Tetrahedron Letters 52 (2011) 6991-6996

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Long distance-S_{RN}1 in nitroimidazole series favored by temperature

Laura Zink, Maxime D. Crozet, Thierry Terme, Patrice Vanelle*

Aix-Marseille Univ., Laboratoire de Pharmaco-Chimie Radicalaire, LPCR, Faculté de Pharmacie, CNRS, UMR 6264: Laboratoire Chimie Provence, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France

ARTICLE INFO

Article history: Received 12 September 2011 Revised 11 October 2011 Accepted 17 October 2011 Available online 20 October 2011

Keywords: Single-electron transfer LD-S_{RN}1 Microwave heating Nitroimidazole X-ray spectroscopy

ABSTRACT

New reductive alkylating agents in 4- and 5-nitroimidazole series produce exclusively O-alkylation with nitronate anions under classical S_{RN} 1 conditions at room temperature. Electron-transfer C-alkylation is observed under microwave irradiation or under conventional heating. Furthermore, X-ray spectroscopy shows that the dihedral angles between the phenyl and imidazole rings for the two series are different, which could greatly influence reactivity in 4- and 5-nitroimidazole series.

© 2011 Elsevier Ltd. All rights reserved.

5-nitroimidazole scaffold is known to display major anti-infectious activities.¹ Several 5-nitroimidazole-containing active principles are commonly used in medicine. These chemotherapeutic agents inhibit the growth of anaerobic bacteria and of some anaerobic protozoa.² Nowadays, 2-(2-methyl-5-nitro-1*H*-imidazol-1yl)ethanol (metronidazole) is the drug compound most frequently used clinically for the treatment of infections caused both by protozoa such as *Trichomonas vaginalis, Entamœba histolytica, Giardia intestinalis*, and by anaerobic bacteria.

However, 5-nitroimidazoles have been found to possess high mutagenic activity in prokaryotic micro-organisms.³ Moreover, the emergence of metronidazole-resistant *T. vaginalis* is currently affecting therapeutic success.^{4,5} These refractory cases are usually treated with higher doses of metronidazole, which leads to increased side effects.^{5,6} A nitroimidazole offering good pharmacological activities against metronidazole-resistant *T. vaginalis* and *G. intestinalis*, with no mutagenicity, would be of great interest.^{1b,e,7,8}

Unimolecular radical nucleophilic substitution ($S_{RN}1$) has been found to be an excellent synthetic pathway for many types of aromatic, heterocyclic, or aliphatic substrates with suitable leaving groups,⁹ requiring substrates substituted with an electron-attracting group at the appropriate position.

Since Kornblum¹⁰ and Russell¹¹ originally proposed the radical chain mechanism to explain the C-alkylation of nitronate anions by *p*-nitrobenzyl chloride, later designated as $S_{RN}1$ (unimolecular radical nucleophilic substitution) by Bunnett,¹² the extensions of

this reaction at sp³ carbon have been studied extensively.¹³ These studies showed that ambident nitronate anion reacted by O-alkylation with benzylic halides. For example, benzyl chloride led to benzaldehyde only by O-alkylation with the 2-nitropropane anion from an $S_N 2$ mechanism. In contrast, *p*-nitrobenzyle chloride reacted by C-alkylation with the 2-nitropropane anion, leading to the C-alkylated product.

Our previous study investigated a new $S_{RN}1$ reaction on (*E*)-2-[4-(chloromethyl)styryl]-1-methyl-5-nitro-1*H*-imidazole, involving a long distance (10 bonds) between the electron-withdrawing and leaving groups (LD- $S_{RN}1$). Unfortunately, when the chloride reacted with 2-nitropropane anion under various suitable conditions for the $S_{RN}1$ reaction (inert atmosphere, light), it only led to the aldehyde derivative through an S_N2 process (Scheme 1).¹⁴

These reactions are usually performed in DMSO at room temperature under inert atmosphere and photostimulation in order to initiate the $S_{RN}1$, but the influence of temperature on the competition between S_N2 and $S_{RN}1$ has never been evaluated.

Moreover, Geske showed in 1964 that the planarity of the nitrobenzyl group has an influence on this competition.¹⁵ Indeed, *o*-nitrobenzyl chloride was more difficult to reduce than *p*-nitrobenzyl chloride, and provided 52% of *o*-nitrobenzaldehyde by O-alkylation. This has been established via the steric hindrance between the nitro group and the chloromethyl group on the phenyl ring in the *ortho* isomer, which decreased the coplanarity in the molecule. The system became less reducible by tending electronically to isolate the nitro group from the ring.

