ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Grevillosides A–F: Glucosides of 5-alkylresorcinol derivatives from leaves of *Grevillea robusta*

Yukiko Yamashita a, Katsuyoshi Matsunami a, Hideaki Otsuka a,*, Takakazu Shinzato b, Yoshio Takeda c

- ^a Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- b Subtropical Field Science Center, Faculty of Agriculture, University of the Ryukyus, 1 Sembaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan
- ^c Faculty of Integrated Arts and Sciences, The University of Tokushima, 1 Minamijosanjima-cho, Tokushima 770-8502, Japan

ARTICLE INFO

Article history: Received 12 March 2008 Received in revised form 24 June 2008 Available online 21 September 2008

Keywords: Grevillea robusta Proteaceae 5-Alkylresorcinol glucoside Grevilloside

ABSTRACT

From a MeOH extract of leaves of *Grevillea robusta*, seven compounds (1–7) were isolated. One known compound (7) was identified with a benzyl glucoside, icariside F_2 . The structures of the six of these, named grevillosides A–F (1–6), were elucidated on detailed inspection of one- and two-dimensional NMR spectroscopic data as glucosides of 5-alkylresorcinols.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

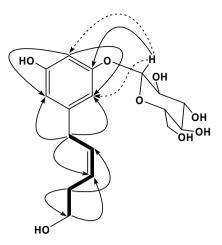
Most of the 1200 species of the 55 genera in Proteaceae grow in Australia and South Africa, and only one species, Helicia cochinchinensis, grows naturally in Japan. Phytochemical investigation of H. cochinchinensis led to the isolation of 5-O-β-D-glucopyranosides of flavanones (Morimura et al., 2006). Grevillea robusta A. Cunn., belonging to Proteaceae, originates from subtropical areas of eastern Australia and has been planted in Japan. It is an evergreen tree between 20 m and 35 m in height with dark green delicately dented bipinnatifid leaves reminiscent of fronds. The leaves are 15-30 cm long with grey-white or rusty undersides. Phytochemical investigation of the same plant, collected in Egypt, has been reported and several phenolic glucosides were isolated (Ahmed et al., 2000). Cytotoxic 5-alkylresorcinol metabolites were also isolated from the title plant (Chuang and Wu, 2007) and a MeOH extract of its timber exhibited potent leishmanicidal activity (Takahashi et al., 2004). 5-Alkylresorcinols (Kozubeck and Tyman, 1999) are found in a mushroom, Merulius incarnatus (Jin and Zjawiony, 2006), a Malagasy Myrsinaceous plant, Oncostemon bojerianum (Chaturvedula et al., 2002), Lysimachia japonica (Primulaceae) (Arisawa et al., 1989), and some cereals (Ross et al., 2003; Chen et al., 2004). The cytotoxicities of 5-alkylresorcinols have also been discussed (Arisawa et al., 1989; Chaturvedula et al., 2002; Chuang and Wu, 2007). In our continuing studies on Okinawan plants, the chemical constituents of G. robusta, collected in Okinawa, were investigated.

2. Results and discussion

Air-dried leaves of G. robusta were extracted with MeOH three times and the concentrated MeOH extract was partitioned with solvents of increasing polarity. The 1-BuOH-soluble fraction was separated by means of various chromatographic procedures including CC on a highly-porous synthetic resin (Diaion HP-20), and then normal silica gel and reversed-phase (ODS) CC, droplet counter-current chromatography (DCCC), and HPLC to afford seven compounds (1–7). The details and yields are given in the Section 4. The structure of a known benzyl glycoside (7) was identified as icariside F_2 by comparison with data, reported in the literature (Miyase et al., 1988).

Grevilloside A (1), $[\alpha]_D$ -60.7, was isolated as an amorphous powder and its elemental composition was determined to be C₁₇H₂₄O₈ from the observation of a quasi-molecular ion peak ([M+Na]) on HR-ESI-mass-spectrometry. The IR spectrum exhibited absorption bands for hydroxyl groups (3396 cm⁻¹) and an aromatic ring (1614 cm⁻¹ and 1507 cm⁻¹), and the UV spectrum also indicated the presence of an aromatic ring. In the ¹H NMR spectrum, three aromatic protons were observed, which were coupled to each other with coupling constants of 2 Hz. The ¹³C NMR spectrum, together with the DEPT experiment results, indicated the presence of three aromatic signals each with a proton and another three each without a proton. Two of the aromatic resonances, without a proton were highly deshielded, indicating that they probably carried hydroxyl groups. The remaining signals in the $^{\hat{1}3}$ C NMR spectrum consisted of six assignable to β -glucopyranose, and one double bond, two methylenes and one oxymethylene. A sequential $^{1}\text{H}\text{--}^{1}\text{H}$ COSY correlation from $\text{H}_{2}\text{--}11$ (δ_{H} 3.59) to $\text{H}_{2}\text{--}7$

