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Abstract—A series of (4-chlorophenyl)-a-(1-methyl-1H-imidazol-5-yl)azoloquinolines and -quinazolines was prepared. These com-
pounds displayed potent Farnesyl Protein Transferase inhibitory activity and tetrazolo[1,5-a]quinazolines are promising agents for
oral in vivo inhibition.
# 2003 Elsevier Ltd. All rights reserved.
The discovery of mutated forms of the Ras protein in
approximately 30% of human cancers resulted in a
growing interest in Farnesyl Protein Transferase (FPT)
as a target for novel anti-cancer agents.1,2 FPT not only
plays a key role in enabling the Ras protein to acquire
full biological activity as a signal transducer,3�11 but its
substrates also include several other proteins which are
critical intermediates of cell signaling and cytoskeleton
organization.12�22 Thus the hypothesis that inhibition of
FPT may be beneficial in the treatment of certain can-
cers is currently being clinically tested with some drug
candidates undergoing phase II or phase III
trials.16,18,20,22

R115777 1 (ZARNESTRATM) is a 4-phenylquinolinone
that is currently undergoing Phase II clinical trials for
the treatment of hematological and solid tumors.23�27 In
an attempt to prevent some in vivo metabolism occur-
ring at the quinolinone nitrogen, we envisioned the
synthesis of analogues in which this nitrogen would be
incorporated into an heterocycle. As the quinazolinone
analogue of 1 has demonstrated potent in vitro enzy-
matic inhibition,28 we decided to implement the above
modifications not only in the quinoline but also in the
quinazoline series.

Herein, we describe the synthesis and inhibitory profile
of a series of (4-chlorophenyl)-a-(1-methyl-1H-imida-
zol-5-yl) azoloquinolines or quinazolines (Fig. 1),29

comparing their potency with ZARNESTRATM.

[4-Amino-3-(3-chlorobenzoyl)phenyl]-(4-chlorophenyl)
methanone 228 was reacted with acetic anhydride to give
amide 3 which was cyclized into quinolinone 4 using t-
BuOK as a base (Scheme 1). Then, refluxing 4 in phos-
phorus oxychloride provided the 2-chloroquinoline 5. In
initial attempts we sought to build the azoloquinoline
heterocycle prior to the introduction of the N-methyli-
midazolyl moiety as depicted below. Therefore, 5 was
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condensed with either 2,2-dimethoxyethanamine or
hydrazinecarboxaldehyde to cyclize into respectively
imidazo[1,2-a]quinoline 6 or [1,2,4]triazolo[4,3-a]quino-
line 7 in acidic media. By action of n-butyllithium 1-
methylimidazole was first deprotonated at C-2 and the
resulting carbanion silylated. In the same pot, further
deprotonation at C-5 by n-butyllithium and condensa-
tion onto ketones 6 and 7 provided 8 and 9, respectively.
The hydroxyl function was then converted into the cor-
responding chlorine by reaction with thionyl chloride
which was substituted by ammonia to provide 12 and
13, respectively.

Condensation of 5-lithio-2-triethylsilyl-1-methylimid-
azole onto ketone 7 gave only a low yield. This may
have resulted from the poor solubility of 7. Therefore,
we attempted to introduce this moiety sooner in the
synthesis, namely on ketone 5 (Scheme 2). This was
achieved with a better yield (71%) and also provided us
with a common intermediate 14 for subsequent intro-
duction of the triazole (16, 17) and tetrazole (22) rings.

To access the [1,2,3]triazolo[1,5-a]quinoline 30, ortho-
aminobenzophenone 2528 was first reacted with 2-pro-
panone in acidic media to provide the 2-methylquino-
line 26 (Scheme 3). Oxidation of the methyl group with
SeO2 gave aldehyde 27 which was condensed with (para-
tolylsulfonyl)hydrazine and cyclized by heating into 28.
The hydroxyl group was then converted into the amino
moiety in two steps to give 30.

The strategy depicted in Scheme 2 was applied to synth-
esis of azoloquinazolines using 2-chloroquinazoline 33 as
central intermediate (Scheme 4). 33 was prepared in two
Figure 1. Structure of R115777 1 and the tricyclic analogues envi-
sioned.
Scheme 1. Reagents and conditions: (a) Ac2O, toluene, 110
�C; (b) t-

BuOK, DME, rt, 86%; (c) POCl3, 80
�C; (d) H2NCH2CH(OCH3)2,

120 �C; (e) AcOH, xylene, 140 �C, 56%; (f) hydrazinecarboxaldehyde,
n-BuOH, 120 �C, then HCl 3N, THF, 60 �C, 34%; (g) (1) 1-methyli-
midazole, ClSiEt3, n-BuLi, THF, �70 �C; (2) n-BuLi, �70 �C, 48% 8,
9% 9; (h) SOCl2, 40

�C; (i) (1) NH4OH, THF, rt, 10% 12 or (2) NH3/
i-PrOH, 5 �C, 20% 13.
Scheme 2. Reagents and conditions: (a) (1) 1-methylimidazole,
ClSiEt3, n-BuLi, THF, �70 �C; (2) n-BuLi, �70 �C, 71%; (b) H2NNH2