To further our work on $S_{RN}1$ (LD- $S_{RN}1$) reactivity and its limits in 5-nitroimidazole series and as part of a program aimed at the preparation of new and potentially safer nitroimidazoles, we

^{*} Corresponding author. Tel.: +33 4 91835573; fax: +33 4 86136822.

E-mail addresses: patrice.vanelle@univmed.fr, patrice.vanelle@pharmacie. univ-mrs.fr (P. Vanelle).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.10.096

Scheme 1. (E)-2-[4-(Chloromethyl)styryl]-1-methyl-5-nitro-1H-imidazole reactivity with 2-nitropropane anion.

Scheme 2. Preparation of LD-S_{RN}1 precursors 6 and 6'.

prepared 4(5)-[4-(chloromethyl)phenyl]-1,2-dimethyl-5(4)-nitro-1*H*-imidazoles and studied their reactivities with different nucleophiles, under $S_{RN}1$ experimental conditions (LD- $S_{RN}1$), in order to determine the reactivity of both isomers.

The starting material was obtained by the bromination of commercial 2-methyl-4(5)-nitro-1*H*-imidazole **1** with elemental bromine in DMF, methylation of **2** by dimethylsulfate to obtain **3**, which was then subjected to a Suzuki–Miyaura cross-coupling reaction to synthesize [4-(1,2-dimethyl-5-nitro-1*H*-imidazol-4-yl)phenyl]methanol **5**.¹⁶ Chlorination of **5** with thionyl chloride provided 4-[4-(chloromethyl)phenyl]-1,2-dimethyl-5-nitro-1*H*-imidazole **6**,¹⁷ which appeared to be a good candidate to investigate LD-S_{RN}1 (six bonds) (Scheme 2).

Furthermore, as alkylammonium chlorides are known to be poor leaving groups in S_N^2 reactions,⁹ we decided to synthesize and study the reactivity of N-[4-(1,2-dimethyl-5-nitro-1*H*-imidazol-4-yl)benzyl]-N,N-diethylethanaminium chloride **7**. N,N,N-Triethylethanaminium chloride derivative **7** was prepared in 94% yield from **6** with triethylamine (2 equiv) in anhydrous acetone at 44 °C for 24 h (Scheme 3).

Scheme 3. Preparation of 7.

The first result in Table 1 shows that **6** reacts with the 2-nitropropane anion to give exclusively **10**¹⁸ (entries 2, 6) resulting from an S_N2 O-alkylation with good yields under the usual S_{RN}1 conditions described by Kornblum (65% in DMSO–72% in DMF) at room temperature. Different S_{RN}1 reaction conditions were therefore examined, in order to study their influence on reactivity. Under conventional heating (oil-bath heating) in DMSO at 170 °C, a mixture of the expected C-alkylated products **8** (36%) and **9** (43%) resulting from the consecutive S_{RN}1 C-alkylation and base-promoted nitrous acid elimination were obtained (entry 8) without aldehyde **10**. In DMF at 140 °C, the reaction gave **8** (57%) and **10** (12%) (entry 4), but no trace of compound **9**. DMSO should solvate counterion in 2-nitropropane anion sodium salt better than DMF, inducing higher base strength in 2-nitropropane anion.¹⁹

With these encouraging results and on the basis of our previous studies,²⁰ we decided to evaluate the influence of microwave irradiation on the LD-S_{RN}1 reaction. The best microwave-assisted experimental conditions were defined, yielding in DMF a mixture of $\mathbf{8}^{21}$ (60%), **10** (22%), and the appearance of $\mathbf{9}^{21}$ (10%) (Table 1, entry 5). In DMSO, these conditions allowed the formation of $\mathbf{9}$ in 60% yields (entry 9).

Thus, no 'specific effect' (non-thermal effect)²² from microwave irradiation was found and thermal effect alone appears sufficient to affect the main reaction from $S_N 2$ to $S_{RN} 1$.

As shown in entry 11 (Table 1), the use of the best experimental conditions cited above (Table 1, entry 5) with compound **7** gave a mixture of expected products **8** (44%) and **9** (32%). Moreover, no trace of aldehyde derivative was observed. These results suggest that both substrates **6** and **7** formed C-alkylated product by LD- $S_{RN}1$.

