

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 40 (2005) 1156-1162

www.elsevier.com/locate/ejmech

Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones

Short Communication

Shaukath A. Khanum^a, Sheena Shashikanth^{b,*}, S. Umesha^c, R. Kavitha^c

^a Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India

^b Department of Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

^c Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India

Received 3 May 2004; received in revised form 17 March 2005; accepted 12 April 2005

Available online 01 June 2005

Abstract

The triazolothiadiazine analogues **6a–e** were obtained via a multistep synthesis sequences beginning with the hydroxybenzophenones **1a–e**. Hydroxybenzophenones on reaction with ethyl chloroacetate affords ethyl (2-aroylaryloxy)acetates **2a–e** which on treatment with hydrazine hydrate yields 2-(2-aroylaryloxy)acetohydrazides **3a–e**. Intramolecular cyclization of **3a–e** with carbon disulfide affords 5-(2-aroylaryloxy)methyl-1,3,4-oxadiazole-2-(3H)thiones **4a–e**, which on treatment with hydrazine hydrate yields 4-amino-5-(2-aroyl aryloxy)methyl-1,2,4-triazole-3-(2H)thiones **5a–e**. Condensation of **5a–e** with α -halocarbonyl compound results in 3-(2-aroylaryloxy)methyl-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4] thiadiazine **6a–e** analogues. The compounds **4a–e**, **5a–e** and **6a–e** were tested against variety of fungal and bacterial strains in comparison to fluconazole and chloramphenicol, respectively. © 2005 Elsevier SAS. All rights reserved.

Keywords: 1,3,4-Oxadiazole-2-(3H)thiones; 1,2,4-Triazole-3-(2H)thiones; 1,2,4-Triazolo thiadiazines; Synthesis; Antimicrobial activity

1. Introduction

Over the past several years the emergence of organisms resistant to nearly all the class of antimicrobial agents has become a serious public health concern [1,2]. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs, which are utilized as therapeutic agents. [3].

Since past two decades there has been significant increase in the frequency of systematic fungal infection in man. The first orally active antifungal agent that was effective against a broad array of systematic and superficial fungal infections was ketoconazole [4]. Further a number of azole antifungal agents viz., itraconazole [5], fluconazole [6], voriconazole [7], ravuconazole [8] etc., and glucan synthesis inhibitor caspofungin [9] have been introduced to the clinic. Antibiotics are one of our most important weapons in fighting bacterial infections and have greatly benefited the health-related quality of human life since their introduction. However, over the past few decades these health benefits are under threat as many

E-mail address: shashi56_2000@yahoo.com (S. Shashikanth).

commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to emergence of drug resistant bacteria. It is essential to investigate newer drugs with lesser resistance [10].

During the past years extensive evidences have been accumulated to establish the efficiency of benzophenone analogues as antimicrobial agent [11-14]. Benzophenone analogue (garcinol) has been isolated from the stem bark of Garcinia huillensis grown in Zaire and used in central-African traditional medicine and this has been shown to exhibit chemotherapeutical activity against gram-positive and gram-negative *cocci*, mycobacteria and fungi [15]. Recently Selvi et al have shown antifungal activity of benzophenone analogues, at its lower concentration [16]. Besides chloro substituted benzophenones have exhibited more antifungal activity [17]. Moreover, a large number of oxadiazoles [18,19], triazoles [20] and triazolothiadiazines [21] have been shown to exhibit significant antimicrobial activity against S. aureus, C. albicans, C. krusei, C. parapsilosis, T. paradoxa, E. Coli, B. subtilis and P. aeruginosa. These initial reports, thereafter stimulated us to integrate 1,3,4-oxadiazole-2-(3H)thione and

^{*} Corresponding author. Tel.: +91 821 254 7279.

^{0223-5234/}\$ - see front matter © 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.ejmech.2005.04.005

triazolothiadiazine moieties in benzophenone framework, since these systems possess well documented antimicrobial activity.

2. Chemistry

The synthesis of the hitherto unreported title compounds is as outlined in Scheme 1 in 70% yield. Hydroxybenzophenones **1a–e** on reaction with ethyl chloroacetate affords ethyl (2-aroylaryloxy)acetates **2a–e** in excellent yield [22–25], which on treatment with hydrazine hydrate yields corresponding 2-(2-aroylaryloxy)acetohydrazides **3a–e** [24,25]. Intramolecular cyclization of **3a–e** with carbon disulfide resulted 5-(2aroylaryloxy)methyl-1,3,4-oxadiazole-2-(3H)thiones **4a–e** [19,26]. Compounds **4a–e** were further treated with hydrazine hydrate to obtain compounds 4-amino-5-(2-aroylaryloxy)methyl-1,2,4-triazole-3-(2H)thiones **5a–e** [23,25]. The preparations of novel 3-(2-aroylaryloxy)methyl-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4] thiadiazine **6a–e** were achieved from **5a–e** with phenacyl bromide [21].

3. Results and discussion

The structures of the compounds were elucidated by IR, NMR and microanalyses. The IR spectra of 2-(2-aroyla-ryloxy)acetohydrazides **3a–e** have amide C=O and NH₂ stretching bands at 1655–1670 and 3110-3223 cm⁻¹, respec-

tively. The disappearance of amide C=O and NH₂ stretching bands of 3a-e and detection of strong C-O-C, C=S, and C=N stretching bands at about 1130-1137, 1235-1245 and 1610-1647 cm⁻¹, respectively, are evidences for ring closure of 1,3,4-oxadiazoles-2(3H) thiones 4a-e. The disappearance of C–O–C stretching bands of 4a–e and detection of strong NH₂ bands at 3400–3412 cm⁻¹ are evidences for conversion of 4a-e to 4-amino-5-(2-aroylaryloxy)methyl-1,2,4-triazole-3-(2H)thiones 5a-e. Similarly disappearance of NH₂ stretching bands of 5a-e and detection of strong C-S-C bands at 750–760 cm⁻¹ are evidences for conversion of **5a–e** to triazolothiadiazine analogues **6a–e.** In ¹H NMR spectra, all protons were seen according to the expected chemical shift and integral values. Aromatic methyl, phenoxymethyl and aromatic ring protons were seen at 2.0-2.32, 4.42-4.85 and 6.65-7.8 ppm. The NH protons of 4a-e and 5a-e were seen at about 9.0-9.15 ppm, respectively, and the NH₂ protons of **5a-e** were seen at 3.7–3.73 ppm. The S-CH₂ protons of **6a–e** were seen at 3.2-3.23 ppm. The results of microanalyses were within \pm 0.4% error.

