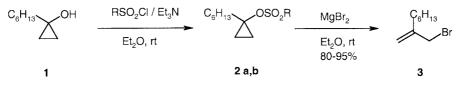
A Simple and Efficient Conversion of Tertiary Cyclopropanols to 2-Substituted Allyl Halides

Yurii Yu. Kozyrkov, Oleg G. Kulinkovich*

Department of Organic Chemistry, Belarusian State University, 4, Skoriny av., Minsk, 220050, Belarus Fax +375(17)2264998; E-mail: kulinkovich@bsu.by *Received 18 December 2001*

Abstract: Readily available sulphonates of tertiary cyclopropanols are converted into 2-substituted allyl bromides in high yields under the action of magnesium bromide in diethyl ether. Magnesium chloride, aluminium chloride and titanium tetrachloride also induce effectively the transformation of cyclopropyl sulphonates into the corresponding allyl chlorides.

Key words: cyclopropanols, sulphonic esters, ring cleavage, allyl halides, magnesium halides

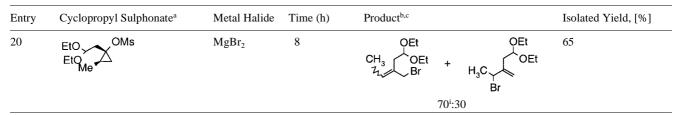

Tertiary cyclopropanols are readily available by the cyclopropanation of esters,^{1,2} desilylation of cyclopropanol silvl ethers,^{3,4} alkylation of cyclopropanone hemiacetals,^{5,6} and using some other approaches.⁷ Their synthetic applications are based mainly on the ring opening reactions, when one of the bonds adjacent to carbinol carbon atom (C1-C2 or C1-C3 bonds in cyclopropane ring) undergoes cleavage. These transformations are usually initiated with electrophilic, basic or oxidizing reagents^{4,6-8} and strongly facilitated by electron-donating oxygen atom. In contrast, solvolysis of cyclopropyl p-toluenesulphonates and triflates is usually accompanied by the C2-C3 cyclopropane ring cleavage, and these reactions were intensively studied stereochemically and kinetically with a mechanistic interest to the cationic cyclopropyl-allyl rearrangement.^{7,9-11} Nevertheless, the preparative value of this transformation was not demonstrated clearly. We now report a simple and highly efficient procedure for the conversion of cyclopropyl sulphonates into 2-substituted allyl halides, which are widely used in organic synthesis, and believe that this finding will contribute to reducing the disbalance in synthetic application of C1-C2 versus C2-C3 modes of the cyclopropanol ring opening reactions.

1-Hexyl-1-cyclopropanol **1** was obtained by the treatment of methyl heptanoate with ethyl magnesium bromide in

the presence of titanium(IV) isopropoxide,¹ and was smoothly converted into cyclopropyl sulphonates **2a,b** by a standard procedure (Scheme 1).¹² Quite surprisingly, we have found that, in contrast to the solvolysis of cyclopropylsulphonates,^{7,10} which proceeded slowly and not unambiguously, the interaction of cyclopropyl mesylate **2a** with magnesium bromide¹³ in diethyl ether at room temperature led to allyl bromide **3** in an excellent yield¹⁴ (see Table, entry 1). The reaction of tosylate **2b** with magnesium bromide proceeded at a lower rate, however, the yield of allyl bromide **3** remained high enough (entry 2).

The 1-heptyl (entry 3), 1-phenylmethyl (entry 5), 1-haloalkyl (entries 7–9, 11) and 1-phenyl substituted (entry 12) cyclopropyl sulphonates also gave in this transformation high yields of the corresponding 2-substituted allyl halides. Compounds containing two cyclopropyl sulphonate groups were transformed into the corresponding dienic bromides without any complications (entries 13, 14). Magnesium chloride, as well as aluminium and titanium(IV) chlorides, were also effective in inducing the conversion of cyclopropyl sulphonates into allyl halides (entries 4, 6, 10).

cis-1,2-Disubstituted cyclopropanols (entries 15–19) were prepared by inter-¹⁵ or intramolecular¹⁶ cyclopropanation of the corresponding carboxylic esters with alkyl-magnesium halides in the presence of titanium(IV) isopropoxide. In the reaction with magnesium bromide, the respective methanesulphonic esters gave allyl halides as a mixture of stereo- and regioisomers. Compounds with the most substituted double bond were formed preferably in these cases (entries 15–19). The transformation was also successfully applied for the preparation of allyl bromide containing a protected acetal group in the side chain (entry 20).