In order to confirm the single-electron transfer mechanism, inhibition reactions were performed (Table 2) by adding to the reaction mixture catalytic amounts (10 mol %) of cupric chloride (CuCl₂) or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), which

Table 1 Reactivity study of ${\bf 6}$ and ${\bf 7}$ through LD-S_{RN}1

8

9

6 R = Cl 7 R = (Et)₃N⁺Cl⁻

Entry	Substrate	Equiv anion	Solvent	Time (h)	Conditions	8 (%)	9 (%)	10 (%)
1	6	6	DMF	0.5	N ₂ , dark, rt	_	_	73
2	6	6	DMF	0.5	N ₂ , hv, rt	-	-	72
3	6	6	DMF	0.5	N ₂ , dark, 140 °C	56	-	_
4	6	6	DMF	0.5	140 °C	57	-	12
5	6	6	DMF	0.5	MW 140 °C	60	10	22
6	6	3	DMSO	0.5	N ₂ , hv, rt	_	-	62
7	6	6	DMSO	0.5	N ₂ , dark, 170 °C	28	33	Traces
8	6	6	DMSO	0.5	170 °C	36	43	_
9	6	6	DMSO	0.5	MW 170 °C	_	60	_
10	7	3	DMSO	48	N ₂ , hv, rt	_	-	22
11	7	6	DMF	0.5	MW 140 °C	44	32	-

Table 2

Inhibition reactions with 2-nitropropane anion^a

Entry	Inhibitor (0.1 equiv)	8 (%)	9 (%)	10 (%)
1	_	60	10	22
2	CuCl ₂	25	14	22
3	TEMPO	8	10	27

^a All reactions performed using 1 equiv of **6**, 6 equiv of 2-nitropropane anion in DMF under microwave irradiation, at 140 °C, for 0.5 h.

are commonly employed inhibitors used to provide mechanistic study of $S_{RN}1$ reactions.^{9h,13a} The reaction times were identical for the inhibition study and corresponded to the conditions in Table 1, entry 5 without an inhibitor.

Inhibition for the production of **8** was observed with TEMPO and CuCl₂. The effects of classical inhibitors^{13a} on the reaction of **6** with the 2-nitropropane anion leading to **8** and **9** provide good evidence for assigning the S_{RN} 1 mechanism for the C-alkylation.

Table 3

Reactivity of **6** with the nitrocyclopentane anion

The reactivity of **6** was investigated with the nitrocyclopentane anion. As a result, formation of the expected C-alkylation products was observed under microwave heating in 19–22% overall yield (Table 3, entries 4 and 5). Under S_{RN} 1 classical conditions, aldehyde **10** was formed with up to 98% yield (Table 3, entry 3).

10

The nature of the nucleophile is crucial for $S_{RN}1$ reactions and necessitates an understanding of the relationship between the nucleophile and the substrate in single-electron transfer reactions.^{13b}

In order to extend the reaction to a variety of nucleophiles, the study next explored the *S*-centered anion (Scheme 4).²³ The reaction between 4-methylbenzenesulfinic acid sodium salt and **6** in DMSO at 100 °C under microwave irradiation gave the required S-alkylated product **13**²⁴ in good yield (79%).

To identify the main mechanism of the reaction, the reactivity of this latter reaction was studied by adding an inhibitor (Table 4, entries 2 and 3). The reaction rate decrease is less significant than with 2-nitropropane anion, indicating that the reaction could possibly result from a combination of $S_N 2$ and $S_{RN} 1$ mechanisms.

Entry	Solvent	Conditions	Time (h)	10 (%)	11 (%)	12 (%)
1	DMF	N ₂ , hv, rt	3	65	_	_
2	DMF ^b	N ₂ , h <i>v</i> , rt	24	50	-	-
3 ^a	DMSO	N ₂ , h <i>v</i> , rt	0.3	98	-	-
4	DMSO	MW 170 °C	0.2	_	22	-
5	DMF	MW 140 °C	0.5	43	4	15

^a The reaction was induced by adding a catalytic amount of nitropropane anion.

^b DMF distilled.

Scheme 4. Reactivity of 6 with 4-methylbenzenesulfinic acid sodium salt.

Table 4

Inhibition reactions with 4-methylbenzenesulfinic acid sodium salt ^a

Entry	Inhibitor (0.1 equiv)	13 (%)
1	_	79
2	CuCl ₂	55
3	TEMPO	46

^a All reactions performed using 1 equiv of **6**, 2 equiv of 4-methylbenzenesulfinic acid sodium salt, in DMSO under microwave irradiation, at 100 °C, for 0.5 h.

