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A B S T R A C T   

In this study, an efficient hybrid nanocatalyst made of guar gum (guarana, as a natural basis), magnetic iron 
oxide nanoparticles, and copper(I) oxide nanoparticles (Cu2O NPs) is fabricated and suitably applied for cata-
lyzing the multicomponent (three- and four-component) synthesis reactions of imidazole derivatives. Here, an 
easy preparation strategy for this novel catalytic system (Cu2O/Fe3O4@guarana) is presented. Then, the appli-
cation of this catalytic system for the synthesis of imidazole derivatives is precisely investigated. For this purpose, 
ultrasonication is introduced as an efficient and fast method. In summary, the high catalytic efficiency of Cu2O/ 
Fe3O4@guarana nanocomposite is well demonstrated by high reaction yields obtained in the presence of a small 
amount of this nanocomposite, under mild conditions. Wide active surface area, substantial magnetic behavior, 
excellent heterogeneity, suitable stability, well reusability, and etc. have distinguished this catalytic system as an 
instrumental tool for facilitating the complex synthetic reactions.   

1. Introduction 

In two recent decades, attentions to heterogeneous nanoscale sys-
tems have been amazingly increased due to their substantial effective-
ness on various types of the scientific studies. For instance, in medicine, 
they are extremely used for targeted drug delivery, in which the desired 
medication is delivered to the target tissue with high selectivity [1–3]. In 
the field of the natural energies, they have been widely applied for 
fabrication of the novel devices (like solar cells) with higher efficiencies. 
For this purpose, the internal layers of a device is manipulated via re- 
composition of the heterogeneous nanoscale materials [4]. In fact, 
nano scaling affects the band gap of the ingredients that are involved in 
an electronic device [5,6]. Moreover, the nanoscale heterogeneous 
materials have been used for catalytic aims. So far, numerous nano-
catalysts with high performances as great alternatives for traditional 
homogeneous catalytic systems have been designed and introduced to 
the science world [7–14]. In other words, the ancient generation of the 
catalytic systems (organocatalyst) is being replaced by next generation 
(heterogeneous nanocatalyst), which includes several excellences. The 
first and foremost advantage is heterogeneity that leads to convenient 
separation and purification processes. In fact, complex conventional 

separation processes like antisolvent, column chromatography, recrys-
tallization and etc. are practically removed from the procedures [15,16]. 
Providing wide surface active areas (through nano scaling), shortening 
the reaction times (through high performances), and high biocompati-
bility and biodegradability (through involving the natural resources for 
designing a catalytic system), could also be referred as additional ad-
vantages for this newly emerged generation of the catalytic systems 
[17,18]. Recently, magnetic property has also been added to the het-
erogeneous catalytic systems through the composition of the magnetic 
ingredients like iron oxide nanoparticles (Fe3O4 NPs), which creates 
more convenience in the separation processes. In this regard, several 
magnetic catalytic systems have been designed and suitably applied for 
various catalytic applications [19–22]. Furthermore, the catalytic ac-
tivity of these heterogeneous particles could be enhanced through 
simultaneously applying other energy resources like ultrasound waves 
[23,24]. Thus, in this study, we try to design an efficient heterogeneous 
system, in which Fe3O4 NPs are well composed with other components 
to make a magnetic catalytic system. 

For immobilization of the NPs in the composited form, polymeric and 
fibrous matrices are usually used [25]. In this case, polymeric textures 
with natural resources are typically preferred due to their 
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biocompatibility and biodegradability, and also nontoxicity that well 
meet the principles of the green chemistry [26]. As well, the polymer’s 
textures could be chemically functionalized through the existence of the 
functional groups (like hydroxyl) [27]. In this regard, we chose “Gua-
rana” (also called guar gum) that is considered as an appropriate addi-
tive in many processed foods [28]. From chemical aspect, there are 
several hydroxyl groups in the guarana’s structure that provide a suit-
able substrate for the composition of the other essential components 
(Fig. 1). From biological aspect, guarana is extracted from a plant 
resource and not only produces no toxic substances, but also adds high 
biocompatibility to our catalytic system. 