The antimicrobial activities of compounds 4a-e, 5a-e and **6a–e** were evaluated in vitro against some fungi such as C. albicans, C. krusei, C. parapsilosis, A. flavus, A. ochraceous, F. moniliforme and C. gloeosporioides. Bacteria such as E. coli, P. solanacearum, P. fluorescens and B. subtilis were evaluated by serial tube dilution technique and the results are summarized in Tables 1 and 2. The antifungal screening results have shown that the halo substituted compounds 4a, 4b, 5a, 5b, 5c, 6a, 6b and 6c exhibit in general growth inhibitory activity more relevant than that of the reference fluconazole against F. moniliforme and C. gloeosporioides. It is worth noting that when chloro group is at meta position in ring B as in compounds 4a and 6a have shown more activity than fluconazole against A. ochraceous. Besides, when chloro group is at para position in ring A as in compounds 4b, 5b and 6b and at meta position in ring B as in compounds 4a, 5a and 6a, also when bromo group is at meta position in ring A as in compounds 5c and 6c, have shown more activity compared to fluconazole against F. moniliforme. Nevertheless, with A. flavus only bromo and chloro substituted compounds 5c and **6b**, respectively, have exhibited more activity than fluconazole. This is an example, which shows how the biological properties are influenced by even minor structural modifications. With C. albicans chloro substituted compound 5b and with C. krusei chloro compounds 5a, 5b and 6b have shown more activity compared to fluconazole. Correspondingly, with C. gloeosporioides chloro compounds 4a, 4b, 5a, 5b, 6a, and 6b, bromo compounds 5c and 6c and methyl substituted compounds 5e and 6e have shown more activity compared to standard drug. On the contrary, with C. parapsilosis all compounds have shown less antifungal activity compared to fluconazole.

In case of antibacterial activity with few exceptional cases all the compounds have shown higher activity compared to chloramphenicol against *E. coli*, *P. solanacearum*, *P. fluorescens* and *B. subtilis*. It is worth noting that compound **5e**

Table 1	
The minimum inhibitory concentration (MIC) ^a	of 4a–e , 5a–e and 6a–e for antifungal activit

Compounds	Tested fungi (MIC in mM)						
	C. albicans	C. krusei	C. parapsilosis	A. flavus	A. ochraceous	F. moniliforme	C. gloeosporioides
4a	7.0	6.0	11.5	12.0	1.0	4.5	2.5
4b	6.0	5.5	9.5	6.5	10.0	1.5	1.0
4c	3.0	7.0	9.5	8.0	6.5	8.5	9.5
4d	8.0	8.0	11.0	9.0	4.0	11.5	10.0
4e	12.0	12.0	11.5	7.5	3.5	8.5	6.5
5a	3.0	4.0	6.0	7.5	10.5	2.0	1.5
5b	2.5	3.0	5.0	11.0	11.0	4.0	2.0
5c	4.0	5.5	8.0	1.0	12.0	5.0	3.0
5d	7.0	5.0	9.5	2.0	6.5	8.0	6.5
5e	10.5	10.5	5.5	6.0	5.0	6.0	6.0
6a	3.0	5.0	11.5	9.0	1.0	4.5	2.5
6b	3.0	4.5	9.0	1.0	7.0	1.0	1.5
6c	5.5	5.5	8.5	10.0	7.5	5.5	3.5
6d	8.0	6.5	8.0	7.0	12.0	11.0	12.0
6e	11.5	5.5	11.5	6.5	9.5	6.5	3.0
Fluconazole	3.0	5.0	2.5	2.0	2.0	6.0	6.5

^a Average of at least three determinations.

Table 2

The MIC ^a	of An a	50 0 00	160 0	for	antibactorial	activity	
	of 4a–e,	sa-e an	u oa-e	101.9	antibacteriai	activity	

Compounds	Tested bacteria (MIC in mM)				
	E. coli	P. solanacearum	P. fluorescens	B. subtilis	
4a	2.0	12.0	8.0	2.5	
4b	4.5	2.5	2.0	1.5	
4c	3.0	5.5	5.5	4.5	
4d	4.0	3.5	6.0	6.5	
4e	5.0	4.0	6.5	5.5	
5a	6.0	2.5	2.5	0.5	
5b	3.0	7.5	1.5	2.5	
5c	0.5	6.5	11.5	11.0	
5d	4.5	3.0	3.5	0.5	
5e	11.5	12.0	1.0	8.0	
6a	0.5	4.0	1.0	3.0	
6b	2.5	1.0	8.0	3.0	
6c	5.5	11.0	3.5	4.0	
6d	4.0	3.5	3.5	1.0	
6e	2.0	1.0	1.0	3.5	
Chloramphenicol	10.5	7.0	10.0	5.0	

^a Average of at least three determinations.

with two methyl groups at para position in ring A and B has shown lesser activity compared to other substituents against *Escherichia coli*. Whereas chloro substituted compounds **4a** and **5b**, bromo substituted compound **6c** and methyl substituted compound **5e**, exhibit lesser activity compared to other compounds against *P. solanacearum*. Nevertheless with *P. fluorescens* strain bromo compound **5c** has shown lesser activity. Besides with *B. subtilis* compounds with two methyl groups **4e** and **5e**, with methyl and methoxy groups **4d** and with bromo group **5c** have shown lesser activity compared to the other compounds. In general these compounds are found to possess more antibacterial activity than antifungal activity.