^{*} Corresponding author. Tel./fax: +81 82 257 5335. E-mail address: hotsuka@hiroshima-u.ac.jp (H. Otsuka).


 $(\delta_{\rm H}~3.30-3.45)$ established the alkyl chain to be as shown in Fig. 1 (Fig. 2). The coupling constants (11 Hz) of two olefinic protons indicated the geometry of the double bond to be of the *cis* form. A HMBC correlation from H-1′ ($\delta_{\rm H}~4.84$) to C-1 ($\delta_{\rm C}~160.3$) confirmed that the β-glucopyranosyl moiety was on the phenolic hydroxyl group and this was further supported by the difference NOE experiment, in which irradiation of the anomeric proton caused significant enhancement of two aromatic protons ($\delta_{\rm H}~6.45$ and 6.39) (Fig. 2). HMBC correlations between H-2 ($\delta_{\rm H}~6.39$) and C-4 and C-6 ($\delta_{\rm C}~110.6$ and 109.2), and H-7 ($\delta_{\rm H}~3.30-3.45$) and C-4 and C-6 established the structure, as shown in Fig. 1. The absolute configuration of glucose was determined to be of the D-series on HPLC analysis of the hydrolyzate of 1 using an optical rotation detector.

Grevilloside B (2), $[\alpha]_D$ –37.5, was isolated as an amorphous powder and its elemental composition was determined to be $C_{17}H_{26}O_8$ by HR-ESI-MS. In the ^{13}C NMR spectrum, the aromatic substitution pattern was established to be the same as that of grevilloside A (1), and the HMBC spectrum also showed the same correlation between the anomeric proton (δ_H 4.86) and the highly deshielded carbon atom (δ_C 160.0). The alkyl chain consisted of four methylenes and one oxymethylene. Thus, the structure of grevilloside B (2) was elucidated to be a dihydro derivative of grevilloside A (1), as shown in Fig. 1.

Grevilloside C (3), $[\alpha]_D$ –49.6, was also isolated as an amorphous powder and its elemental composition was determined by HR-ESI-MS to be $C_{17}H_{24}O_9$, which is two hydrogen atom less and one oxygen atom more than in the case of grevilloside B (2). In the IR spectrum, absorption for the carboxyl moiety was observed at 1713 cm⁻¹. The ¹³C NMR spectrum showed that 3 was an analogous compound to 2, and the oxymethylene signal observed in that of 2 was replaced by a carbonyl carbon signal. Therefore, grevilloside C (3) was elucidated to be the 11-carboxylic acid derivative of grevilloside B (2).

Grevilloside D (**4**), $[\alpha]_D$ –27.6, and grevilloside E (**5**), $[\alpha]_D$ –42.1, were isolated as amorphous powders, and their elemental compositions were determined to be $C_{16}H_{24}O_8$ and $C_{16}H_{22}O_9$, respectively, by HR-ESI-MS. The NMR spectroscopic data showed that these were analogous compounds to grevillosides B (**2**) and C (**3**), respectively, and together with the data obtained on mass-spectrometry,

Fig. 1. Structures.

Fig. 2. Diagnostic two-dimensional NMR correlations (bold line: COSY, and plain curves: HMBC from H to C) and the results of the difference NOE experiments (dashed curves) for **1**.

the structures of grevilloside D (**4**) and grevilloside E (**5**) were elucidated to be one methylene less forms of grevillosides B (**2**) and C (**3**), respectively.