However, in this work, we have made an effort to suitably employ 
guarana (as a natural substrate) for immobilization of the Fe3O4 NPs and 
copper(I) oxide (Cu2O) NPs. For this purpose, a convenient in situ pro-
cess has been applied, through which guarana textures are well 
magnetized with the composed Fe3O4 NPs. Then, Cu2O NPs are formed 
and well immobilized between the textures of guarana. In fact, Cu2O NPs 
are the main active catalytic sites of our designed system (Cu2O/ 
Fe3O4@guarana), which provide constructive electronic interactions 
between the involved components in three- and four-component syn-
thesis reactions of imidazole derivatives. Herein, precise optimization 

Fig. 1. The chemical structure of the guarana natural polymeric strand.  

Fig. 2. Preparation route of Cu2O/Fe3O4@guarana nanocomposite.  

Fig. 3. (a) FT-IR spectra of the neat guarana (I), Fe3O4@guarana nanocomposite (II), and Cu2O/Fe3O4@guarana nanocomposite (III), and (b) EDX spectra and the 
elemental quantitative ratios tables of Fe3O4@guarana nanocomposite (I), and Cu2O/Fe3O4@guarana nanocomposite (II). 
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and comparisons have been made to highlight the performance of the 
fabricated Cu2O/Fe3O4@guarana. In this study, ultrasonication is 
introduced as the best applicable conditions for the synthesis of imid-
azoles in the presence of Cu2O/Fe3O4@guarana heterogeneous catalytic 
system. 

2. Results and discussion 

2.1. Preparation of the Cu2O/Fe3O4@guarana nanocomposite 

The schematic of the preparation route of Cu2O/Fe3O4@guarana 
nanocomposite is presented in Fig. 2. As a fast and concise review, it is 
observed that guarana textures are well magnetized with Fe3O4 NPs via 

an in situ co-deposition process. For this purpose, the chloride salts of 
iron(II) and iron(III) have been used in basic conditions (pH ~ 12), 
provided by ammonia solution [29,30]. Then, the reaction medium is 
neutralized by HCl (0.1 M) and the chloride salt of copper(II) in the 
presence of ascorbic acid [31]. After completion of the preparation re-
action, the fabricated final product has been conveniently separated (by 
using an external magnet at the bottom of the flask), and well washed to 
remove the excess ions. 

2.2. Characterization of the Cu2O/Fe3O4@guarana nanocomposite 

As the first identification method, Fourier-transform infrared (FT-IR) 
spectroscopy was used (Fig. 3a). As can be seen in the spectra, the peak 

Fig. 4. (a) TGA curves of the neat guarana (I), Fe3O4@guarana nanocomposite (II), and Cu2O/Fe3O4@guarana nanocomposite (III), and VSM M− H curves of 
Fe3O4@guarana nanocomposite (I), and Cu2O/Fe3O4@guarana nanocomposite (II) (recorded at room temperature). 

Fig. 5. XRD pattern of the fabricated Cu2O/Fe3O4@guarana nanocomposite.  
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intensity of the O–H groups (in the guarana’s structure), which has 
been appeared at ~3400 cm− 1, was decreased through the composition 
with Fe3O4 and Cu2O NPs. Also, the peaks related to Fe–O and Cu–O 
bands have been appeared at ~600 cm− 1 that prove the formation of the 
metal oxide NPs [31]. The existence of the essential elements in the 
samples was also proven by energy-dispersive X-ray (EDX) spectroscopy 
[32]. As demonstrated in Fig. 3(b), 13.0 and 8.8% of the total weight in 
the fabricated Cu2O/Fe3O4@guarana nanocomposite belong to iron and 
copper elements, respectively. In the EDX spectra, high similarity is 
observed, only copper’s peak has been added in the spectrum (II), which 
is related to the fabricated Cu2O/Fe3O4@guarana nanocomposite. 

Thermal resistance of the neat guarana (curve I), Fe3O4@guarana 
(curve II), and the fabricated Cu2O/Fe3O4@guarana nanocomposite 
(curve III) has been studied by thermogravimetric analysis (TGA). As 
demonstrated in Fig. 4(a), the first shoulder is observed when guarana is 
dehydrated proportional to the increase in temperature until ca. 150 ◦C. 
Almost 7% of the weight has been lost at this stage. Then, the second 
shoulder, in which ~50% of the weight has been lost, is observed in a 
thermal range of 150–410 ◦C. At this stage, all the hydroxyl groups of 
guarana are removed as water molecules. As can be seen, the main 
decomposition is started after this stage. Considering the thermal 
resistance behaviors of the Fe3O4@guarana and Cu2O/Fe3O4@guarana, 
this is clearly indicated that the thermal stability of guarana is enhanced 
through composition with the heterogeneous NPs. As can be seen in the 
TGA curves II and III, both main shoulders have shifted to higher tem-
peratures. Magnetic property of the fabricated Fe3O4@guarana and 
Cu2O/Fe3O4@guarana nanocomposite has also been studied by 