In order to compare the influence of the 4- versus 5-position of the nitro group on the imidazole ring through $LD-S_{RN}$ 1, the 5-[4-(chloromethyl)phenyl]-1,2-dimethyl-4-nitro-1*H*-imidazole **6**' was synthesized through the same synthesis pathway as **6** from **4** and the reactivity with *C*-centered and *S*-centered anions was studied²⁴ (Table 5).

The reaction of **6**′ with 2-nitropropane anion under experimental conditions as defined in Table 1 (entry 5) provides the expected product **9**′ in 49% yield. However, the C-alkylation products in 5nitroimidazole series were obtained in 70% overall yield. Although, thermal effect was required to observe an S_{RN} 1 reactivity, yields obtained in 4-nitroimidazole series were generally lower than in 5-nitroimidazole series. This surprising result encouraged us to study the structure by X-ray analysis of a crystal of **6**²⁵ and **6**′.²⁶ We observed that the dihedral angles between the two planes formed by the phenyl and imidazole rings (N_1 – C_1 – C_6 – C_{11}) were,

Table 5

Entry

1

2

3

4

5

Reactivity of $\mathbf{6}'$ through LD-S_{RN}1

Figure 1. Ortep plot of 4-[4-(chloromethyl)phenyl]-1,2-dimethyl-5-nitro-1*H*-imidazole **6**.

Figure 2. Ortep plot of 5-[4-(chloromethyl)phenyl]-1,2-dimethyl-4-nitro-1*H*-imidazole **6**'.

respectively 39.8° (**6**) and 55.2° (**6**') (Fig. 1 and 2). These different dihedral angle values may greatly affect reactivity in 4- and 5-nitroimidazole series.

_

_

49

_

_

98

_

_

Traces

^a 2-Nitropropane anion was dissolved in DMF.

Nitrocyclopentaneb

^b Nitrocyclopentane anion was formed in situ using NaH in DMSO.

^c The reaction was induced by adding a catalytic amount of 2-nitropropane anion.

MW 140 °C

MW 170 °C

N₂, hv, rt

0.5

0.2

3

6994

The different yields observed could be explained by a lower electronic conjugated system between the phenyl and imidazole rings. Indeed, it has been established that a lack of planeness greatly influences $S_{RN}1$ reactivity,¹⁵ since the electron-withdrawing group does not function properly, which lowers the reducibility of the system.

In conclusion, we have shown in this Letter that 4-[4-(chloromethyl)phenyl]-1,2-dimethyl-5-nitro-1*H*-imidazole **6** and 5-[4-(chloromethyl)phenyl]-1,2-dimethyl-4-nitro-1*H*-imidazole **6**' react with various carbon- and sulfur-centered anions by substitution at the chloromethyl group. The reaction with *C*-centered nucleophiles is very probably mediated by the $S_{RN}1$ mechanism and is greatly influenced by thermal effect. Heating leads to a major inversion of rate between S_N2 and $S_{RN}1$ processes. These results constitute the first example of a specific LD- $S_{RN}1$ reactivity promoted by the thermal effect. Investigations with other nitronate anions and antiparasitic evaluation of synthesized compounds are currently in progress.

Acknowledgments

This Letter is supported by the CNRS and the Universities of Aix-Marseille. The authors thank the Spectropole team for various analytical measurements, and M. Giorgi for the X-ray crystal-structure determinations. We express our thanks to V. Remusat for ¹H and ¹³C NMR spectra recording.

