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Side-chain modified analogues of histaprodifen:
Asymmetric synthesis and histamine H1-receptor activity
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Abstract—New analogues of histaprodifen with polar side chains have been stereoselectively synthesized and evaluated as histamine
H1-receptor agonists. As a key transformation the asymmetric aminohydroxylation has been used, which was successfully realized
for the first time on an imidazolyl derivative. While all chiral analogues proved to be weak H1-receptor antagonists, an achiral keto
derivative of histaprodifen turned out to be the first 2-acylated histamine congener displaying partial H1-receptor agonism (relative
potency 12%).
� 2005 Elsevier Ltd. All rights reserved.
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During the last 25 years, numerous histamine H1-recep-
tor mediated effects have been described1 emphasizing
the important physiological and pathophysiological role
of histamine (1) (Fig. 1). Although the search for highly
potent and subtype-selective H1-receptor agonists has
been an arduous task for several years,2 many deriva-
tives have arisen from the class of 2-substituted hista-
mines,3 which display improved potency and
selectivity.4,5 Recently histaprodifen (2, X, Y, and
Z = H)6 has been identified as a potent histamine
derivative offering a starting point for systematic devel-
opment of highly potent and selective histamine H1-re-
ceptor agonists. The aim of our present study was to
develop analogues of 2 (X, Y, and Z 5 H) to get addi-
tional information about structure–activity relationships
of histamine H1-receptor agonists. In particular, we
wanted to investigate the effect of additional polar
groups attached to the ethylamine side chain, posing
the additional challenge to introduce such groups in a
regio-, diastereo-, and enantioselective manner.

As a suitable starting material toward side-chain modi-
fied derivatives of 1 and 2, we envisioned readily avail-
able urocanic acid methyl ester (3-H, Fig. 2). The
required amino group in b-position to the imidazole
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moiety could be introduced via an asymmetric amino-
hydroxylation (AA) reaction,7 which has proved to be
especially useful with cinnamates as substrates, but on
the other hand is also known to be problematic in the
presence of nitrogen containing heterocycles. Indeed, it
has been reported that various imidazolyl derivatives
3-R fail completely to give the AA.8 Moreover, our
attempts to utilize the N-oxides such as 4 for the AA,
which in the case of pyridineacrylates proved to be
the method of choice to achieve amino-9 and dihydro-
xylations,10 were also not successful.
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In an important contribution by Pyne and co-workers it
was demonstrated that N-protected urocanic ethers hav-
ing an acetyl group in 2-position are amenable toward
osmium-catalyzed asymmetric dihydroxylations.11Keep-
ing the side chain in 2-position of histaprodifen in mind,
we therefore envisioned 7–9 as a starting point for asym-
metric aminohydroxylation reactions (Scheme 1).

Thus, treatment of 3-H with 2-methoxyethoxymethyl
chloride (MEM-Cl) gave rise to a 9:1 mixture of N-
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Scheme 1. Reagents and conditions: (a) NaH, MEM-Cl, DMSO, 0–

80 �C, 6 h, 72%; (b) LDA (2 equiv), 6, THF, 0 �C! rt, 2 h, 48%; (c)

Synthesis of 8: i—DIBAL-H, CH2Cl2, 0 �C! rt, 12 h, 86%; ii—

TBDMS-Cl, imidazole, DMF, rt, 1 h, 96%; iii—n-BuLi, THF, �78 �C,
1 h, then 6, �78 �C 1 h, then rt, 1 h, 69%; iv—TBAF, THF, rt, 1.5 h,

92%; Synthesis of 9: i—DIBAL-H, CH2Cl2, 0 �C! rt, 12 h, 86%; ii—

NaH, benzyl bromide, DMF, 0 �C! rt, 16 h, 82%; iii—n-BuLi, THF,

�78 �C, 1 h, then 6, �78 �C 1 h, then rt, 1 h, 67%.

Table 1. Asymmetric aminohydroxylation of imidazolyl derivatives 7–9a
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7: R = CO2Me
8: R = CH2OH
9: R = CH2OBn

10: R = CO2M
12: R = CH2O
14: R = CH2O

O

Entry Substrate Ligand Solvent Reaction

1 7 (DHQ)2PHAL n-PrOH/H2O (1.5:1) 30

2 7 (DHQD)2AQN n-PrOH/H2O (1.5:1) 30

3 7 (DHQD)2AQN MeCN/H2O (3:1) 4

4 8 (DHQD)2AQN MeCN/H2O (1.5:1) 1

5 9 (DHQ)2PHAL n-PrOH/H2O (1.5:1) 1

6 9 (DHQD)2AQN n-PrOH/H2O (1.5:1) 1

7 9 (DHQD)2AQN MeCN/H2O (3:1) 1

a Reagents and conditions: K2OsO2(OH)4 (4 mol %), ligand (5 mol %), BnOC
bRatio determined by 1H NMR, for substrate 8 and 9 ratio determined afte
c Isolated yields as a mixture of regioisomers.
d Determined by HPLC on ChiracelTM OD/ODH (nd, not determined).
e Determined after conversion to 19 by HPLC on ChiracelTM OD/ODH.
alklated regioisomers, from which 5, being the major
one, could be separated by chromatography. Subse-
quently, metallation with LDA and trapping with the
Weinreb amide 6 gave rise to 7 in moderate yield. Alter-
natively, 5 could be reduced to the corresponding allylic
alcohol, into which after protection the side chain was
introduced again via 6 to yield 8 and 9, respectively.