vibrating-sample magnetometer (VSM) analysis (Fig. 4b). The S-shape 
curves prove super-paramagnetic behavior of the samples. As it can be 
seen in the M− H curves I and II, the magnetic feature of Fe3O4@guarana 
is a bit reduced (~5 emu/g) through the addition of the Cu2O NPs. 
However, from the VSM curves (recorded at room temperature) this is 
well revealed that the fabricated catalytic system is quickly isolated 
from the mixture through applying a magnetic field. 

The XRD pattern of the fabricated Cu2O/Fe3O4@guarana nano-
composite is shown in Fig. 5. As can be observed, the obtained diffrac-
tion pattern has been compared with the original patterns of the neat 
Fe3O4, Cu2O NPs, and guarana. It was clearly verified that the NPs have 
been well prepared and composited with guarana matrix. Accordingly, 
the peaks appeared at the angles 2θ = 18.51◦, 31.64◦, 33.91◦, 36.56◦, 
43.15◦, 46.96◦, 58.65◦, 63.25◦, 68.25◦ and 74.85◦ are attributed to the 
formed Fe3O4 and Cu2O NPs [29,31]. Also, the broad beak initiated from 
2θ = 22◦ and ended by ca. 48◦ and a peak appeared at ca. 72◦ are 
attributed to guarana matrix [33]. 

Morphology and particle size of the produced Fe3O4 and Cu2O NPs 
were studied by field-emission scanning electron microscopy (FESEM) 
and transmission-electron microscopic (TEM) imaging methods (Fig. 6). 
As illustrated in image (a), the spherical-shaped Fe3O4 and Cu2O NPs 
have been nicely distributed onto the guarana surfaces and formed a 
cluster-shaped nanocomposite. Moreover, the average size of the 
spherical NPs is obtained ~40 nm diameter that confirms the obtained 
results from XRD analysis (image b). TEM was used for better discern of 
Fe3O4 and Cu2O NPs (image c). As expected, some particles are rela-
tively darker than the others in TEM image that are attributed to the 

Fig. 6. (a,b) FESEM images, and (c) TEM image of the fabricated Cu2O/Fe3O4@guarana nanocomposite and size distribution diagram of metal oxide NPs.  
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Cu2O NPs due to more electron density of copper. 

3. Experimental section 

3.1. Materials and equipment 

All the used materials and equipment in this work have been listed in 
Table S1 (in the SI section). 

3.2. Methods 

3.2.1. Preparation of Cu2O/Fe3O4@guarana nanocomposite 
In a three-necked round-bottom flask (100 mL), 3.0 g of guarana was 

placed and well dissolved in deionized water (25 mL) via ultra-
sonication, at 50 ◦C. After resulting a relative homogen mixture, 
FeCl2⋅4H2O (0.3 g, 1.5 mmol) and FeCl3⋅6H2O (0.5 g, 1.84 mmol) were 
added to the flask and the content were vigorously stirred for 60 min, at 
the same temperature. After 60 min stirring, an orange opaque solution 
is obtained. Afterward, the atmosphere of the flask was neutralized by 
N2 gas and a solution of ammonia (10 mL, 1 M) was added drop by drop, 
during the stirring. The temperature was maintained at 50 ◦C during the 
addition of the ammonia. After completion of addition, the mixture were 
stirred for additional 2 h, at room temperature. Next, the reaction 
environment was neutralized by HCl (0.1 M) and CuCl2⋅2H2O (0.5 g, 
2.92 mmol) was added into the flask. During the stirring at room tem-
perature, ascorbic acid (1.13 mmol) was added. After 1 h stirring, the 
content was ultrasonicated in a cleaner bath (50 KHz, 150 W L− 1) for 10 
min, and the resulting product (Cu2O/Fe3O4@guarana) was magneti-
cally separated (by holding a magnet at the bottom of the flask) and 
washed for several times with deionized water and finally dried. 