References and notes

- (a) Jorgensen, M. A.; Manos, J.; Mendz, G. L.; Hazell, S. L. J. Antimicrob. Chemother. **1998**, *41*, 67–75; (b) Upcroft, J. A.; Campbell, R. W.; Benakli, K.; Upcroft, P.; Vanelle, P. Antimicrob. Agents Chemother. **1999**, *43*, 73–76; (c) Citron, D. M.; Tyrrell, K. L.; Warren, Y. A.; Fernandez, H.; Merriam, C. V.; Goldstein, E. J. C. Anaerobe **2005**, *11*, 315–317; (d) Leitsch, D.; Kolarich, D.; Wilson, I. B. H.; Altmann, F.; Duchêne, M. PLoS Biol. **2007**, *5*, 1820–1834; (e) Crozet, M. D.; Botta, C.; Gasquet, M.; Curti, C.; Rémusat, V.; Hutter, S.; Chapelle, O.; Azas, N.; De Méo, M.; Vanelle, P. Eur. J. Med. Chem. **2009**, *44*, 653–659; (f) Kim, P.; Zhang, L.; Manjunatha, U. H.; Singh, R.; Patel, S.; Jiricek, J.; Keller, T. H.; Boshoff, H. I.; Barry, C. E., III; Dowd, C. S. J. Med. Chem. **2009**, *52*, 1317–1328.
 Celik, A.; Ares, A. Farw, Chem. Toxicol **2006**, *20*, 85–94.
- 2. Çelik, A.; Ares Ateş, N. Drug Chem. Toxicol. 2006, 29, 85-94.
- (a) De Méo, M.; Vanelle, P.; Bernadini, E.; Laget, M.; Maldonado, J.; Jentzer, O.; Crozet, M. P.; Duménil, G. *Env. Mol. Mutagen.* **1992**, *19*, 167–181; (b) Ré, J. L.; De Méo, M. P.; Laget, M.; Guiraud, H.; Castegnaro, M.; Vanelle, P.; Duménil, G. *Mutat. Res.* **1997**, 375, 147–155.
- Cudmore, S. L.; Delgaty, K. L.; Hayward-McClelland, S. F.; Petrin, D. P.; Garber, G. E. Clin. Microbiol. Rev. 2004, 17, 783–793.
- 5. Schwebke, J. R.; Burgess, D. Clin. Microbiol. Rev. 2004, 17, 794-803.
- Crowell, A. L.; Sanders-Lewis, K. A.; Secor, W. E. Antimicrob. Agents Chemother. 2003, 47, 1407–1409.
- Upcroft, J. A.; Dunn, L. A.; Wright, J. M.; Benakli, K.; Upcroft, P.; Vanelle, P. Antimicrob. Agents Chemother. 2006, 50, 344–347.
- Walsh, J. S.; Wang, R.; Bagan, E.; Wang, C. C.; Wislocki, P.; Miwa, G. T. J. Med. Chem. 1987, 30, 150–156.
- (a) Kornblum, N.; Pink, P.; Yorka, K. V. J. Am. Chem. Soc. 1961, 83, 2779–2780;
 (b) Crozet, M. P.; Archaimbault, G.; Vanelle, P.; Nouguier, R. Tetrahedron Lett. 1985, 26, 5133–5134;
 (c) Vanelle, P.; Maldonado, J.; Madadi, N.; Gueiffier, A.; Teulade, J.-C.; Chapat, J.-P.; Crozet, M. P. Tetrahedron Lett. 1990, 31, 3013–3016;
 (d) Crozet, M. P.; Giraud, L.; Sabuco, J.-F.; Vanelle, P.; Barreau, M. Tetrahedron Lett. 1991, 32, 4125–4128;
 (e) Roubaud, C.; Vanelle, P.; Maldonado, J.; Crozet, M. P. Tetrahedron 1995, 51, 9643–9656;
 (f) Crozet, M. P.; Gellis, A.; Pasquier, C.; Vanelle, P.; Maldonado, J.; Crozet, M. P., Tetrahedron 1995, 51, 9643–9656;
 (f) Crozet, M. P.; Gellis, A.; Pasquier, C.; Vanelle, P.; Kaafarani, M.; Benakli, K.; Crozet, M. P. Tetrahedron 1997, 53, 5471–5484;
 (h) Rossi, R. A.; Pierini, A. B.; Peñéñori, A. B. Chem. Rev. 2003, 103, 71–167.
- Kornblum, N.; Michel, R. E.; Kerber, R. C. J. Am. Chem. Soc. **1966**, 88, 5660–5662.
- 11. Russell, G. A.; Danen, W. C. J. Am. Chem. Soc. 1966, 88, 5663-5665.
- 12. Bunnett, J. F.; Kim, J. K. J. Am. Chem. Soc. **1970**, 92, 7463–7464.
- (a) Chanon, M.; Tobe, M. L. Angew. Chem., Int. Ed. 1982, 21, 1–86; (b) Russell, G. A. Adv. Phys. Org. Chem. 1987, 23, 271–322; (c) Bowman, W. R. In Photoinduced Electron Transfer: Photoinduced Nucleophilic Substitution at sp3-Carbon, Part C; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; pp 487–552. Chap. 4.8; (d) Kornblum, N. Aldrichim. Acta 1990, 23, 71–78; (e) Savéant, J.-M. Adv. Phys. Org. Chem. 1990, 26, 1–130.
- Benakli, K.; Kaafarani, M.; Crozet, M. P.; Vanelle, P. *Heterocycles* 1999, 51, 557– 565.
- (a) Geske, D. H.; Ragle, J. L.; Bambenek, M. A.; Balch, A. L. J. Am. Chem. Soc. 1964, 86, 987–1002; (b) Kerber, R. C.; Urry, G. W.; Kornblum, N. J. Am. Chem. Soc. 1965, 87, 4520–4528.
- Crozet, M. D.; Zink, L.; Rémusat, V.; Curti, C.; Vanelle, P. Synthesis 2009, 3150– 3156.