Scheme 1 R = Me (a), p-CH₃C₆H₄ (b).

Synlett 2002, No. 3, 04 03 2002. Article Identifier: 1437-2096,E;2002,0,03,0443,0446,ftx,en;G34301ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Table The Reaction of Cyclopropyl Sulphonates with Metal Halides in Diethyl Ether

Entry	Cyclopropyl Sulphonate ^a	Metal Halide	Time (h)	Product ^{b,c}	Isolated Yield, [%]
1	C ₆ H ₁₃ XOMs	MgBr ₂	1	C ₆ H ₁₃	95
	2a			Br 3	
2	C ₆ H ₁₃ _OTs	$MgBr_2$	12	3	80
3	$^{2b}C_{7}H_{15}$ OMs	MgBr ₂	2	C ₇ H ₁₅ Br	90
4	C ₇ H₁₅∑OMs	AlCl ₃	48	C ₇ H ₁₅	80
5		MgBr ₂	48	CH ₂ Ph Br	68
6		MgCl ₂ ^d	24	CH ₂ Ph	72
7	CI(CH ₂) ₂ Ms	MgBr ₂	24	(CH ₂) ₂ Cl	70
8	Br(CH ₂) ₂ OTs	MgBr ₂	24	(CH₂)₂Br → Br	81
9	CI(CH ₂) ₃ XOMs	MgBr ₂	6	(CH ₂) ₃ Cl	71
10	CI(CH ₂) ₃ Ms	TiCl ₄	24	(CH ₂) ₃ Cl	79
11	CH ₃ CHBrCH ₂ OTs	MgBr ₂	72	CH ₂ CHBrCH ₃ Br	79
12	PhOMs	MgBr ₂	0.5	Ph Br	80
13	MsOZYOMs	MgBr ₂	3 ^g	Br	88
14	MsO	MgBr ₂	5 ^g	Br Br	92
15	C ₆ H ₁₃ H ₃ C	MgBr ₂	2	$H_3C \xrightarrow{C_6H_{13}}_{Br} + H_3C \xrightarrow{C_6H_{13}}_{Br}$	77
16	C ₆ H ₁₃ H ₃ C	TiCl ₄	4	$\begin{array}{c} 65^{\circ}:35\\ CH_{3}\\ \mathcal{I}_{4}\\ $	62
17	H ₃ C OMs C ₄ H ₉	MgBr ₂	1	$\begin{array}{c} 60^{\rm f}:40\\ {\sf CH}_3 \\ {\sf C}_4{\sf H}_9{\cal H}_4 \\ {\sf Br} \\ {\sf Br} \end{array} + \begin{array}{c} {\sf C}_4{\sf H}_9 \\ {\sf H}_9 \\ {\sf Br} \\ {\sf Br} \end{array}$	75
18	H ₃ COMs	MgBr ₂	1	$75^{g}:25$ Ph \mathcal{H}_{3} Br	74
19	OMs	MgBr ₂	1	100^{h}	80
				90:10	

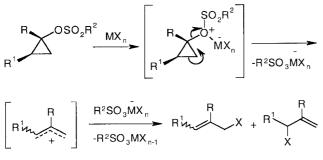
Table The Reaction of Cyclopropyl Sulphonates with Metal Halides in Diethyl Ether (continued)

^a Selected data of substituted methanesulfonates see ref.¹⁷

^c E/Z ratio was determined by ¹H NMR spectra.

^d In dichloromethane.

e E/Z = 90:10.


 $^{\rm f}E/Z = 70:30.$

 $^{g}E/Z = 85:15.$

^h E/Z = 85:15.

ⁱ E/Z ratio was not determined.