3.2.2. General procedure for catalyzed synthesis of 2,4,5-triaryl-1H- 
imidazoles 

An integration of substituted 4-chlorobenzaldehyde (0.14 g, 1 
mmol), ammonium acetate (0.3 g, 4 mmol), benzyl (0.21 g, 1 mmol) and 
Cu2O/Fe3O4@guarana nanocatalyst (0.01 g) was ultrasonicated in a 
cleaner bath (50 KHz, 150 W L− 1) in ethanol (3.0 mL) for 20 min. The 
reaction progress was monitored by thin layer chromatography (TLC) 
and after completion of the reaction, the catalyst was magnetically 
separated and washed with deionized water and dried. Flash-column 
chromatography was applied for purification of the desired products. 

3.2.3. General procedure for catalyzed synthesis of 1,2,4,5-tetraryl-1H- 
imidazoles 

An integration of benzyl (1 mmol), 4-chlorobenzaldehyde (1 mmol), 
benzyl amine (1 mmol) ammonium acetate (4 mmol), and Cu2O/ 
Fe3O4@guarana nanocatalyst (0.01 g) was ultrasonicated in a cleaner 
bath (50 KHz, 150 W L− 1) in ethanol (3.0 mL) for 20 min. The reaction 
progress was monitored by thin layer chromatography (TLC) (elusion 
solvent: ethyl acetate/n-hexane 1:3). After completion of the reaction, 
the catalyst was magnetically separated and washed with deionized 
water and dried. Anti-solvent technique and in many cases flash-column 
chromatography was applied for purification of the desired products. 

3.2.4. Spectral data for selected compounds 
2-(4-Hydroxyphenyl)-4,5-diphenyl-1H-imidazole 6. MP: 257–259 ◦C; 

13C NMR (75 MHz, CDCl3): δC (ppm); 170.5, 154.4, 135.0, 133.0, 132.0, 
129.9, 129.8, 129.1, 128.8, 128.7, 128.6, 128.5, 128.2, 127.6, 126.5, 
125.1; 1H NMR (300 MHz, CDCl3): δH (ppm); 9.72 (s, 1H), 8.00–7.25 (m, 
14H), 4.44 (s, 1H). 

2,4,5-Triphenyl-1H-imidazole 11. Mp: 275–277 ◦C; 1H NMR (300 
MHz, DMSO‑d6): δH (ppm); 11.27 (s, 1H,), 8.10 (d, 2H), 8.11 (d, 2H), 
8.00–7.30 (m, 13H). 

1-Benzyl-2-(4-cholorophenyl)-4,5-diphenyl-1H-imidazole 18. MP: 
160–163 ◦C; 13C NMR (75 MHz, CDCl3): δ (ppm) = 146.8, 138.0, 135.3, 
134.5, 131.7, 131.5, 131.3, 131.0, 130.5, 129.8, 129.5, 129.0, 128.1, 

127.2, 127.0, 126.5, 48.7; 1HNMR (300 MHz, CDCl3): δ (ppm) = 7.80 (d, 
2H), 7.42–7.40 (m, 3H), 7.29–7.30 (m, 2H), 7.20–7.13 (m, 6H), 6.76 (d, 
2H), 5.20 (s, 2H). 

1-Benzyl-2-(3-methoxyphenyl)-4,5-diphenyl-1H-imidazole 21. MP: 
129–130 ◦C; 13CNMR (75 MHz, CDCl3): δ (ppm) = 160, 147.8, 138.3, 
137.8, 135.4, 132.9, 131.7, 131.4, 131.2, 130.5, 129.8, 129.7, 129.4, 
128.9, 128.0, 127.1, 127.0, 126.5, 121.7, 115.6, 114.6, 55.9, 48.6, 41.1. 
1HNMR (300 MHz, CDCl3): δ (ppm) = 7.48–7.46 (m, 2H), 7.41–7.40 (m, 
3H), 7.32–7.30 (m, 3H), 7.21–7.20 (m, 5H), 7.19–7.15 (m, 3H), 
7.15–6.81 (m, 1H), 6.80 (d, 2H), 5.16 (d, 2H), 3.70 (s, 3H). 