Indeed, 7–9 could be utilized as substrates for the osmi-
um-catalyzed aminohydroxylation (Table 1) with mod-
erate results, nevertheless, succeeding for the first time
with imidazolyl derivatives in this transformation. In
agreement with the general trend observed in AA reac-
tions with aromatic substrates, in the presence of
(DHQ)2PHAL the amino group is preferentially intro-
duced in the benzylic position (regioisomer B, entries
1, 4). To obtain a better ratio of regioisomers with
respect to the desired histamine analogues A, the
pseudoenantiomeric ligand (DHQD)2AQN was em-
ployed. Although the ratio of regioisomers could not
be reversed as it is known in the case of cinnamates, at
least the formation of A was somewhat improved (Table
1, entries 2, 3, and 7). Changing the solvent to acetoni-
trile/water considerably improved the rate and yield of
the reaction with 7, as well as the enantioselectivity of
NHCbz
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Scheme 2. Reagents and conditions: (a) i—HCl (aq), MeOH, reflux

1 h; ii—H2SO4 (cat), MeOH, reflux, 30 h, 75% (over two steps).
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the products (Table 1, entries 2, 3). Surprisingly, the al-
lyl alcohol 8 and allyl ether 9 were considerably more
reactive than the ester 7, however, with the former sub-
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Scheme 3. Reagents and conditions: (a) 10% Pd/C, H2, THF, 40 bar,

40 �C, 48 h, 62%; (b) i—NaIO4, 1,4-dioxane, H2O, rt, 2.5 h, 87% based

on 18; ii—HCl (aq), MeOH, reflux 1 h, 95%.

Scheme 4. Reagents and conditions: (a) i—10% Pd/C, H2, MeOH, rt,

16 h, 98%; ii—LiOH, THF/MeOH/H2O [3:1:1], 0 �C! rt, 6 h, 95%;

(b) i—(COCl)2, CH2Cl2, 0 �C! rt 3 h; ii—TMS-N3, CH2Cl2,

0 �C! rt, 5 h; iii—BnOH, toluene, reflux, 120 �C, 18 h , 86% over

three steps; iv—10% Pd/C, H2, MeOH, rt, 16 h, 86%; (c) concd HCl/

MeOH/H2O [1:1:1], reflux, 1.5 h, 97%.

Table 2. Interaction with histamine H1-receptors (guinea-pig ileum)a

Compound Agonism

Emax ± SEM pEC50 ± SEM

(rac)-17 0 —

17 0 —

22 0 —

24 0 —

25 75 ± 3 5.78 ± 0.08

Mepyramined 0 —

2d 100 6.74 ± 0.02

1 100 6.70 ± 0.02

a Experimental protocol and definition of parameters see Ref. 6 and literatu
b Determined at 10–100 lM unless otherwise indicated.
c Number of experiments for agonism or affinity determination.
d Data from Ref. 6.
e pA2 value, determined at 0.3–100 nM.
f pKP value, determined at 3–30 lM.
gN = 12 for affinity measurement.
strates the undesired regioisomer B was always favored,
even when the AQN ligand was employed. Moreover,
only racemic products were obtained with the allyl alco-
hol 8 (entry 4). Preparatively most useful appeared to be
the formation of 10 and 11 mediated by (DHQD)2AQN
(entry 3), giving useful yields and selectivities that al-
lowed us to arrive at regio- and enantiomerically pure
products at the next stage in the reaction sequence.

Single-step exchange12 of the nitrogen protecting group
on the mixture of 10/11 from Cbz to Boc (10% Pd/C, H2,
MeOH, Boc2O, rt, 3 h, 96% yield) allowed the facile sep-
aration of 16 by column chromatography, which was
obtained enantiomerically pure in 40% yield after recrys-
tallization (28% yield starting from 7), along with the
corresponding regioisomer being obtained in 48% yield.
The structure of 16 could be confirmed by X-ray analy-
sis.13 Finally, deprotection of 16 was achieved by treat-
ment with HCl, resulting also in partial cleavage of the
methyl ester, which was subsequently remedied by ree-
sterification with MeOH to give rise to 1714 (Scheme 2).