- Juspin, T.; Zink, L.; Crozet, M. D.; Terme, T.; Vanelle, P. Molecules 2011, 16, 6883–6893.
- 18. General procedure of classical conditions: 2-Nitropropane anion (6 equiv) was added to a solution of **6** or **6'** (1 equiv) in DMF or DMSO (25 mL) in a nitrogen-flushed flask. The mixture was irradiated with a 60 W tungsten lamp and stirred for 0.5 h. Then, the mixture was poured into cold H₂O. The aqueous solution was extracted with CHCl₃. The organic layers were washed with brine, dried (Na₂SO₄) and evaporated under reduced pressure. The product was purified by chromatography column on SiO₂ (ethyl acetate). 4-(1,2-Dimethyl-5-nitro-1H-imidazol-4-yl)benzaldehyde (**10**): Yellow crystals, mp 190 °C (toluene). ¹H NMR (200 MHz, CDCl₃): δ 2.54 (s, 3H), 3.94 (s, 3H), 7.93 (s, 4H), 10.06 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 14.1 (CH₃), 34.2 (CH₃), 129.3 (2×CH), 130.1 (2×CH), 136.5 (C), 137.6 (C), 141.6 (C), 148.5 (C), 191.78 (CHO). Anal. Calcd for C₁₂H₁₁N₃O₃: C, 58.77; H, 4.52; N, 17.13. Found: C, 59.34; H, 4.70; N, 16.90.
- Reichardt, C. In Solvents and Solvent Effects in Organic Chemistry, Second ed.; VCH Verlagsgesellschaft: Weinheim, 1988; pp 5–50.
- (a) Vanelle, P.; Gellis, A.; Kaafarani, M.; Maldonado, J.; Crozet, M. P. Tetrahedron Lett. **1999**, 40, 4343–4346; (b) Gellis, A.; Njoya, Y.; Crozet, M. P.; Vanelle, P. Synth. Commun. **2001**, 31, 1257–1262; (c) Njoya, Y.; Boufatah, N.; Gellis, A.; Rathelot, P.; Crozet, M. P.; Vanelle, P. Heterocycles **2002**, 57, 1423–1432; (d) Njoya, Y.; Gellis, A.; Crozet, M. P.; Vanelle, P. Sulfur Lett. **2003**, 26, 67–75; (e) Gellis, A.; Boufatah, N.; Vanelle, P. Green Chem. **2006**, 8, 483–487; (f) Kabri, Y.; Gellis, A.; Vanelle, P. Green Chem. **2009**, *11*, 201–208.
- 21. General procedure of conventional heating: 2-Nitropropane anion (6 equiv) was added to a solution of 6 or 6' (1 equiv) in DMF or DMSO (25 mL) in a nitrogenflushed flask. The mixture is placed in an oil-bath previously heated to 140 °C (DMF) or (170 °C) and stirred for 0.5 h. After cooling, the mixture was poured into cold H₂O. The aqueous solution was extracted with CHCl₃. The organic layers were washed with brine, dried (Na2SO4) and evaporated under reduced pressure. The product was purified by chromatography column on SiO₂ (ethyl acetate/chloroform mixtures). General procedure of microwave experimental conditions: 2-nitropropane anion (6 equiv) was added to a solution of 6 or 6' (1 equiv) in DMF or DMSO (25 mL) and then heated to 140 °C (DMF) or 170 °C (DMSO) for 0.5 h under microwave irradiation (200 W). After cooling, the mixture was poured into cold H₂O. The aqueous solution was extracted with CHCl₃. The organic layers were washed with brine, dried (Na₂SO₄) and evaporated under reduced pressure. The product was purified by chromatography column on SiO2. Microwave-assisted reactions were performed in a multimode ETHOS Synth Lab station and MicroSYNTH Lab terminal 1024 (Ethos start, Milestone Inc.) ovens. 1,2-Dimethyl-4-[4-(2-methyl-2-nitropropyl)phenyl]-5-nitro-1H-imidazole (8): Brown oil, ¹H NMR (200 MHz, CDCl₃): δ J.58 (s, 6H), 2.53 (s, 3H), 3.25 (s, 2H), 3.91 (s, 3H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 13.9 (CH₃), 25.6 (2×CH₃), 34.3 (CH₃), 46.4 (CH₂), 88.5 (C), 129.7 (2×CH), 129.9 (2×CH), 130.3 (C), 136.6 (C), 142.2 (C), 148.2 (C). HRMS calcd for $C_{15}H_{18}N_4O_4$ [M+H]⁺: 319.1401, found: 319.1400. 