4. Conclusion

In conclusion our study shows a strong evidence for the antimicrobial activity of halo substituted 1,3,4-oxadiazole-2-

(3H)thiones, 1,2,4-triazole-3-thiones and triazolothiadiazines linked benzophenones. It is interesting and significant to note from the antifungal data in Table 1 that one or the other chloro substituted compounds exhibit in general growth inhibitory activity more relevant than that of the reference compound against the strains. Besides, compounds with methyl and methoxy groups in ring A and B, respectively, in general exhibited lower growth inhibitory activity when compared to reference compound against all the strains. It is interesting to note from the antibacterial data in Table 2 that all the compounds have shown higher activity compared to reference compound against all the strains with few exceptional cases. In general, compound 5e with two methyl groups in ring A and B has exhibit lower growth inhibitory activity compared to reference compound against all the strains except with P. fluorescens. One can conclude that these compounds posses more antibacterial activity than antifungal activity. In retrospect, there exists a bright prospect for the discovery of many a new drug for the treatment of antibacterial and antifungal activity.

5. Experimental

5.1. Chemistry

TLC was performed on aluminum-backed silica plated with visualization by UV-light. IR spectra were determined with a FT IR Shimadzu 8300 spectrophotometer using a potassium bromide wafer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 300 and 100 MHz, respectively. Chemical shifts are in ppm relative to internal TMS. Melting points were determined on a Thomas Hoover capillary melting point apparatus with a digital thermometer.

5.1.1. Synthesis of ethyl [2-(3-chlorobenzoyl)-4methylphenoxy]acetate (**2a**)

A mixture of **1a** (5 g, 0.02 mol), ethyl chloroacetate (2.4 g, 0.02 mol) in dry acetone (60 ml) and anhydrous potassium carbonate (2.8 g, 0.02 mol) was refluxed for 8 h then cooled and the solvent removed under reduced pressure. The residual mass was triturated with ice water to remove potassium carbonate and extracted with ether (3×50 ml) and the ether layer was washed with 10% sodium hydroxide solution (3×30 ml) followed by water (3×30 ml) and then dried over anhydrous sodium sulfate and evaporated to dryness to get crude solid, which on recrystallization with ethanol gave **2a** (5.39 g, 80%) as white flakes.

2a: M.p. 60–62 °C; IR (KBr): 1670 (C=O), 1735 cm⁻¹ (ester, C=O); ¹H NMR (CDCl₃): δ 1.2 (t, J = 7 Hz, 3H, CH₃ of ester), 2.3 (s, 3H, CH₃), 4.2 (q, J = 6 Hz, 2H, CH₂ of ester), 4.45 (s, 2H, CH₂), 7.2–7.6 (m, 7H, Ar-H); ¹³C NMR (CDCl₃): δ 13.6 (q), 20.9 (q), 59.5 (t), 75.6 (t), 113.7 (d), 123.3 (s), 128.2 (d), 129.61 (d), 129.7 (s), 130.5 (d), 131.8 (d), 132.6 (d), 133.5 (s), 139.2 (s). 133.9 (d), 160.6 (s), 171.0 (s), 187.0 (s). Anal. Calcd. for C₁₈H₁₇O₄Cl (332.5): C, 64.96; H, 5.11; Cl, 10.67. Found: C, 64.94; H, 5.07; Cl, 10.64%.

2b: Oily product[23]; IR (KBr): 1672 (C=O), 1738 cm⁻¹ (ester, C=O); ¹H NMR (CDCl₃): δ 1.21 (t, *J* = 7 Hz, 3H, CH₃ of ester), 4.23 (q, *J* = 6 Hz, 2H, CH₂ of ester), 4.5 (s, 2H, CH₂), 7.2–7.75 (m, 8H, Ar-H); ¹³C NMR (CDCl₃): δ 13.62 (q), 59.52 (t), 75.61 (t), 115.2 (d), 124.8 (s), 125.8 (s), 128.22 (d), 130.1 (d), 131.5 (d), 132.21 (d), 133.6 (d), 137.8 (s), 161.7 (s), 171.8 (s), 187.03 (s). Anal. Calcd. for C₁₇H₁₅ClO₄ (318.5): C, 64.05; H, 4.70; Cl, 11.14. Found: C, 64.02; H, 4.67; Cl, 11.11%.

2c: M.p. 69–71 °C; IR (KBr): 1672 (C=O), 1736 cm⁻¹ (ester, C=O); ¹H NMR (CDCl₃): δ 1.2 (t, *J* = 7 Hz, 3H, CH₃ of ester), 4.22 (q, *J* = 6 Hz, 2H, CH₂ of ester), 4.45 (s, 2H, CH₂), 7.22–7.8 (m, 8H, Ar-H); ¹³C NMR (CDCl₃): δ 13.61 (q), 59.51 (t), 75.61 (t), 117.1 (d), 122.4(s), 123.8 (d), 127.8 (s), 128.21 (d), 130.1 (d), 132.2 (d), 133.3 (d), 137.8 (s), 165.8 (s), 171.0 (s), 187.03 (s). Anal. Calcd. for C₁₇H₁₅BrO₄ (363): C, 56.19; H, 4.13; Br, 22.03. Found: C, 56.17; H, 4.10; Br, 22.0%.