Mechanistically it seems clear, that this reaction includes a Lewis acid assisted heterolytic cleavage of carbon-oxygen bond in cyclopropyl sulphonates which induces a cationic cyclopropyl-allyl rearrangement^{7,10} (Scheme 2). The fact that the reaction did not proceed in tetrahydrofuran solution suggests that the Lewis acid should not be excessively solvated. Indeed, cyclopropyl sulphonates reacted faster with magnesium, titanium and aluminium halides in poorly solvating dichloromethane, but formation of allyl halides was sometimes accompanied by resin-like side products.

Scheme 2 R, $R^1 = alkyl$, aryl; $R + R^1 = -(CH_2)_3 -; R^2 = Me$,

In summary, a highly efficient method for conversion of readily available tertiary cyclopropanols to 2-substituted allyl halides have been elaborated.

Acknowledgement

This work was carried out with support of the COPERNICUS programme.

References

- (a) Kulinkovich, O. G.; Sviridov, S. V.; Vasilevskii, D. A.; Pritytskaya, T. S. *Zh. Org. Khim.* **1989**, *25*, 2244.
 (b) Kulinkovich, O. G.; Sviridov, S. V.; Vasilevskii, D. A. Synthesis **1991**, 234.
- (2) (a) Kulinkovich, O. G.; de Meijere, A. *Chem. Rev.* 2000, 100, 2789. (b) Sato, F.; Urabe, H.; Okamoto, S. *Chem. Rev.* 2000, 100, 2835.

- (3) (a) Denis, J. M.; Conia, J. M. *Tetrahedron Lett.* **1972**, 4593.
 (b) Le Goaller, R.; Pierre, J.-L. *Bull. Soc. Chim. Fr.* **1973**, 1531. (c) Rubotton, G. M.; Lopes, M. I. J. Org. Chem. **1973**, 38, 2097.
- (4) (a) Conia, J. M. Pure Appl. Chem. 1975, 43, 317. (b) Ryu,
 I.; Murai, S. In Houben-Weyl, 4th ed., Vol. E 17; de Meijere,
 A., Ed.; Thieme: Stuttgart, 1996, 1985. (c) Kuwajima, I.;
 Nakamura, E. Top. Curr. Chem. 1990, 155, 3.
- (5) (a) Wasserman, H. H.; Clagett, D. C. J. Am. Chem. Soc. 1966, 88, 5368. (b) Wasserman, H. H.; Cochoy, R. E.; Baird, M. S. J. Am. Chem. Soc. 1969, 91, 2375.
- (6) (a) Wasserman, H. H.; Clark, G. M.; Turley, P. C. *Top. Curr. Chem.* **1974**, *47*, 73. (b) Turro, N. J. *Cyclopropanones* **1969**, 25. (c) Salaün, J. *Chem. Rev.* **1983**, *83*, 619. (d) Salaün, J. *Top. Curr. Chem.* **1988**, *144*, 1.
- (7) Gibson, D. H.; De Puy, C. H. Chem. Rev. 1974, 74, 605.
 (8) (a) Werstiuk, N. H. Tetrahedron 1983, 39, 205.
 (b) Grimmis, M. T.; Nantermet, P. G. Org. Prep. Proced. Int. 1993, 25, 43. (c) Kulinkovich, O. G. Pol. J. Chem. 1997, 71, 849.
- (9) (a) Roberts, J. D.; Chambers, V. C. J. Am. Chem. Soc. 1951, 73, 5034. (b) De Puy, C. H.; Schnack, L. G.; Hausser, J. W. J. Am. Chem. Soc. 1966, 88, 3343.
- (10) For reviews see: (a) Jendralla, H. In *Houben-Weyl*, 4th ed., Vol. E 19; de Meijere, A., Ed.; Thieme: Stuttgart, 1996, 2313. (b) Schollkopf, U. *Angew. Chem., Int. Ed. Engl.* 1968, 7, 588. (c) Friedrich, E. C. In *The Chemistry of the Cyclopropyl Group*; Rappoport, Z., Ed.; Wiley: London, 1987, Chap. 11, 633. (d) Salaün, J. In *The Chemistry of the Cyclopropyl Group*; Rappoport, Z., Ed.; Wiley: London, 1987, Chap. 13, 809. (e) Salaün, J. J. Org. Chem. 1976, 41, 1237; and references cited therein.
- (11) Momose and co-workers have recently found that treatment of tertiary cyclopropyl silyl ethers with diethylaminosulfur trifluoride give allylic fluorides in moderate to high yield: Kirihara, M.; Kambayashi, T.; Momose, T. *Chem. Commun.* **1996**, 1103.
- (12) Ollivier, J.; Dorizon, P.; Piras, P. P.; de Meijere, A.; Salaün, J. *Inorg. Chim. Acta.* **1994**, 222, 37.
- (13) We have obtained this finding quite accidentally. A search in the literature revealed that magnesium halides have been earlier proposed by Gore and co-workers as an efficient reagent for nucleophilic displacement of *p*-tosyloxy or mesyloxy groups by halogen atoms: Place, P.; Roumestanant, M.-L.; Gore, J. *Bull. Soc. Chim. Fr.* **1976**, 169.