1,2-Dimethyl-4-[4-(2-methylprop-1-enyl)phenyl]-5nitro-1H-imidazole (9): Yellow crystal, mp 108 °C (i-PrOH). ¹H NMR (200 MHz, CDCl₃): δ 1.89 (d, J = 1.2 Hz, 3H), 1.90 (d, J = 1.2 Hz, 3H), 2.52 (s, 3H), 3.90 (s, 3H), 6.29 (br s, 1H), 7.28 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H). ¹³C NMR $(50 \text{ MHz}, \text{ CDCl}_3)$: δ 14.1 (CH₃), 19.5 (CH₃), 27.0 (CH₃), 34.1 (CH₃), 124.8 (CH), 128.4 (2×CH), 128.8 (C), 129.2 (2×CH), 136.7 (C), 140.0 (C), 143.4 (C), 148.2 (C). HRMS calcd for C₁₅H₁₇N₃O₂ [M+H]⁺: 272.1394, found: 272.1400.
- Kappe, C. O.; Stadler, A. In Microwaves in Organic and Medicinal Chemistry; Mannhold, R., Kubinyi, H., Folkers, G., Eds.; WILEY-VCH GmbH & Co. KGaA: Weinheim, 2005; Vol. 25,.
- (a) Kornblum, N.; Kestner, M. M.; Boyd, S. D.; Cattran, L. C. J. Am. Chem. Soc. 1973, 95, 3356–3361; (b) Norris, R. K.; Wright, T. A. Aust. J. Chem. 1985, 38, 1107–1116; (c) Palacios, S. M.; Alonso, R. A.; Rossi, R. A. Tetrahedron 1985, 41, 4147–4156; (d) Miyake, H.; Yamamura, K. Bull. Chem. Soc. Jpn. 1986, 59, 89–91.
- 24. 1,2-Dimethyl-5-nitro-4-[4-(tosylmethyl)phenyl]-1H-imidazole (13): Yellow neddle, mp 198 °C (*i*-PrOH). ¹H NMR (200 MHz, CDCl₃): δ 2.40 s, 3H), 2.52 (s, 3H), 3,90 (s, 3H), 4,33 (s, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 14.0 (CH₃), 21.6 (CH₃), 34.2 (CH₃), 62.8 (CH₂), 128.7 (2×CH), 129.6 (2×CH), 129.7 (2×CH), 130.5 (2×CH), 131.8 (C), 134.8 (2×C), 142.1 (C), 144.8 (2×C), 148.2 (C). Anal. Calcd for $C_{19}H_{19}N_3O_4S$: C, 59.21; H, 4.97; N, 10.90; S, 8.32. Found: C, 59.25; H, 5.03; N, 10.98; S, 8.35. 1,2-Dimethyl-5-[4-(2-methylprop-1-59.25; H, 50.35; N, 10.96; S, 8.35. 1,2-Dimethyl-5-14-(2-methylprop-1-enyl)phenyl]-4-nitro-1H-imidazole (**9**): Yellow oil, ¹H NMR (200 MHz, CDCl₃): δ 1.92 (d, J = 1.0 Hz, 3H), 1.94 (d, J = 1.0 Hz, 3H), 2.50 (s, 3H), 3.41 (s, 3H), 6.30 (br s, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 13.6 (CH₃), 19.6 (CH₃), 27.1 (CH₃), 31.9 (CH₃), 124.3 (CH), 124.3 (CH), CDCl₃ = 0.0 (CH), 10.9 (CH), 10.9 (CH), 124.3 (CH), 129.0 (2×CH), 129.9 (2×CH), 132.9 (C), 137.5 (C), 140.5 (C), 143.8 (C). HRMS calcd for $C_{15}H_{17}N_3O_2$ [M+H]*: 272.1394, found: 272.1395. 4-(1,2-Dimethyl-4nitro-1H-imidazol-5-yl)benzaldehyde (10'): White powder, mp 163 °C (i-PrOH). ¹H NMR (200 MHz, CDCl₃): δ 2.50 (s, 3H), 3.42 (s, 3H), 7.57 (d, *J* = 8.2 Hz, 2H), 8.03 (d, *J* = 8.2 Hz, 2H), 10.10 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 13.4 (CH₃), 31.9 (CH₃), 127.0 (C), 129.8 (2×CH), 131.0 (2×CH), 133.1 (C), 136.9 (C), 143.0 (C), 144.6 (C), 191.3 (CHO). Anal. Calcd for $C_{12}H_{11}N_3O_3;$ C, 58.77; H, 4.52; N, 17.13. Found: C, 58.87; H, 4.64; N, 16.87. 1,2-Dimethyl-4-nitro-5-[4-(tosylmethyl)phenyl]-1H-imidazole (13'): Yellow neddle, mp 224 °C (i-PrOH). ¹H NMR (200 MHz, CDCl₃): δ 2.43 (s, 3H), 2.51 (s, 3H), 3.40 (s, 3H), 4.35 (s, 2H), 7.30 (s, 6H), 7.56 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 13.5 (CH₃), 21.6 (CH₃), 31.9 (CH₃), 62.6 (CH₂), 127.8 (C), 128.5 (2×CH), 129.7 (2×CH), 130.3 (C), 130.3 (2×CH), 131.3 (2×CH), 131.8 (C), 134.8 (C), 143.0 (C), 144.1 (C), 145.1 (C). Anal. Calcd for C₁₉H₁₉N₃O₄S: C, 59.21; H, 4.97; N, 10.90; S, 8.32. Found: C, 59.36; H, 5.08; N, 10.84; S, 8.30.