Similarly, the mixture of 14/15 was converted to the N-
Boc derivatives 18/19 (94% yield). However, at this stage
separation of the regioisomers was still not possible.
Therefore, the mixture was debenzylated and subse-
quently treated with NaIO4 to cleave the diol in the
undesired regioisomer 21 (Scheme 3). This way, 20 could
be obtained as a single diastereomer with moderate
enantiomeric excess (48% ee), which was subsequently
deprotected to 22.15

As the missing link to allow a meaningful assessment of
the influence of the modified ethylamine side chain in 17
and 22 with respect to 2, the histaprodifen analogue 25
being acylated instead of alkylated in 2-position could
be synthesized in a straightforward way (Scheme 4).16

All new compounds were screened in vitro for functional
interaction with histamine H1-receptors of guinea-pig
ileum according to standard procedures (Table 2).17

Neither (rac)-17 nor the enantiopure 17 or the diastereo-
merically pure 22 elicited ileal contractions (Table 2).
Only at higher concentrations (30–100 lM), these com-
Affinityb Nc

Rel potency [%] pD0
2 ± SEM

— 3.80 ± 0.09 7

— 4.61 ± 0.12 9

— 4.08 ± 0.14 6

— 5.05 ± 0.12 4

12 nd 9

— 9.07 ± 0.03e 34

111 6.04 ± 0.05f 34g

100 — >95

re cited therein.
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Figure 3. Contraction of guinea-pig ileum by 1 (n, N = 9) and 25 in the

absence (�, Emax = 75 ± 3%, N = 9) and presence (�, 47 ± 4%, N = 5)

of mepyramine (2 nM). Rel potency of 25 was 12% (95% conf limits 9–

17%), pA2 of mepyramine was 9.08 ± 0.11. Data from three animals.

For protocol, see Ref. 6.
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pounds depressed the effect of 1 without producing a
rightward shift of the agonist curve. Thus, in contrast
to the potent reference antagonist mepyramine (nano-
molar affinity, pA2 = 9.07), they have to be classified
as weak non-competitive H1-receptor blockers (pD

0
2 <

5).

Compared with the lead 2, the new antagonists are en-
dowed with several chemical modifications. It was of
special interest to understand the influence of the car-
bonyl group attached to C2 of the imidazole, since 2-
acylated histamine derivatives have never been studied
so far. To our surprise compound 25, a �keto histaprod-
ifen,� turned out to be a moderate partial H1-receptor
agonist, displaying approximately 12% relative potency
compared with its parent compound 2. The contractile
effect was mediated by H1-receptors since mepyramine
(2 nM), a reference H1-receptor antagonist, successfully
blocked the effect of 25 (Fig. 3) with the expected
nanomolar affinity. The N1-protected precursor of 25,
24, failed to stimulate H1-receptors which is in agree-
ment with the current concept of H1-receptor agonist
SAR.2

It is concluded that the lack of H1-receptor agonist
activity observed for aminohydroxylation products
structurally related to 2 ((rac)-17, 17, 21) is due to the
additional oxygen-containing polar functionalities at-
tached to the ethylamine side chain of 2. The keto deriv-
ative 25 is the first 2-acyl derivative of 1 reported which
is capable of stimulating histamine H1-receptors. This
finding may be of importance since 2-acyl congeners of
1 are available much more conveniently than their 2-al-
kyl counterparts.
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cology is acknowledged.
References and notes

1. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J.-
C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi,
R.; Haas, H. L. Pharmacol. Rev. 1997, 49, 253.

2. Pertz, H. H.; Elz, S.; Schunack, W. Mini-Rev. Med. Chem.
2004, 4, 935.

3. Black, J. W.; Ganellin, C. R. Experientia 1974, 30, 111.
4. Dziuron, P.; Schunack, W. Eur. J. Med. Chem. Chim.

Ther. 1975, 10, 129.
5. Leschke, C.; Elz, S.; Garbarg, M.; Schunack, W. J. Med.

Chem. 1995, 38, 1287.
6. Elz, S.; Kramer, K.; Pertz, H. H.; Detert, H.; ter Laak, A.

M.;Kühne,R.; Schunack,W. J.Med. Chem. 2000, 43, 1071.
7. Leading reviews: (a) Kolb, H. C.; Sharpless, K. B.. In

Transition Metals for Organic Synthesis; Beller, M., Bolm,
C., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, p 309; (b)
Bolm, C.; Hildebrand, J. P.; Muniz, K. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: Wein-
heim, 2000; p 399–428; (c) Nilov, D.; Reiser, O. Adv.
Synth. Catal. 2002, 344, 1169; (d) Bodkin, J. A.; McLeod,
M. D. J. Chem. Soc., Perkin Trans. 1 2002, 2733.

8. Dong, L.; Miller, M. J. J. Org. Chem. 2002, 67, 4759.
9. Raatz, D.; Innertsberger, C.; Reiser, O. Synlett 1999, 1907.
10. (a) Feng, Z.-X.; Zhou, W.-S. Tetrahedron Lett. 2003, 44,
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