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Abstract—The chemical synthesis of 4-phenoxybenzamide adenine dinucleotide (3), a NAD analogue which mimics isoniazid-NAD
adduct and inhibits Mycobacterium tuberculosis NAD-dependent enoyl-ACP reductase (InhA), is reported. The 4-phenoxy benzam-
ide riboside (1) has been prepared as a key intermediate, converted into its 5’-mononucleotide (2), and coupled with AMP imidazo-

lide to give the desired NAD analogue 3. It inhibits InhA with ICsq = 27 pM.

© 2007 Elsevier Ltd. All rights reserved.

Tuberculosis (TB) is a chronic infectious disease caused
by mycobacteria of the ‘tuberculosis complex’, including
Mycobacterium bovis, Mycobacterium africanum, and
mainly Mycobacterium tuberculosis. TB now Kkills more
adults than all other infectious diseases combined. Ac-
tive TB is usually treated with isoniazid in association
with one or more other anti-TB drugs but multi-drug
resistant TB (MDR-TB) and very recently extensively
drug resistant TB (XDR-TB) has become a serious
and unsolved public health problem.!~¢

Isoniazid (isonicotinic acid hydrazide, INH) discovered
in 1952 is still the most important drug for treatment
of TB. It is a prodrug which requires metabolic oxida-
tion by the M. tuberculosis enzyme, catalase-peroxidase
katG,*”-® to an isonicotinoyl radical which binds cova-
lently to the position 4 of NAD(P) cofactor (Scheme
1).8-19 The INH-NAD(P) adducts inhibit two enzymes
involved in the fatty acid biosynthetic pathway of
M. tuberculosis,'""'* NAD-dependent enoyl-acyl carrier
protein reductase (enoyl-ACP reductase, InhA) and
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Scheme 1. Inhibition of M. tuberculosis reductases.

NAD(P)-dependent B-keto-ACP reductase (mycolic acid
biosynthesis A, MabA).!> Addition of the isonicotinoyl
radical to the C4 of the nicotinamide ring can result in
two stereoisomers, however, only 4(S) isomers of the
INH-NAD and INH-NAD(P) are potent inhibitors of
InhA (K; = 0.75 nM) and MabA (K; = 2.2 uM). In con-
trast, the 4(R) isomer INH-NAD(P) inhibits M. tubercu-
losis dihydrofolate reductase (DHFR), which is essential
for nucleic acid synthesis (Scheme 1).1° Interestingly, it
was found that benzoic acid hydrazide is also metabo-
lized by M. tuberculosis in a similar manner as INH
and shows a potent inhibition of InhA.

A high prevalence of resistance to INH was observed,
mainly due to emerging KatG mutants that do not acti-
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vate or poorly activate INH. Therefore, it has been sug-
gested that compounds that inhibit final targets of INH
but do not require activation by KatG have tremendous
promise as novel drugs for combating MDR-TB.%!7
Preformed INH-NAD would be such a compound,
but as dinucleotide it is useless as a potential drug due
to metabolic instability and lack of cell permeability.
Nevertheless, several reports have been recently pub-
lished on chemical formation of the INH-NAD adduct
(X =N), its benzoyl analogue (X = CH), and on synthe-
sis of fragments of these important activated metabo-
lites.!>1822 The studies of chemical activation of a
mixture of INH and NAD revealed a rather complicated
activation pathway in which two diastereomers [the
4(S)-an inhibitor and the 4(R)-inactive isomer)] were
formed together with four cyclic diastereoisomers
(hemiamidals).!-°

Chemical synthesis of fragments of the NAD adducts
(Scheme 2) supplemented earlier observation on poor
stability of INH-NAD adduct and formation of hemi-
amidals. However, none of the synthesized 4-substituted
nicotinamide fragments showed activity against
InhA 2122

Chemical activation of a mixture of INH and NAD re-
sulted in the formation of INH-NAD adduct but the
cleavage of the unstable glycosidic bond of nicotinamide
riboside (NR) moiety of NAD was observed resulting in
release of ADP ribose.'8 In addition, NAD" is a sub-
strate in numerous biochemical processes®® in which
the glycosidic bond is cleaved. Thus, the key issue in
designing a drug, based on inhibition of InhA, is the
construction of a tight binding NAD mimic, which will
be metabolically stable.

To address undesirable hemiamidal formation, we rede-
signed the attachment at the position 4, and began by
investigating the geometry of the position 4 using molec-
ular modeling.?* Docking reproduced the NAD binding
mode observed in the X-ray structure (Fig. 1A) with an
RMS error of 0.34 A and the INH-NADH adduct with
an RMS error of 0.80 A (Fig. 1B). With NADH
adducts, the stereochemistry at position 4 is critical.
Modeling shows that changing from S to R causes the
INH ring to overlap with the backbone of residues
193-194. In the docking simulation, these bad contacts
forced the nicotinamide portion of the molecule out of
its normal binding pocket for all conformations found.
The global minimum had an RMSd of 6.6 A from the
X-ray structure, despite the adenosine half of the
molecule remaining in the correct position (Fig. 1C).