- 25. Crystal data for compound **6**: $C_{12}H_{12}CIN_3O_2$, yellow prisms $(0.22 \times 0.14 \times 0.12 \text{ mm}^3)$, MW = 265.70, orthorhombic, space group, P2(1)2(1)2(1) (T = 293 K), a = 7.4952(2) Å, b = 12.8330(3) Å, c = 13.1171(5) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$; V = 1261.68(7) Å³, Z = 4, $D_{calc} = 13.99$ g cm⁻¹, $\mu = 0.3$ mm⁻¹, F(00) = 552, index ranges $0 \le h \le 9$, $0 \le k \le 17$, $0 \le l \le 17$; θ range = 3.13–28.73°, 163 variables and 0 restraints, were refined for 1310 reflections with $I \ge 2\sigma I$ to $R_1 = 0.0702$, $wR_2 = 0.1656$, GooF = 1.077. CCDC 825743 contains the supplementary crystallographic data for this Letter. These data can be obtained free of charge at www.ccdc.cam.ac.uk/ data_request/cif of from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; email: deposit@ccdc.cam.ac.uk.
- 26. Crystal Data for compound **6**': $C_{12}H_{12}ClN_3O_2$, brown prisms, $(0.22 \times 0.18 \times 0.1 \text{ mm}^3)$, MW = 265.70, orthorhombic, space group, P2(1)2(1)2(1) (T = 293 K) a = 7.7310(2) Å, b = 10.1625(2) Å, c = 15.9718(5) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$; V = 1254.85(6) Å³, Z = 4, $D_{calc} = 14.06$ g cm⁻¹, $\mu = 0.302$ mm⁻¹, F(000) = 552, index ranges $0 \le h \le 10$, $0 \le k \le 13$, $0 \le l \le 21$; θ range = $2.38 28.71^\circ$, 165 variables and 0 restraints, were refined for 1388 reflections with $l \ge 2\sigma l$ to $R_1 = 0.0589$, $wR_2 = 0.1898$, GooF = 1.155. CCDC 825744 contains the supplementary crystallographic data for this Letter. These data can be obtained free of charge at www.ccdc.cam.ac.uk/ data_request/cif of from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; email: deposit@ccdc.cam.ac.uk.