2d: M.p. 58–60 °C; IR (KBr): 1660 (C=O), 1730 cm⁻¹ (ester, C=O); ¹H NMR (CDCl₃): δ 1.2 (t, *J* = 7 Hz, 3H, CH₃) of ester), 2.25 (s, 3H, CH₃), 3.8 (s, 3H, OCH₃), 4.2 (q, *J* = 6 Hz, 2H, CH₂ of ester), 4.42 (s, 2H, CH₂), 7.0–7.6 (m, 7H, Ar-H); ¹³C NMR (CDCl₃): δ 13.63 (q), 20.92 (q), 56.0 (q), 59.53 (t), 75.6 (t), 113.71 (d), 113.8 (d), 123.32 (s), 129.7 (s), 130.1 (s), 131.1 (d), 131.81 (d), 133.91 (d), 160.62 (s), 165.7 (s), 171.02 (s), 187.04 (s). Anal. Calcd. for C₁₉H₂₀O₅ (328): C, 69.51; H, 6.09. Found: C, 69.49; H, 6.05%.

2e: M.p. 57–59 °C IR (KBr): 1740 (ester, C=O), 1665 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 1.2 (t, J = 7 Hz, 3H, CH₃ of ester), 2.3–2.35 (d, J = 7 Hz, 6H, 2Ar-CH₃), 4.25 (q, J = 6 Hz, 2H, CH₂ of ester), 4.45 (s, 2H, OCH₂), 7.2–7.8 (bm, 7H, Ar-H); ¹³C NMR (CDCl₃): δ 13.61 (q), 20.92 (q), 59.51 (t), 75.61 (t), 113.71 (d), 123.31 (s), 128.9 (d), 129.7 (s), 130.0 (d), 131.8 (d), 133.9 (d), 134.8 (s), 141.4 (s), 160.61 (s),

171.01 (s), 187.02 (s). Anal. Calcd. for: $C_{19}H_{20}O_4$: C, 73.07; H, 6.41. Found: C, 73.04; H, 6.38%.

5.1.2. Synthesis of 2-[2-(3-chlorobenzoyl)-4-methylphenoxy]acetohydrazide (**3a**)

To 2a (2 g, 6 mmol) in methanol (10 ml), 80% hydrazine hydrate (0.3 g, 6 mmol) was added in drops and stirred for 1 h at room temperature. A white solid separated, which on recrystallization with ethanol gave 3a (1.43 g, 75%) as white needles.

3a: M.p. 177–180 °C; IR (KBr): 1620 (C=O), 1655 (amide, C=O), 3110–3215 cm⁻¹ (NH–NH₂); ¹H NMR (CDCl₃): δ 2.3 (s, 3H, CH₃), 3.7 (bs, 2H, NH₂), 4.5 (s, 2H, CH₂), 7.1–7.6 (m, 7H, Ar-H), 9.25 (bs, 1H, CONH); ¹³C NMR (CDCl₃): δ 20.91 (q), 78.0 (t), 113.7 (d), 123.3 (s), 128.21 (d), 129.62 (d), 129.7 (s), 130.5 (d), 131.8 (d), 132.6 (d), 133.51 (s), 133.9 (d), 139.2 (d), 160.6 (s), 170.3 (s), 187.0 (s). Anal. Calcd. for C₁₆H₁₅ClN₂O₃ (318.5): C, 60.28; H, 4.70; Cl, 11.14; N, 8.79. Found: C, 60.24; H, 4.67; Cl, 11.10; N, 8.75%.

3b: M.p. 181–183 °C; IR (KBr): 1630 (C=O), 1668 (amide, C=O), 3120–3223 cm⁻¹ (NH–NH₂); ¹H NMR (CDCl₃): δ 3.72 (bs, 2H, NH₂), 4.55 (s, 2H, CH₂), 7.15–7.75 (m, 8H, Ar-H), 9.35 (bs, 1H, CONH); ¹³C NMR (CDCl₃): δ 78.01 (t), 115.2 (d), 124.8 (s), 125.8 (s), 128.21 (d), 130.1 (d), 131.51 (d), 132.62 (d), 133.61 (d), 137.81 (s), 161.7 (s), 170.31 (s), 187.03 (s). Anal. Cal. for C₁₅H₁₃ClN₂O₃ (304.5): C, 59.11; H, 4.26; Cl, 11.65; N, 9.19. Found: C, 59.12; H, 4.24; Cl, 11.67; N, 9.17%.

3c: M.p. 182–185 °C; IR (KBr): 1625 (C=O), 1670 (amide, C=O), 3115–3220 cm⁻¹ (NH–NH₂); ¹H NMR (CDCl₃): δ 3.72 (bs, 2H, NH₂), 4.53 (s, 2H, CH₂), 7.15–7.76 (m, 8H, Ar-H), 9.35 (bs, 1H, CONH); ¹³C NMR (CDCl₃): δ 78.01 (t), 117.1 (d), 122.4 (s), 123.8 (d), 127.8 (s), 128.2 (d), 130.1 (d), 132.2 (d), 133.3 (d), 137.8 (s), 165.8 (s), 170.3 (s), 187.03 (s). Anal. Cal. for C₁₅H₁₃BrN₂O₃(349): C, 51.57; H, 3.72; Br, 23.92; N, 8.02. Found: C, 51.54; H, 3.70; Br, 23.89; N, 8.0%.

3d: M.p. 175–177 °C; IR (KBr): 1610 (C=O), 1645 (amide, C=O), 3100–3205 cm⁻¹ (NH–NH₂); ¹H NMR (CDCl₃): δ 2.2 (s, 3H, CH₃), 3.5 (bs, 2H, NH₂), 3.9 (s, 3H, OCH₃), 4.55 (s, 2H, CH₂), 7.2–7.9 (m, 7H, Ar-H), 9.4 (bs, 1H, CONH); ¹³C NMR (CDCl₃): δ 20.92 (q), 56.0 (q), 78.02 (t), 113.72 (d), 113.82 (d), 129.6 (d), 129.72 (s), 130.1 (s), 131.1 (d), 131.8 (d), 133.9 (d), 160.62 (s), 165.7 (s), 170.3 (s), 187.04 (s). Anal. Cal. for C₁₇H₁₈N₂O₄(314): C, 64.96; H, 5.73; N, 8.91. Found: C, 64.94; H, 5.70; N, 8.89%.

