
and all assays were performed in triplicate. 

4.3.1.3. Flow cytometric analysis of apoptosis. Briefly, U87 cells were 
treated with 6a, 6d, 8b and 8e at their respective 50% inhibitory con-
centration (IC50) values. After 72 h, all cell populations (suspended and 
attached) were collected and washed twice with PBS. The cells were 
then stained with Annexin-V-fluorescein isothiocyanate-conjugated/ 
propidium iodide (PI) reagents (Invitrogen, Carlsbad, CA, USA) to detect 
phosphatidylserine (PS) externalization for 15 min. Fluorescence- 
activated cell sorting was performed on a FACScalibur flow cytometer 
(Becton–Dickinson, Franklin Park, NJ, USA) to discriminate viable cells 
(Annexin-V− /PI− ) from cells in early apoptosis (Annexin-V+/PI− ), late 
apoptosis (Annexin-V+/PI+), or undergoing necrosis (Annexin-V− /PI+). 
Data analyses were performed with Cell Quest software (Bec-
ton–Dickinson). Non-treated culture cells were used as a negative con-
trol. U87 cells treated with 0.5 μM staurosporine (STS) were used as 
positive control. 
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4.3.1.4. Hemolysis assay. The hemolytic activity of tyrosol (1) and its 
derivatives was tested using human erythrocytes from healthy volun-
teers who had not taken any medication for at least 2 weeks prior to 
sampling. Freshly collected blood samples were immediately mixed with 
heparin. To obtain a pure suspension of erythrocytes, 1 mL of whole 
blood transferred to 20 mL PBS (pH 7.4) and centrifuged at 250g for 5 
min at 4 ◦C. The supernatant and buffy coats were removed by gentle 
aspiration and the transfer/centrifugation process was repeated two 
more times. Erythrocytes were finally re-suspended in PBS to make a 1% 
solution for hemolytic assay. Various concentrations of tyrosol (1) and 
its novel derivatives were then added to the suspension of red blood cells 
and incubated at 37 ◦C for 1 h in a water bath, followed by centrifuga-
tion at 250g for 5 min at 4 ◦C. The absorbance of the supernatants was 
measured at 545 nm to determine the extent of red blood cell lysis. 
Positive (100% hemolysis) and negative (0% hemolysis) controls were 
generated by incubating erythrocytes in PBS containing 1% Triton X- 
100 and PBS alone, respectively [46]. All tests were performed in 
triplicate. 

4.3.1.5. Statistical analysis. Statistical analysis was performed using 
Graph Pad Prism 7.0 (Graph Pad Software Inc., CA, and USA). All the 
data are presented as the mean ± standard error of the mean (SEM). The 
difference between two groups was evaluated using Student’s t test. 
Significant difference among three or more groups was determined by 
one-way ANOVA with a post hoc analysis (Turkey test). The values of p 
< 0.05, p < 0.01 and p < 0.001 were considered as statistically signif-
icant (*), very significant (**), highly significant difference (***) 
respectively, unless otherwise mentioned. 
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