^b Selected data of allyl halides see ref.¹⁸

(14) **Typical Procedure**:

- A solution of 1-hexylcyclopropyl methanesulfonate **2a** 7.65 g (35 mmol) in 10 mL Et₂O was added slowly into MgBr₂ (52 mmol) solution (prepared from 1.26 g magnesium turnings and 4.5 mL 1,2-dibromoethane in 30 mL Et₂O) at r.t. When the reaction was completed (control by TLC), water was added to the mixture until precipitate was dissolved. Water layer was extracted with Et₂O, washed with 5% NaCl solution and dried over Na₂SO₄. After evaporation of the solvent, the resulting crude product was purified by column chromatography, using petroleum ether eluent and silica gel (Merck 70-230), yielding 6.82 g (95%) of pure allyl halide **3**.
- (15) (a) Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A.; Savchenko, A. I.; Pritytskaya, T. S. *Zh. Org. Khim.* 1991, 27, 294. (b) Epstein, O. L.; Savchenko, A. I.; Kulinkovich, O. G. *Tetrahedron Letters* 1999, 40, 5935.

- (16) (a) Kasatkin, A.; Sato, F. *Tetrahedron Lett.* **1995**, *36*, 6079.
 (b) Lee, J.; Kim, H.; Cha, K. J. Am. Chem. Soc. **1996**, *118*, 4198. (c) Lee, J.; Kim, H.; Bae, J. G.; Cha, K. J. Org Chem. **1996**, *61*, 4878. (d) Lee, J.; Kang, C. H.; Kim, H.; Cha, K. J. Am. Chem. Soc. **1996**, *118*, 291.
- (17) **Entry 11**: ¹H NMR (200 MHz, CDCl₃) $\delta = 0.60-0.74$ (m, 1 H), 0.80-0.92 (m, 1 H), 1.06-1.22 (m, 2 H), 1.74 (d, J = 6.5Hz, 3 H), 2.09 (dd, $J_1 = 15$ Hz, $J_2 = 8$ Hz, 1 H), 2.45 (s, 3 H), 2.49 (dd, $J_1 = 15$ Hz, $J_2 = 6$ Hz, 1 H), 4.28-4.50 (m, 1 H), 7.35 (d, J = 8 Hz, 2 H), 7.77 (d, J = 8 Hz, 2 H). **Entry 19**: ¹H NMR (200 MHz, CDCl₃) $\delta = 0.92$ (t, J = 6 Hz, 1 H), 1.04-1.40 (m, 2 H), 1.58 (dd, $J_1 = 12$ Hz, $J_2 = 8$ Hz, 1 H), 1.66-2.06 (m, 3 H), 2.10-2.44 (m, 2 H), 3.02 (s, 3 H).
- (18) **Entry 11**: ¹H NMR (200 MHz, CDCl₃): $\delta = 1.76$ (d, J = 6.5 Hz, 3 H), 2.61–2.89 (m, 2 H), 4.01 (s, 2 H), 4.17–4.28 (m, 1 H), 5.08 (d, J = 1 Hz, 1 H), 5.32 (s, 1 H). $n_D^{20} = 1.5235$. **Entry 19**: ¹H NMR (200 MHz, CDCl₃): $\delta = 1.86-2.06$ (m, 2 H), 2.28–2.50 (m, 4 H), 4.08 (s, 1.8 H), 4.88–4.95 (m, 0.1 H), 5.07 (s, 0.1 H), 5.30 (s, 0.1 H), 5.78 (s, 0.9 H).