3e: M.p. 182–85 °C; IR (KBr): 1630 (C=O), 1670 (amide, C=O), 3120–3220 cm⁻¹ (NH–NH₂); ¹H NMR (CDCl₃): δ 2.2–2.3 (d, J = 7 Hz, 6H, 2CH₃), 3.55 (bs, 2H, NH₂), 4.6 (s, 2H, CH₂), 7.2–7.8 (m, 7H, Ar-H), 9.35 (bs, 1H, CONH); ¹³C NMR (CDCl₃): δ 20.91 (q), 78.01 (t), 113.71 (d), 123.3 (s), 128.9 (d), 129.7 (s), 130.0 (d), 131.8 (d), 133.9 (d), 134.8 (s), 141.4 (s), 160.61 (s), 170.31 (s), 187.01 (s). Anal. Cal. for C₁₇H₁₈N₂O₃: C, 68.41; H, 6.0; N, 9.35. Found: C, 68.45; H, 6.04; N, 9.39%.

5.1.3. Synthesis of 5-[2-(3-chlorobenzoyl)-4-methyl-phenoxymethyl] 1,3,4-oxadiazole-2- (3H)thione (4a)

To a 0 °C solution of 3a (1 g, 3.13 mmol) and carbon disulfide (0.47 g, 6.27 mmol) in absolute ethanol (15 ml), potassium hydroxide (0.20 g, 3.13 mmol) was added in one portion. The resulting mixture was stirred and refluxed for 8 h. The solvent was removed in vacuo and the residue was acidified with 2 M hydrochloric acid and extracted with ethyl acetate (2 × 20 ml). Organic layers were washed with water and dried with anhydrous sodium sulfate. Filtration and concentration in vacuo gave a solid, which was recrystallized from ethanol to give 4a (0.75 g, 72%) as yellow solid.

4a: M.p. 112–114 °C; IR (KBr): 1130 (C–O–C linkage), 1235 (C=S), 1610 (C=N), 1640 (C=O), 3310 cm⁻¹ (N–H); 1H NMR (CDCl₃): δ 2.31 (s, 3H, CH₃), 4.51 (s, 2H, CH₂), 6.8–7.5 (m, 7H, Ar-H), 9.0 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 20.91 (q), 78.02 (t), 113.7 (d), 123.3 (s), 128.21 (d), 129.62 (d), 129.7 (s), 130.5 (d), 131.8 (d), 132.6 (d), 133.51 (s), 133.9 (d), 139.2 (s), 155.01 (s), 157.0 (s), 160.6 (s), 187.0 (s). Anal. Calcd. for C₁₇H₁₃ClN₂O₃S (360.5): C, 56.59; H, 3.63; Cl, 9.83; N, 7.76; S, 8.89. Found: C, 56.57; H, 3.65; Cl, 9.85; N, 7.78; S, 8.88%.

4b: M.p. 117–119 °C; IR (KBr): 1133 (C–O–C linkage), 1238 (C=S), 1612 (C=N), 1643 (C=O), 3315 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 4.53 (s, 2H, CH₂), 6.95–7.7 (m, 8H, Ar-H), 9.1 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 78.03 (t), 115.2 (d), 124.8 (s), 125.8 (s), 128.2 (d), 130.1 (d), 131.5 (d), 132.2 (d), 133.6 (d), 137.8 (s), 155.02 (s), 157.02 (s), 161.7 (s), 187.01 (s). Anal. Calcd. for C₁₆H₁₁ClN₂O₃S (346.8): C, 55.41; H, 3.20; Cl, 10.22; N, 8.08; S, 9.25. Found: C, 55.40; H, 3.22; Cl, 10.25; N, 8.10; S, 9.22%.

4c: M.p. 122–124 °C; IR (KBr): 1132 (C–O–C linkage), 1237 (C=S), 1610 (C=N), 1641 (C=O), 3310 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 4.51 (s, 2H, CH₂), 6.85–7.76 (m, 8H, Ar-H), 9.05 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 78.02 (t), 117.1 (d), 122.4 (s), 123.8 (d), 127.8 (s), 128.2 (d), 130.1 (d), 132.21 (d), 133.3 (d), 137.82 (s), 155.02 (s), 157.02 (s), 165.8 (s), 187.02 (s). Anal. Calcd. for C₁₆H₁₁BrN₂O₃S (391.25): C, 49.12; H, 2.83; Br, 20.42; N, 7.16; S, 8.20. Found: C, 49.15; H, 2.81; Br, 20.44; N, 7.18; S, 8.22%.

4d: M.p. 114–116 °C; IR (KBr): 1130 (C–O–C linkage), 1236 (C=S), 1610 (C=N), 1640 (C=O), 3312 cm⁻¹ (N–H); 1H NMR (CDCl₃): δ 2.3 (s, 3H, CH₃), 3.8 (s, 3H, OCH₃), 4.5 (s, 2H, CH₂), 6.9–7.6 (m, 7H, Ar-H), 9.1 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 20.92 (q), 56.0 (q), 78.0 (t), 113.7 (d), 113.8 (d), 123.31 (s), 129.7 (s), 130.11 (s), 131.1 (d), 131.8 (d), 133.9 (d), 155.02 (s), 157.02 (s), 160.61 (s), 165.7 (s), 187.03 (s). Anal. Calcd. for C₁₈H₁₆N₂O₄S (356.4): C, 60.66; H, 4.53; N, 7.86; S, 9.0. Found: C, 60.68; H, 4.55; N, 7.88; S, 9.03%.

4e: M.p. 125–127 °C; IR (KBr): 1139 (C–O–C linkage), 1245 (C=S), 1620 (C=N), 1645 (C=O), 3323 cm⁻¹ (N–H); 1H NMR (CDCl₃): δ 2.3–2.35 (d, J = 7 Hz, 6H, CH₃), 4.51 (s, 2H, CH₂), 7.0–7.8 (m, 7H, Ar-H), 9.13 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 20.91 (q), 78.01 (t), 113.71 (d), 123.32 (s), 128.9 (d), 129.7 (s) 130.01 (d), 131.8 (d), 133.91 (d), 134.8 (s), 141.4 (s), 155.01 (s), 157.02 (s), 160.62 (s), 187.02 (s).