50% in water, dioxane, 70 �C, 76%; (c) 1,1,1-triethoxyethane, n-
BuOH, 100 �C, 53%; (d) triethoxymethylbenzene, n-BuOH, 100 �C,
72%; (e) SOCl2, rt, R=Ph or SOCl2, toluene, R=CH3 ; (f) NH4OH,
THF, rt, 16% R=Ph; (g) NH3/i-PrOH, toluene, 0

�C, 20% R=CH3;
(h) NaN3, DMF, 90

�C, 41%; (i) SOCl2, 40
�C; (j) NH3/i-PrOH, THF,

5 �C, 39%.
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steps by chlorination of quinazolinone 3128 to provide
32 and then introduction of the N-methylimidazol-5-yl
moiety as in Scheme 2 with still a good yield. Imidazole
35, triazoles 36, 39 and tetrazole 37 were obtained by
following the experimental procedures depicted in
Schemes 1 and 2.

The hydroxy substituent was also converted in two steps
into the amino (Scheme 5).

These compounds were evaluated for inhibition of FPT
in vitro and compared to 1. The structure activity rela-
tionships are presented in Tables 1–3 (Figs 2–4).

Imidazoloquinoline 12 or imidazoloquinazoline 39
showed slight decreases in in vitro potency for inhibi-
tion of the isolated FPT enzyme compared to R115777
but were 16–50 times less potent in the cellular assay.

[1,2,4]Triazoloquinoline 13 or quinazoline 41 were not
sufficiently active either in the isolated enzyme assay
(13) or in the cellular assay (41) to be further studied
(Table 2). Permuting a nitrogen and a carbon atom to
get [1,2,3]triazoloquinoline 30 did not improve its
potency.

Interestingly adding a methyl substituent on the triazole
ring provided a compound with promising inhibitory
profile (20) whereas a phenyl group (21) was not better
than the hydrogen analogue 13.

We moved to tetrazoloquinoline 24 (Table 3), a com-
pound which still showed excellent enzymatic inhibition
and maintained activity in the cellular assay. It also
showed a moderate enzymatic inhibition of the enzyme
Scheme 3. Reagents and conditions: (a) 2-propanone, H2SO4, AcOH,
100 �C, 60%; (b) SeO2, dioxane, H2O, 100

�C; (c) (para-tolylsulfonyl)
hydrazine, MeOH, 60 �C, 21%; (d) SOCl2, rt; (e) NH3/i-PrOH, THF,
0 �C, 13%.
Scheme 4. Reagents and conditions: (a) POCl3, 80
�C; (b) (1) 1-

methylimidazole, ClSiEt3, n-BuLi, THF, �70 �C; (2) n-BuLi, �70 �C,
61%; (c) H2NCH2CH(OCH3)2, 120

�C; (d) HCl (concd), toluene,
110 �C, 6.5%; (e) hydrazinecarboxaldehyde, 80 �C, 14%; (f) NaN3,
DMA, 50 �C, 75%.
Table 1. Comparison of FPT inhibition for imidazoloquinolines,

-quinazolines and R115777
Compd
 X
 FPT (enz) IC50, nM
a
 Cell proliferation IC50, nM

b

1
 —
 0.9
 1.7

12
 C
 7
 28

39
 N
 5
 88
aThe concentration required for a 50% reduction of the FPT-catalyzed
incorporation of [3H]-farnesylpyrophosphate into a biotinylated
laminB peptide.
bSee ref 28.
Figure 2.
Scheme 5. Reagents and conditions: (a) SOCl2; (b) NH3/i-PrOH, tol-
uene, 5 �C, 16%, 41; (c) NH3/i-PrOH, 5

�C, 22%, 39; (d) sulfonylurea,
160 �C, 26%, 43.
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Geranylgeranylprotein transferase I (GGPTase I). We
had previously observed the importance of stereo-
chemistry in R11577727 chemistry. Since our analogues
bore the same chiral center, 24 was also separated into
its enantiomers 24a and 24b. As seen previously with
R115777, activity mainly resides in one enantiomer.
Interestingly, the corresponding quinazoline 43 showed
a slightly better in vitro FTI potency but was less active
on GGPTase I inhibition. Again, one enantiomer 43a
proved to be more potent than the other one.

20, 24b and 43a were in the same range of activity than
R115777. This prompted us to perform preliminary in
vivo experiments on these three compounds (Table 4).

The compounds 20 and 24b did not show any significant
inhibition of tumor growth when given orally at a dose
of 25mg/kg a day. However 43a demonstrated
improved in vivo antitumoral activity in murine xeno-
grafts and was also slightly more stable to metabolism
by human microsomes than was R115777. It also
showed selectivity for FPT over GGPTase I. Our atten-
tion is now focused on further evaluation of this com-
pound.

We have examined a number of azoloquinolines and
-quinazolines for inhibition of FPT in vitro and we have
identified compounds that are in the same range of
potency as R115777. Moreover, the tetrazolo[1,5-a]qui-
nazoline template offers a promising avenue towards
potent FTIs with improved in vivo potency.
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