Grevilloside F (**6**), $[\alpha]_D$ –58.9, was isolated as an amorphous powder and its elemental composition was determined to be $C_{15}H_{18}O_9$ by HR-ESI-MS. The NMR spectra indicated that the aromatic moiety was the same as that of the aforementioned compounds. However, the side chain consisted of a double bond (δ_H 6.39 and 7.54) and a carboxylic acid moiety. The geometry of the double bond was determined to be *trans* from the coupling constants (J = 16 Hz) of the olefinic protons in the ¹H NMR spectrum. Therefore, the structure of grevilloside F (**6**) was elucidated to be as shown in Fig. 1.

3. Conclusion

From leaves of *G. robusta*, six new 5-alkylresorcinol glucosides were isolated. As far as we know, this is the first example of the isolation of glycosidic forms of these alkylresorcinol. Biological evaluation of the isolated compounds is in progress.

4. Experimental

4.1. General experimental procedures

Optical rotations were measured on a JASCO P-1030 polarimeter. IR and UV spectra were measured on Horiba FT-710 and JASCO V-520 UV/VIS spectrophotometers, respectively. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were taken on a JEOL JNM $\alpha\text{-}400$ spectrometer at 400 MHz and 100 MHz, respectively, with tetramethylsilane as an internal standard. Positive-ion HR-MS was performed with an Applied Biosystem QSTAR XL system ESI (Nano Spray)-TOF-MS.

A highly-porous synthetic resin (Diaion HP-20) was purchased from Mitsubishi Kagaku (Tokyo, Japan). Silica gel CC and reversed-phase [octadecyl silica gel (ODS)] open CC were performed on silica gel 60 (Merck, Darmstadt, Germany) and Cosmosil 75C₁₈-OPN (Nacalai Tesque, Kyoto, Japan) [Φ = 50 mm, L = 25 cm, linear gradient: MeOH-H₂O (1:9, 1 L) \rightarrow (1:1, 1 L), fractions of 10 g being collected], respectively. The droplet counter-current chromatography (DCCC) (Tokyo Rikakikai, Tokyo, Japan) was equipped with 500 glass columns (Φ = 2 mm, L = 40 cm), and the lower and upper layers of a solvent mixture of CHCl₃–MeOH-H₂O-n-PrOH (9:12:8:2) were used as the stationary and mobile phases, respectively. Five-gram fractions were collected and numbered according to their order of elution with the mobile phase. HPLC was performed

on an ODS column (Inertsil; GL Science, Tokyo, Japan; Φ = 6 mm, L = 25 cm), and the eluate was monitored with a UV detector at 254 nm and a refractive index monitor.

4.2. Plant material

Leaves of *G. robusta* A. Cunn. (Proteaceae) were collected in Okinawa, Japan, in August 2005, and a voucher specimen was deposited in the Herbarium of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Hiroshima University (05-GR-Okinawa-0629).

4.3. Extraction and isolation

Dried leaves of *G. robusta* (6.35 kg) were extracted three times with MeOH (30 L) at 25 °C for one week and then concentrated to 3 L *in vacuo*. The extract was washed with n-hexane (3 L, 32.6 g) and then the MeOH layer was concentrated to a gummy mass. The latter was suspended in H_2O (3 L) and then extracted with EtOAc (3 L) to give an EtOAc-soluble fraction (160 g). The aqueous-layer was extracted with 1-BuOH (3 L) to give a 1-BuOH-soluble fraction (405 g), and the remaining aqueous-layer was concentrated to furnish a water-soluble fraction (475 g).

A portion (237 g) of the 1-BuOH-soluble fraction was applied to a Diaion HP-20 column (Φ = 75 mm, L = 50 cm) using H₂O-MeOH (4:1, 8 L), (2:3, 8 L), (3:2, 8 L), and (1:4, 8 L), and MeOH (6 L), 11 fractions being collected. The residue (19.9 g in fractions 4–6) of the MeOH-H₂O (1:4, v/v) eluent was subjected to silica gel (450 g) CC, with elution with CHCl₃ (3 L) and CHCl₃-MeOH [(49:1, 3 L), (24:1, 3 L), (23:2, 3 L), (9:1, 3 L), (7:1, 3 L), (17:3, 3 L), (4:1, 3 L), (3:1, 3 L), and (3:2, 3 L)], 500 mL fractions being collected. Combined fractions 46–52 (1.20 g) of the 20–25% MeOH in H₂O (v/v) eluate were separated by ODS open CC to give **6** (187 mg).

