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Design and modular parallel synthesis of a MCR derived
a-helix mimetic protein–protein interaction inhibitor scaffold
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Abstract—A terphenyl a-helix mimetic scaffold recognized to be capable of disrupting protein–protein interactions was structurally
morphed into an easily amenable and versatile multicomponent reaction (MCR) backbone. The design, modular in-parallel library
synthesis, initial cell based biological data, and preliminary in vitro screening for the disruption of the Bcl-w/Bak protein–protein
interaction by representatives of the MCR derived scaffold are presented.
� 2006 Published by Elsevier Ltd.
Protein–protein interactions (PPI) play an important
role in the regulation of a number of critical biological
functions. The formations of antibody–antigen, hor-
mone-receptor or certain enzyme-inhibitor complexes
represent a few examples of such PPI. The nature of
these protein–protein interface interactions is complex.
They are usually formed by discontinuous protein-
sequence and protein-surface elements and the contact
area is normally rather large. Attempts to classify the
different types of protein–protein interfaces have result-
ed in a rather larger number of families.1 Nevertheless,
PPI constitute an important target class for novel drug
discovery projects, and a growing number of small
molecule inhibitors of these interactions continue to be
identified.2

The major secondary structure elements in key apopto-
sis regulating PPI (e.g., Bcl-2 family proteins, p53/
HDM2) are a-helices.3 Since the disruption of these
PPI could constitute an effective and selective means
for the treatment of cancer, we have been interested in
the design and discovery of a-helix mimetic PPI inhibi-
tors as potentially novel, apoptosis promoting cancer
0960-894X/$ - see front matter � 2006 Published by Elsevier Ltd.

doi:10.1016/j.bmcl.2005.11.102

Keywords: Protein interaction antagonist; Cancer; Bcl family;

Apoptosis; Multicomponent reaction; Isocyanide.
* Corresponding author. E-mail: alex.doemling@abc-pharma.de
chemotherapeutic agents, utilizing a chemical genomics
type approach.4

In contrast to protein secondary structure elements such
as b-sheets or b-turns, small molecule a-helix mimetics
have rarely been described in the literature (Fig. 1).
1,1,6-Trisubstituted indanes suggested to operate as
mimetics of the i � 1, i, and i + 1 sidechain residues of
an a-helix have been shown to be NK1 binders with
micromolar affinity.5 2,6,3 0,5 0-Tetrasubstituted biphe-
nyls have been proposed to mimic the side chains of
the i, i + 1, i + 3, and i + 4 residues of an a-helix6 and
recently, Hamilton and co-workers have reported on
3,2 0,200-trisubstituted terphenyls as mimetics of the side
chains at the i, i + 3, and i + 7 positions of an a-helix,
capable of disrupting PPI.7

Our efforts into the design of novel a-helix mimetics that
disrupt PPI and induce cellular apoptosis were prompt-
ed by Hamilton’s terphenyl a-helix mimetic concept.
One major disadvantage inherent in the terphenyl scaf-
fold is the rather lengthy, multi-step synthetic approach
needed for its assembly.8 Hence, as a starting point, we
investigated alternate a-helix mimetic scaffolds that
would be accessible by a multicomponent reaction
(MCR), ideally in a single reaction step and in a modu-
lar fashion. Molecular modeling9 derived structural con-
siderations led us to the selection of an appropriately
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Figure 1. Rationally designed a-helix mimetic scaffolds, superimposed

on an ideal a-helix. The relative location in the sequence of the a-helix
residues addressed by the small molecules has been indexed.
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trisubstituted imidazole backbone (Fig. 2), which could
be easily obtained utilizing the synthetic approach of
van Leusen et al.10
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Figure 2. Structural morphing of the terphenyl scaffold into a van

Leusen imidazole backbone (n = 0–2).
Phenyl-substituted tosylmethyl isocyanides (TosMICs)
constitute one of the versatile starting materials in our
synthesis of a MCR derived imidazole based a-helix
mimetic. They are easy to synthesize or are commercial-
ly available.11 During the course of this work, we pre-
pared several substituted phenyl TosMICs by reacting
the corresponding substituted benzaldehyde, formam-
ide, and para-methyl phenyl sulfinic acid in a MCR (a-
aminoalkylation) followed by dehydration (Fig. 3).12

The chosen substituents were selected to effectively mim-
ic one of the side-chain residues of the amino acids con-
stituting a part of the triad i, i + 3, and i + 7.

For the synthesis of the desired trisubstituted imidaz-
oles, we initially investigated the use of anilines
(R3 = substituted phenyl) as the amine component in
the van Leusen synthesis (Fig. 4).