3.3. Application of the Cu2O/Fe3O4@guarana nanocomposite for 
catalyzing three- and four-component synthesis reactions of imidazole 
derivatives 

3.3.1. Optimization of the catalytic conditions for synthesis of the three 
component imidazole 

In order to determine the best reaction conditions (solvent, tem-
perature, and catalytic ratio of Cu2O/Fe3O4@guarana), a model reaction 
was carried out using 4-chlorobenzaldehyde (1.0 mmol), benzyl (1.0 
mmol), and ammonium acetate (2.0 mmol) in various solvents and 
different temperatures. Also, different amounts of the catalytic system 
were applied. A comparison was made between the performances of the 
Cu2O/Fe3O4@guarana nanocomposite and the individual components 
as well. Table 1 summarize the obtained results from the optimization 
section. 

3.3.2. Synthesis of the various derivatives of three component imidazole, 
under optimum catalytic conditions 

After optimization of the reaction conditions, various derivatives of 
three component imidazole were constructed by using various de-
rivatives of benzaldehyde, in the presence of Cu2O/Fe3O4@guarana 
nanocomposite. Thin-layer chromatography (TLC) was used to monitor 
the reaction progress. After completion of the reactions, the magnetic 
heterogeneous nanocatalyst were removed through holding an external 
magnet at the bottom of the reaction flask. The, flash-column chroma-
tography was applied for further purification of the resulted products. 

Table 1 
Optimization of the reaction condition for the synthesis of 2-(4-chlorophenyl)- 
4,5-diphenyl-1H-imidazole.  

Entry Cat. system Cat. 
weight 
(g) 

Solvent Temp. 
(◦C) 

Time 
(min) 

Yielda 

(%) 

1 Fe3O4 0.01 EtOH 25 20 35 
2 Guarana 0.01 EtOH 25 20 53 
3 Fe3O4@guarana 0.01 EtOH 25 20 74 
4 Cu2O/ 

Fe3O4@guarana 
0.005 EtOH 25 20 83 

5 Cu2O/ 
Fe3O4@guarana 

0.01b EtOH 25 20 97* 

6 Cu2O/ 
Fe3O4@guarana 

0.02 EtOH 25 20 97 

7 Cu2O/ 
Fe3O4@guarana 

0.01 THF 25 20 92 

8 Cu2O/ 
Fe3O4@guarana 

0.01 DMF 25 20 95 

9 Cu2O/ 
Fe3O4@guarana 

0.01 Water 25 20 88 

10 Cu2O/ 
Fe3O4@guarana 

0.01 EtOH 50 20 97 

11 Cu2O/ 
Fe3O4@guarana 

0.01 EtOH 70 20 97  

a Isolated yield. 
b Based on the EDX data, 1.4 mol% of Cu is used in the catalyzed reactions (see 

the SI file, page S13). 
* Optimum conditions. All reactions were carried out in an ultrasound cleaner 

bath (50 KHz, 150 W L− 1). 4-Chlorobenzaldehyde (1.0 mmol), benzyl (1.0 
mmol), and ammonium acetate (2.0 mmol) were used in 3.0 mL of solvent. 
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Table 2 
Synthesis of various derivatives of 2,4,5-triaryl-1H-imidazoles in the presence of Cu2O/Fe3O4@guarana nanocomposite.  

Entry Product structure Product No. Yielda (%) MP (◦C) Lit. ref. 

Found Lit. 

1 1 89 264–266 265–266 [34] 

2 2 86 230–231 230–231 [35] 

3 3 85 199–201 200–201 [36] 

4 4 87 259–260 258–260 [37] 

5 5 81 298–299 296–299 [38] 

6 6 83 257–259 257–258 [36] 

7 7 87 197–199 196–198 [39] 

8 8 75 229–231 230–231 [34] 

9 9 88 229–231 230–231 [35] 

10 10 97 258–260 259–262 [40] 

(continued on next page) 
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Melting points of the obtained products were precisely compared with 
the literature. Some of them were also selected for more identification 
by 1HNMR and 13CNMR spectroscopy. However, Table 2 marks the 
synthesized imidazole products under optimal catalytic conditions, with 
more details. 

3.3.3. Optimization of the catalytic conditions for the synthesis of the four 
component imidazole 

In order to extend the catalytic scope of the magnetic nanocatalyst, 
synthesis of the four component imidazole derivatives, with different 
parameters including temperature, solvent and amount of nanocatalyst 
was evaluated to determine the optimized reaction condition (Table 3, 
entries 1–11). For this purpose, a reaction mixture consists of benzyl (1 
mmol), 4-chlorobenzaldehyde (1 mmol), benzyl amine (1 mmol) 
ammonium acetate (4 mmol) was considered as a model reaction. As 
shown in Table 3, entry 4–6 various amounts of catalyst loading are 
investigated and the 0.02 g was the highest yield percentage of the 
product. Also, increasing temperature was effectless to the yield of the 
reaction and the 25 ◦C was the best chosen (Table 3, entries 10 and 11). 
Furthermore, it was found that ethanol solvent is the best solvent in 
yield percentage of the product (Table 3, entries 7–9). 