Anal. Calcd. for C₁₈H₁₆N₂O₃S (340.4): C, 63.51; H, 4.74; N, 8.23; S, 9.42. Found: C, 63.53; H, 4.75; N, 8.21; S, 9.40%.

5.1.4. Synthesis of 4-amino-5-[2-(3-chlorobenzoyl)-4-methylphenoxy]methyl-1,2,4-triazole- 3-(2H)thiones (5a)

To a mixture of 4a (0.8 g, 2.51 mmol) in ethanol (10 ml), 0.23 ml of 24% hydrazine hydrate was added drop wise and the mixture was refluxed for 5 h. After cooling water was added and the mixture was acidified by excess of 3N HCl, the separated solid was filtered off, washed with water and crystallized from ethanol to give **5a** (0.706 g, 75%) as white solid.

5a: M.p. 205–207 °C; IR (KBr): 1230 (C=S), 1625 (C=N), 1642 (C=O), 3330 (N–H), 3400 cm⁻¹ (NH₂); ¹H NMR (CDCl₃): δ 2.31 (s, 3H, CH₃), 3.7 (bs, 2H, NH₂), 4.51 (s, 2H, CH₂), 6.9–7.55 (m, 7H, Ar-H), 9.1 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 20.92 (q), 74.1 (t), 113.71 (d), 123.31 (s), 128.2 (d), 129.61 (d), 129.71(s), 130.51 (d), 131.81 (d), 132.61 (d), 133.51 (s), 133.91 (d), 139.21 (s), 155.01 (s), 160.61 (s), 186.0 (s), 187.01 (s). Anal. Calcd. for C₁₇H₁₅ClN₄O₂S (374.8): C, 54.47; H, 4.03; Cl, 9.46; N, 14.95; S, 8.55. Found: C, 54.46; H, 4.05; Cl, 9.45; N, 14.92; S, 8.53%.

5b: M.p. 210–212 °C; IR (KBr): 1233 (C=S), 1630 (C=N), 1647 (C=O), 3335 (N–H), 3408 cm⁻¹ (NH₂); ¹H NMR (CDCl₃): δ 3.71 (bs, 2H, NH₂), 4.52 (s, 2H, CH₂), 6.95–7.6 (m, 8H, Ar-H), 9.13 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 74.12 (t), 115.2 (d), 124.8 (s), 125.8 (s), 128.2 (d), 130.1 (d), 131.5 (d), 132.2 (d), 133.6 (d), 137.8 (s), 155.02 (s), 161.7 (s), 186.01 (s), 187.03 (s). Anal. Calcd. for C₁₆H₁₃ClN₄O₂S (360.8): C, 53.26; H, 3.63; Cl, 9.83; N, 15.53; S, 8.89. Found: C, 53.25; H, 3.65; Cl, 9.81; N, 15.50; S, 8.90%.

5c: M.p. 220–222 °C; IR (KBr): 1232 (C=S), 1622 (C=N), 1645 (C=O), 3332 (N–H), 3404 cm⁻¹ (NH₂); ¹H NMR (CDCl₃): δ 3.71 (bs, 2H, NH₂), 4.51 (s, 2H, CH₂), 6.9–7.7 (m, 8H, Ar-H), 9.12 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 74.11 (t), 117.1 (d), 122.4 (s), 123.8 (d), 127.8 (s), 128.2 (d), 130.1 (d), 132.21 (d), 133.3 (d), 137.81 (s), 155.01 (s), 165.8 (s), 186.02 (s), 187.04 (s). Anal. Calcd. for C₁₆H₁₃BrN₄O₂S (405.2): C, 47.42; H, 3.23; Br, 19.72; N, 13.82; S, 7.93%.

5d: M.p. 225–227 °C; IR (KBr): 1230 (C=S), 1621 (C=O), 1640 (C=N), 3331 (N–H), 3409 cm⁻¹ (NH₂); ¹H NMR (CDCl₃): δ 2.3 (s, 3H, CH₃), 3.7 (bs, 2H, NH₂), 3.85 (s, 3H, OCH₃), 4.51 (s, 2H, CH₂), 6.8–7.65 (m, 7H, Ar-H), 9.12 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 21.2 (q), 56.01 (q), 74.12 (t), 113.8 (d), 114.5 (d), 120.4 (s), 121.2 (d), 130.1 (s), 131.01 (d), 131.1 (d), 142.4 (s), 155.01 (s), 163.5 (s), 165.7 (s), 186.03 (s), 187.04 (s). Anal. Calcd. for C₁₈H₁₈N₄O₃S (370.4): C, 58.36; H, 4.90; N, 15.12; S, 8.66. Found: C, 58.34; H, 4.92; N, 15.15; S, 8.68%.

5e: M.p. 208–210 °C; IR (KBr): 1240 (C=S), 1638 (C=N), 1652 (C=O), 3340 (N–H), 3412 cm⁻¹ (NH₂); ¹H NMR (CDCl₃): δ 2.25–2.31 (d, *J* = 7 Hz, 6H, CH₃), 3.73 (bs, 2H, NH₂), 4.52 (s, 2H, CH₂), 7.0–7.78 (m, 7H, Ar-H), 9.15 (bs, 1H, NH); ¹³C NMR (CDCl₃): δ 20.91 (q), 21.21 (q), 74.11 (t), 114.5 (d), 120.41 (s), 121.2 (d), 128.9 (d), 130.01 (d), 131.01 (d), 134.8 (s), 141.4 (s), 142.41 (s), 155.02 (s), 163.51

(s), 186.02 (s), 187.03 (s). Anal. Calcd. for $C_{18}H_{18}N_4O_2S$ (354.4): C, 61.0; H, 5.12; N, 15.81; S, 9.05. Found: C, 61.03; H, 5.15; N, 15.80; S, 9.03%.