Under a variety of experimental conditions and for a
small set of aldehydes investigated, meta-substituted
anilines failed to react with ortho-substituted phenyl
TosMICs to provide the desired imidazole products A
(Fig. 2). Alternatively, when meta-substituted phenyl
TosMICs were employed in the same reaction, the cor-
responding imidazoles were obtained, albeit in moderate
yields only. Significantly, key inversely substituted imi-
dazoles B could be generated starting from ortho-substi-
tuted anilines and meta-substituted phenyl TosMICs,
although in low yields.

Due to the difficulty encountered with suitably reacting
ortho-substituted phenyl TosMICs with anilines, we next
turned our attention to the use of appropriately substi-
tuted benzylamines (R3 = substituted phenylmethyl) as
the amine component in the van Leusen imidazole
synthesis (Fig. 4). Gratifyingly, we observed that benzyl-
amines typically reacted much more robustly than the
corresponding anilines in the van Leusen reaction. A
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Figure 3. Preparation of phenyl-substituted TosMICs.
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Figure 4. The van Leusen MCR synthesis of trisubstituted imidazoles.



Figure 5. Apoptosis induced by representative trisubstituted imidaz-

oles in HL-60 cells in a DNA fragmentation assay. Lanes 1, 14: 100 bp

DNA markers; 2, 13: DMSO control; 3, 12: 1.25 lM camptothecin; 4,

5, 6, and 7: 100, 10, 1, and 0.1 lM 3, respectively; 8, 9, 10, and 11: 0.1,

1, 10, and 100 lM 2, respectively.
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parallel solution phase synthesis of a focused library of
about 60 trisubstituted imidazoles was conducted. Ra-
pid parallel purification of the crude reaction products
was accomplished via �chromfiltration’13 to afford the
desired trisubstituted imidazole products in >80%
purity.

Based on our primary interest in initially identifying
novel compounds that inhibit cell proliferation and pro-
mote cellular apoptosis, the synthesized imidazole deriv-
atives were initially profiled in phenotypic cell based
assays and tested for apoptosis-inducing ability.

It is observed from Table 1 that representative trisubsti-
tuted imidazoles exhibited micromolar potency for cell
growth inhibition14 in a HL-60 cell line. The induction
of apoptosis assessed in a DNA fragmentation assay
in HL-60 cells15 for two compounds listed in Table 1,
2 and 3 is shown in Figure 5. Both compounds were able
to induce apoptosis in a dose-dependent manner consis-
tent with their IC50 values in the cell proliferation assay.

To preliminarily delineate the mode of action of the syn-
thesized trisubstituted imidazoles as apoptosis inducers,
we screened them in a FP assay17 established in-house
for inhibition of Bcl family PPI. Significantly, the major
secondary structure elements in the Bcl-2 subfamily of
antiapoptotic proteins are a-helices, arranged in such a
way that a large hydrophobic groove is formed on the
protein surface. The BH3 domains of the proapoptotic
proteins then bind as an amphipathic a-helix within this
Table 1. Cell proliferation data (HL-60) and in vitro FP data (Bcl-w)

Compound Structure GI50 (lM)

HL-60

IC50 (lM)

FP, Bcl-w

1

N

N

MeO

12.95 ± 0.11 26.85 ± 1.24

2 N

N

O

MeO

12.51 ± 2.68 13.99 ± 4.11

3
N

N

O

MeO

9.43 ± 1.3 8.09 ± 2.62
groove. Terphenyl based a-helix mimetics of a BH3 pep-
tide epitope that are capable of inhibiting this PPI have
been reported.7

In our initial screen, three representative compounds
(Table 1) were found to disrupt the interaction of
Bcl-w with the Bak-BH3 peptide. Surprisingly, all three
compounds were inactive against other Bcl family mem-
bers such as Bcl-2 or Bcl-XL (data not shown). Modeling
studies on imidazole 2 demonstrated the ability of these
compounds to mimic the critical i, i + 3, and i + 7 resi-
dues of an a-helix epitope of a proapoptotic Bcl family
peptide (Fig. 6).

In summary, we have introduced the design of novel
imidazole based a-helix mimetics that are conceptually
derived from the Hamilton terphenyl compounds, but
are synthetically amenable in one step utilizing a
MCR. The described trisubstituted imidazoles comprise
a novel class of lead molecules suitable for further opti-
mization. Further studies are needed to fully delineate
the biochemical mode of action of representatives of this
lead series. The selection of a wider set of starting mate-
rials should lead to compounds with improved biologi-
cal and pharmacokinetic activities.
Figure 6. A designed van Leusen MCR derived trisubstituted

imidazole a-helix mimetic modeled into the structure of the Bcl-XL/

Bad peptide complex (pdb-code 1G5J). Compound 2 (gold) is

superimposed onto the a-helical Bad peptide epitope i, i + 3, and

i + 7 residues. Thus, the phenyloxy substituent on the imidazole

superimposes with the side chain of Tyr (i + 7), the n-propyl moiety

with the side chain of Leu (i + 3), and the methoxyphenyl moiety

with the side chain of Met (i).
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