3.3.4. Synthesis of the various derivatives of 1,2,4,5-tetraryl-1H-imidazoles 
under optimum catalytic conditions 

Having the optimized conditions, with purpose study performance of 
the Cu2O/Fe3O4@guarana nanocomposite in the 1,2,4,5-tetraryl-1H- 
imidazoles reactions various derivatives as electron withdrawing and 
electron releasing was investigated. As be seen in Table 4, electron- 
withdrawing derivatives better than electron releasing derivatives con-
verted to the desired product. 

3.3.5. Comparison of the catalytic performance of Cu2O/Fe3O4@guarana 
nanocomposite in the 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraryl-1H- 
imidazoles reactions with previously reported systems 

A brief survey on recently reported catalytic systems, which have 
been applied for the synthesis of the imidazole derivatives, was also 
done to highlight the efficiency of the fabricated Cu2O/Fe3O4@guarana 
catalytic system. As seen in Table 5, higher reaction yield was obtained 
in shorter reaction time, for 2-(4-chlorophenyl)-4,5-diphenyl-1H- 

Table 2 (continued ) 

Entry Product structure Product No. Yielda (%) MP (◦C) Lit. ref. 

Found Lit. 

11 11 85 275–277 273–275 [37] 

12 12 80 210–211 210–212 [41] 

13 13 84 266 264–265 [34]  

a Isolated Yield. 

Table 3 
Optimization of the reaction condition for the synthesis of 1-benzyl-2-(4-chlor-
ophenyl)-4,5-diphenyl-1H-imidazole.  

Entry Cat. system Cat. 
weight 
(g) 

Solvent Temp. 
(◦C) 

Time 
(min) 

Yielda 

(%) 

1 Fe3O4 0.02 EtOH 25 20 28 
2 Guarana 0.02 EtOH 25 20 39 
3 Fe3O4@guarana 0.02 EtOH 25 20 70 
4 Cu2O/ 

Fe3O4@guarana 
0.01 EtOH 25 20 83 

5 Cu2O/ 
Fe3O4@guarana 

0.02 EtOH 25 20 95* 

6 Cu2O/ 
Fe3O4@guarana 

0.03 EtOH 25 20 95 

7 Cu2O/ 
Fe3O4@guarana 

0.02 THF 25 20 90 

8 Cu2O/ 
Fe3O4@guarana 

0.02 DMF 25 20 93 

9 Cu2O/ 
Fe3O4@guarana 

0.02 Water 25 20 88 

10 Cu2O/ 
Fe3O4@guarana 

0.02 EtOH 50 20 95 

11 Cu2O/ 
Fe3O4@guarana 

0.02 EtOH 70 20 95  

a Isolated yield. 
* Optimum conditions. All reactions were carried out in an ultrasound cleaner 

bath (50 KHz, 150 W L− 1). 4-Chlorobenzaldehyde (1.0 mmol), benzyl amine (1 
mmol), benzyl (1.0 mmol), and ammonium acetate (2.0 mmol) were used in 3.0 
mL of solvent. 
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Table 4 
Synthesis of various derivatives of 1,2,4,5-tetraryl-1H-imidazoles in the presence of Cu2O/Fe3O4@guarana nanocomposite.  

Entry Product structure Product No. Yielda (%) MP (◦C) Lit. ref. 

Found Lit. 

1 14 71 151–152 152–155 [42] 

2 15 81 163–165 165 [43] 

3 16 89 173–175 175–178 [44] 

4 17 87 163–164 163–165 [36] 

5 18 95 160–163 162–165 [42] 

6 19 88 144–148 146–148 [45] 

7 20 82 134–137 135–137 [36] 

8 21 86 129–130 129–131 [36] 

(continued on next page) 
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imidazole 10 and 1-benzyl-2-(4-chlorophenyl)-4,5-diphenyl-1H-imid-
azole 18, through using our catalytic system. In addition, it is clear that a 
milder reaction conditions was applied in this work. 