5.1.5. Synthesis of 3-[2-(3-chlorobenzoyl)-4-methylphenoxy[methyl-1,2,4-triazolo[3,4-b] [1,3,4]thiadiazine (6a)

A mixture of **5a** (0.5 g, 1.33 mmol) and phenacyl bromide (0.19 g, 1.33 mmol) in anhydrous ethanol (10 ml) was refluxed for 5 h. The solvent was removed under reduced pressure, diethyl ether (15 ml) was added and the reaction mixture was left at 0 °C overnight. The precipitated solid was filtered off, dried ad recrystallized with ethanol to give **6a** (0.44 g, 70%) as white needles.

6a: M.p. 142–144 °C; IR (KBr): 750 (C–S–C), 1630 (C=N), 1645 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.3 (s, 3H, CH₃), 3.2 (s, 2H, CH₂), 4.8 (s, 2H, OCH₂), 6.75–7.6 (m, 12H, Ar-H); ¹³C NMR (CDCl₃): δ 20.91 (q), 36.3 (t), 63.0 (t), 113.7 (d), 123.31 (s), 128.2 (d), 128.61 (d), 129.0 (d), 129.6 (d), 129.7 (s), 130.5 (d), 130.8 (d), 131.2 (s), 131.8 (d), 132.6 (d), 133.5 (s), 133.9 (d), 139.2 (s), 147.0 (s), 160.61 (s), 162.01 (s), 164.6 (s), 187.01 (s). Anal. Calcd. for C₂₅H₁₉ClN₄O₂S (474.9): C, 63.22; H, 4.03; Cl, 7.46; N, 11.80; S, 6.75. Found: C, 63.24; H, 4.04; Cl, 7.44; N, 11.82; S, 6.73%.

6b: M.p. 151–153 °C; IR (KBr): 752 (C–S–C), 1633 (C=N), 1648 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 3.22 (s, 2H, CH₂), 4.83 (s, 2H, OCH₂), 6.8–7.65 (m, 13H, Ar-H); ¹³C NMR (CDCl₃): δ 36.32 (t), 63.01 (t), 115.2 (d), 124.8 (s), 125.8 (s), 128.2 (d), 128.62 (d), 129.02 (d), 129.72 (s), 130.1 (d), 130.82 (d), 131.21 (s), 131.5 (d), 132.2 (d), 133.6 (d), 137.8 (s), 147.01 (s), 161.7 (s), 162.01 (s), 164.62 (s), 187.01 (s). Anal. Calcd. for C₂₄H₁₇ClN₄O₂S (460.9): C, 62.54; H, 4.72; Cl, 7.69; N, 12.16; S, 6.96. Found: C, 62.55; H, 4.74; Cl, 7.66; N, 12.14; S, 6.94%.

6c: M.p. 157–159 °C; IR (KBr): 748 (C–S–C), 1632 (C=N), 1648 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 3.21 (s, 2H, CH₂), 4.84 (s, 2H, OCH₂), 6.85–7.7 (m, 13H, Ar-H); ¹³C NMR (CDCl₃): δ 36.31 (t), 63.01 (t), 117.1 (d), 122.4 (s), 123.8 (d), 127.8 (s), 128.2 (d), 128.6 (d), 129.0 (d), 130.1 (d), 130.81 (d), 131.22 (s), 132.21 (d), 133.3 (d), 137.83 (s), 147.01 (s), 162.01 (s), 164.61 (s), 165.82 (s), 187.03 (s). Anal. Calcd. for C₂₄H₁₇BrN₄O₂S (505.3): C, 57.04; H, 3.39; Br, 15.81; N, 11.09; S, 6.34. Found: C, 57.06; H, 3.37; Br, 15.83; N, 11.09; S, 6.31%.

6d: M.p. 162–164 °C; IR (KBr): 740 (C–S–C), 1630 (C=N), 1645 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.31 (s, 3H, CH₃), 3.2 (s, 2H, CH₂), 3.75 (s, 3H, OCH₃), 4.75 (s, 2H, OCH₂), 6.8–7.65 (m, 12H, Ar-H); ¹³C NMR (CDCl₃): δ 20.92 (q), 36.33 (t), 56.04 (q), 63.02 (t), 113.71 (d), 113.8 (d), 123.33 (s), 128.6 (d), 129.02 (d), 129.72 (s), 130.1 (s), 130.83 (d), 131.1 (d), 131.2 (s), 131.8 (d), 133.9 (d), 147.02 (s), 160.61 (s), 162.03 (s), 164.6 (s), 165.7 (s), 187.03 (s). Anal. Calcd. for C₂₆H₂₂N₄O₃S (470.5): C, 66.37; H, 4.71; N, 11.91; S, 6.81. Found: C, 66.35; H, 4.73; N, 11.93; S, 6.83%.

6e: M.p. 171–173 °C; IR (KBr): 755 (C–S–C), 1645 (C=N), 1652 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.25–2.3 (d, J = 7 Hz, 6H, 2CH₃), 3.23 (s, 2H, CH₂), 4.83 (s, 2H, OCH₂),

6.8–7.72 (m, 12H, Ar-H); ¹³C NMR (CDCl₃): δ 20.91 (q), 36.32 (t), 63.02 (t), 113.71 (d), 123.33 (s), 128.6 (d), 128.9 (d), 129.03 (d), 129.7 (s), 130.0 (d), 130.82 (d), 131.22 (s), 131.83 (d), 133.9 (d), 134.8 (s), 141.42 (s), 147.02 (s), 160.62 (s), 162.03 (s), 164.63 (s), 187.04 (s). Anal. Calcd. for $C_{26}H_{22}N_4O_2S$ (454.5): C, 68.70; H, 4.88; N, 12.33; S, 7.05. Found: C, 68.72; H, 4.86; N, 12.31; S, 7.03%.