X=N or CH

Scheme 2. Stereochemistry and equilibrium of fragments of INH-
NAD adducts.

Figure 1. Binding of NAD and NAD adducts to InhA. (A) Cocrystal
structure with NAD.?® (B) Docked INH-NAD adduct (colored by
atom) superimposed with the INH-NAD X-ray structure (blue) 9. (C)
Docked (4R) INH-NAD superimposed with the (4S) X-ray structure
(blue). (D) Docked 4-phenoxy NAD superimposed with the INH-
NAD X-ray structure (blue). For all panels, a cutaway of the protein
surface is shown in green, except for the surface of Phel49, which
moved to accommodate the adducts and is shown in red. Docking
results are the lowest energy conformations found.

In contrast, a 4-phenoxy substitution of NAD, where
the position 4 is spz-hybriQized, resulted in a global
minimum with a low 0.69 A RMSd compared to the
INH-NADH adduct (Fig. 1D).

To address glycosidic bond instability, we also replaced
the nicotinamide ring nitrogen with carbon, a change
which by itself gives benzamide adenine dinucleotide
(BAD or 1-deaza-NAD).26-?” Thus, we focused on syn-
thesis of 4-phenoxy-substituted BAD analogue 3.

The synthesis of 3 (Scheme 3) was accomplished by
phosphorylation of 1 with P(O)Cl; (path a) and cou-
pling of the 5’-monophosphate 2 with adenosine-5'-
monophosphate imidazolide (path b).?8

The key intermediate for the above synthesis is a novel
C-nucleoside 1, which we synthesized via stereo-specific
coupling of the Grignard reagent (prepared from com-
mercially available 2-fluoro-5-iodobenzo-nitrile) with
the protected ribonolactone 4 (Scheme 4) followed by
reduction. The fluorinated carbon in the activated ortho
position of the nitrile was easily substituted by a pheno-
late anion generated from phenol under basic condi-
tion.?’ Then, the nitrile group was hydrolyzed to the
carboxyamido group with potassium trimethylsilanolate
to give 6.3 The protective groups of the ribose are final-
ly removed with boron tribromide to give the desired 1.
The structures of all new compounds 1-3 were confirmed
by 'H, *'P NMR and HRMS, and their purity was
established by HPLC.3!

Compounds 1-3 were evaluated against InhA. The inhi-
bition was monitored by following the inactivation of
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Scheme 3. Synthesis of 4-phenoxybenzamide adenine dinucleotide (3).

Scheme 4. Efficient, stereoselective synthesis of a key C-nucleoside 1.
Reagents: (a) i-PrMgCl, 2-fluoro-5-iodobenzonitrile, THF; (b)
BF;0Et,, Et;SiH; (c) Phenol, K,COs5; (d) Me;SiOK, THF; (e) BBr3,
CH,Cl,.

InhA in reaction mixtures containing NADH, dodece-
noyl CoA, the inhibitor, and InhA.3?

The C-nucleoside 1 showed weak activity at 700 uM.
However, the monophosphate 2 showed 12% inhibition
at concentration of 100 pM. The BAD analogue 3 inhib-
ited InhA with an 1Csy of 27 uM (Table 1), confirming
our initial hypothesis that the simple aromatic mimics
of the INH-NAD adduct would show inhibitory activity
against InhA. Although the BAD analogue 3 is a micro-
molar inhibitor it does not require metabolic activation
and did not form a complicated mixture of active and
inactive stereo-isomers. If phosphorylated to the corre-
sponding NAD(P) analogues, 3 could inhibit two other
M. tuberculosis enzymes, MabA and DHFR. Interest-
ingly, we recently found that benzamide adenine dinu-
cleotide (BAD) is a substrate for bacterial NAD-
kinase.?®

The results indicate that further searching for more po-
tent inhibitors of InhA based on a similar approach is
justified. Once a nanomolar inhibitor with aromatic
structure similar to that of 3 is found, a simple replace-
ment of the pyrophosphate oxygen by the CH, group
will afford the corresponding bis(phosphonate) analogue
of INH-NAD with expected improved metabolic stabil-
ity and drug-like properties.33-3*

Table 1. Inhibition of InhA by compounds 1-3

InhA inhibition

25% Inhibition at 700 pM
12% Inhibition at 100 pM
I1C50 =27 uM

Compounds
4-PhenoxyBR (1)
4-PhenoxyBRMP (2)
4-PhenoxyBAD (3)

HO OH

ﬁﬁ ‘JQ‘“"”

Qoo

HO OH

Finally, in contrast to other reports we found that much
smaller fragments of our target molecule 3, such as
nucleoside 1 and mono-nucleotide 2, showed 25% and
12% of inhibition of InhA at concentration of 700 uM
and 100 pM, respectively. This inspired us to synthesize
a number 4-substituted aromatic C-nucleoside and car-
bocyclic nucleoside analogues. Indeed, some of these
compounds (at the nucleoside level) showed 50% or more
inhibition of InhA at 100 uM. According to the princi-
ples of fragmented-based drug design we expect to boost
their activity by converting them into the corresponding
NAD analogues.
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