3.3.6. Suggested mechanism 
From mechanistic aspect, initially, the present Cu atoms in the 

structure of the catalyst activate the carbonyl group of aldehyde. Then, 
this activated form is converted to a diamine by ammonium acetate 
(stage 1 and 2). The benzyl groups is also activated by copper through 
the electronic interaction (stage 3) and reacts with the formed diamine, 
and a water molecule is removed (stage 4). During stage 5 the product is 
obtained and the catalytic system is separated and recycled [54,55]. A 
schematic of this plausible mechanism is illustrated in Fig. 7. 

3.3.7. Catalyst reusability 
The catalytic efficiency of the fabricated Cu2O/Fe3O4@guarana 

nanocomposite was monitored in the model reaction after six times 
recycling. For this aim, after run 1, the Cu2O/Fe3O4@guarana NPs were 
isolated from the reaction mixture and washed with ethanol for several 
times and reused for further running the process. In Fig. 8 it is observed 
that the nanocatalyst could be re-applied for additional five times 
without any considerable reduction in the catalytic performance. The 
FT-IR spectrum of the recovered nanocatalyst after six times usages has 
been shown in supporting information section (Fig. S9). From the TGA 
curve of the recovered catalyst (Fig. S10, in the SI file), it has been 
revealed that only 0.0092 mmol/g of guarana is lost after six times 
recycling, which confirms high stability of the prepared Cu2O/ 

Fe3O4@guarana nanocomposite. The TGA estimations related to the 
fresh and recovered catalyst have been given in the SI file, on page S12. 

4. Conclusions 

Following the extensive research on the novel heterogeneous cata-
lytic systems, we intended to prepare a nature-based hybrid nano-
composite with high magnetic property in nano scale and apply it in the 
organic synthesis reactions. In this regard, we chose “guarana” as a 
natural polymeric basis, which includes excellent biocompatibility. 
Fe3O4 and Cu2O NPs have been further well immobilized into this nat-
ural matrix to add well magnetic behavior and promising catalytic ef-
ficiency to this catalytic system, respectively. Afterward, the application 
of this catalyst was precisely investigated in multicomponent (three- and 
four-component) synthesis reactions of imidazole derivatives. Concisely, 
it has been well shown that pure products with high reaction yields (97% 
and 95%) are obtained in a short reaction time (20 min) through 
applying this catalytic system under ultrasound wave irradiation with a 
specific frequency and power density. In summary, all of the distin-
guished properties of our novel designed product (Cu2O/Fe3O4@guar-
ana nanocomposite) such as high heterogeneity, excellent magnetic 
behavior, nano scale and cluster-shaped morphology, great thermal 
stability, well composition, and etc. have been studied by various 
analytical methods. Moreover, noticeable recyclability of this catalyst 
has been studied in this report. As well the characterization of the 
imidazole products have been done by 1HNMR and 13CNMR 
spectroscopy. 

Table 4 (continued ) 

Entry Product structure Product No. Yielda (%) MP (◦C) Lit. ref. 

Found Lit. 

9 22 83 138–141 140–142 [45]  

a Isolated Yield. 

Table 5 
Comparison of the different catalytic systems applied for the synthesis of 2-(4-chlorophenyl)-4,5-diphenyl-1H-imidazole (10) and 1-benzyl-2-(4-chlorophenyl)-4,5- 
diphenyl-1H-imidazole (18).  

Entry Cat. System 
Three component Four component 

Conditions Time (min) Yield (%) Ref. 

1 Yb(OPf)3 – Perflurodecalin/80 ◦C 360 83 [46] 
2 Montmorilonite K10 – EtOH/reflux 95 75 [47] 
3 SBSSAa – Solvent free/130 ◦C 30 90 [48] 
4 DBSAb – H2O/reflux 240 75 [49] 
5 – 4-(1-Imidazolium) butane sulfonate Solvent free/80 ◦C 300 78 [50] 
6 – Acetic acid EtOH/reflux 180 69 [51] 
7 – [bmim]3[GdCl6] Solvent free/120 ◦C 120 94 [52] 
8 – OAc-HPro@Fe3O4 EtOH/60 ◦C 420 80 [53] 
9 Cu2O/Fe3O4@guarana Cu2O/Fe3O4@guarana EtOH/ultrasonic/r.t. 20 97 –  

a Silica-bonded S-Sulfonic Acid. 
b Dodecylbenzenesulfonic acid. 
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