5.2. Antimicrobial activity

The antimicrobial activities of compounds 4a-e, 5a-e and 6a-e were evaluated in vitro by serial tube dilution technique [27,28] at different concentrations (0.5, 1.0, 1.5,......12 mM). Some fungi such as C. albicans, C. krusei and C. parapsilosis, A. flavus, A. ochraceous, F. moniliforme and C. gloeosporioides and bacteria such as E. coli, P. solanacearum, P. fluorescens and B. subtilis were used. Fluconazole and chloramphenicol were used as reference standard in antifungal and antibacterial activity studies, respectively. The stock solutions of the compounds were prepared in chloroform. To the culture tubes containing 1.9 ml of media, 0.1 ml of test solution was added at sterile conditions. To all the tubes including standard and controls, the fresh inoculums was added using Himedia flexiloop 4 calibrated to 0.001 ml. After incubating all the tubes at 37 °C for 24 h, their absorbance was recorded at 640 nm along with reference. Percentage of inhibition was calculated using the following equation.

% Inhibition = 100 (m - n)/m

where m = absorbance without the test sample and n = absorbance with test sample.

Acknowledgments

We the authors express our sincere gratitude to University of Mysore, Mysore for the laboratory facilities provided to us. One of the authors S.A.K. is indebted to UGC for the award of teacher's fellowship.

References

- H.S. Gold, R.C. Moellering, N. Engl. J. Med. Chem. 335 (1996) 1445–1453.
- [2] H. Vanden. Bossche, P. Marichal, F.C. Odds, Trends Microbiol. 10 (1994) 393–400.
- [3] M.L. Cohen, Science 257 (1992) 1050–1055.
- [4] R.C. Heel, R.N. Brogden, A. Carmine, P.A. Morley, T.M. Speight, G.S. Avery, Drugs 23 (1982) 1–36.
- [5] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Clin. Microbiol. Rev. 12 (1999) 40–79.
- [6] C.A. Lyman, T.J. Walsh, Drugs 44 (1992) 9-35.
- [7] C.J. Clancy, M.H. Nguyen, Eur. J. Clin. Microbiol. Infect. Dis. 17 (1998) 573–575.
- [8] J.C.E. Fung-Tomc, B. Huczko, D.P. Minassian, Bonner, Antimicrob. Agents Chemother. 42 (1998) 313–318.
- [9] A. Espinel-Ingroff, J. Clin. Microbiol. 36 (1998) 2950–2956.

- [10] A. Sarkar, K.A. Kumar, N.K. Dutta, P. Chakraborty, S.G. Dastidar, Indian J. Med. Microbiol. 21 (2003) 172–178.
- B. Trusheva, M. Popova, H. Naydenski, I. Tsvetkova, G.J. Rodriguez, V. Bankova, Fitoterapia 75 (2004) 683–689.
- [12] J. Lokvam, J.F. Braddock, P.B. Reichardt, T.P. Clausen, Phytochemistry 55 (2000) 29–34.
- [13] J. Curtze, C.H.G. Rudolph, L. Schroder, G. Albert, A.E.E. Rehnig, E.G. Sieverding, U. Pat, Chem. Abstr. 129 (1998) 108898 (577366).
- [14] L. Ke, Z. Wannian, Z. Wu, W. Xiaoyan, Chem. Abstr. 136 (2002) 167122 (Zhongguo Yiyao Gongye Zazhi 32 (2001) 115–117).
- [15] P. Bakana, M. Claeys, J. Totte, L.A. Pieters, L. Van Hoof, D.A. Tamba-Vemba, V.d. Berghe, A.J. Vlietinck J. Ethnopharmacol. 21 (1987) 75–84.
- [16] A. Tamil Selvi, G.S. Joseph, G.K. Jayaprakasha, Food Microbiol. 20 (2003) 455–460.
- [17] T. Grote, A. Gypser, J. Rheinheimer, I. Rose, P. Schaefer, F. Schieweck, N. Goetz, K. Eicken, E. Ammermann, S. Strathmann, G. Lorenz, R. Stierl, Chem. Abstr. 137 (2002) 232443 (WO Patent (2002) 2002072523).

- [18] S. Giri, H. Singh, L.D.S. Yadav, Agric. Biol. Chem. 40 (1976) 17-21.
- [19] G. Sahin, E. Palaska, M. Ekizoglu, M. Ozalp, Farmaco 57 (2002) 539–542.
- [20] B.S. Holla, K.N. Poojary, B. Kalluraya, Farmaco 51 (1996) 793–799.
- [21] B.S. Holla, P.M. Akberali, M.K. Shivananda, Farmaco 56 (2001) 919–927.
- [22] M.R. Friedman, K.J. Toyne, J.W. Goodby, M. Hird, J. Mater. Chem. 11 (2001) 2759–2772.
- [23] G.N. Walker, R.T. Smith, J. Org. Chem. 36 (1971) 305–308.
- [24] G. Sahin, E. Palaska, P. Kelicen, R. Demirdamar, G. Altinok, Arzneim. Forsch, Drug Res. 51 (2001) 478–484.
- [25] E. Palaska, G. Sahin, P. Kelicen, N.T. Durlu, G. Altinok, Farmaco 57 (2002) 101–107.
- [26] M.D. Mullican, M.W. Wilson, D.T. Connor, C.R. Kostlan, D.J. Schrier, R.D. Dyer, J. Med. Chem. 36 (1993) 1090–1099.
- [27] C.H. Collins, P.M. Lyne, J.M. Grange, J.O. Falkinham, Collins and Lyne's Microbiological Methods, Butterworth, London, 1970.
- [28] B.G. Mullen, R.T. Decory, T.J. Mitchell, D.S. Allen, C.R. Kinsolving Vassil St, B. Georgiev, J. Med. Chem. 31 (1988) 2008–2014.