The residue (45.1 g) of fractions 7–12, obtained on Diaion HP-20 CC, was subjected to silica gel (450 g) CC, with elution with CHCl₃ (4.5 L) and CHCl₃-MeOH [(49:1, 4.5 L), (24:1, 4.5 L), (23:2, 4.5 L), (9:1, 4.5 L), (7:1, 4.5 L), (17:3, 4.5 L), (4:1, 4.5 L), (3:1, 4.5 L), and (3:2, 4.5 L)], 500 mL fractions being collected. An aliquot (1.76 g) of combined fractions 61-66 (2.61 g) of the 12.5-15% MeOH in $H_2O(v/v)$ eluate was separated by ODS open CC gave two residues in fractions 88-99 (204 mg) and fractions 100-119 (548 mg), followed by DCCC. The residue (27.2 mg) of fractions 20-24 from DCCC was purified by preparative HPLC (MeOH-H₂O, 1:3) to give 1 (7.9 mg) from the peak at 15 min. From the residue (38.5 mg) of fractions 25–28 from DCCC, a further amount of 1 (3.7 mg) was obtained by the same method. The residue (548 mg) of fractions 100-119, obtained on ODS open CC, was separated by DCCC (152 mg in fractions 25–35), and then purified by preparative HPLC (MeOH- H_2O , 1:4) to give **7** (27.0 mg) and **2** (21.3 mg) from the peaks at 35 min and 43 min, respectively. An aliquot (1.85 g) of the residue (2.01 g) of fractions 67-73, obtained on silica gel CC, was subjected to ODS open CC gave two fractions, 273 mg in fractions 70-88 and 485 mg in fractions 100-115. The former was the separated by DCCC to afford 130 mg of the residue of fractions 12-18, which was then purified by repeated HPLC (MeOH-H₂O, 1:4) to furnish 4 (1.9 mg) from the peak at 13 min. From the latter, 3 (175 mg) was isolated by DCCC from fractions 28–35. The residue (3.85 g) of fractions 74–87, obtained on silica gel CC, was subjected to ODS open CC to give 5 (41.7 mg) in fractions 70–88.

4.4. Characterization data

4.4.1. *Grevilloside A* (**1**)

Amorphous powder; $[\alpha]_D^{31}$ –60.7 (c = 0.53, MeOH); IR v_{max} (film) cm⁻¹: 3396, 2924, 1614, 1507, 1455, 1171, 1075; UV λ_{max} (MeOH)

nm (log ε): 277 (3.21), 228 (3.55); 1 H NMR (CD₃OD, 400 MHz) δ : 6.45 (1H, dd, J = 2, 2 Hz, H-6), 6.39 (1H, dd, J = 2, 2 Hz, H-2), 6.33 (1H, dd, J = 2, 2 Hz, H-4), 5.62 (1H, dtt, J = 11, 7, 1 Hz, H-8), 5.52 (1H, dtt, J = 11, 7, 2 Hz, H-9), 4.84 (1H, d, J = 8 Hz, H-1'), 3.89 (1H, dd, J = 12, 2 Hz, H-6'a), 3.70 (1H, dd, J = 12, 5 Hz, H-6'b), 3.59 (2H, t, J = 7 Hz, H-11), 3.43 (1H, dd, J = 9, 8 Hz, H-2'), 3.40 (1H, dd, J = 9, 9 Hz, H-4'), 3.39 (1H, dd, J = 9, 9 Hz, H-3'), 3.43–3.47 (1H, m, H-5'), 3.30–3.45 (2H, m, H₂-7), 2.38 (2H, ttd, J = 7, 7, 1 Hz, H₂-10); 13 C NMR (CD₃OD, 100 MHz): Table 1; HR-ESI-TOF-MS (positive-ion mode) m/z: 379.1361 [M+Na]⁺ (calc. for C_{17} H₂₄O₈Na, 379.1363).

4.4.2. Grevilloside B (2)

Amorphous powder; $[α]_D^{31}$ – 37.5 (c = 1.42, MeOH); IR $v_{\rm max}$ (film) cm⁻¹: 3395, 2929, 1595, 1508, 1458, 1172, 1074; UV $\lambda_{\rm max}$ (MeOH) nm (log ε): 271 (3.13), 226 (3.43); ¹H NMR (CD₃OD, 400 MHz) δ: 6.44 (1H, dd, J = 2, 2 Hz, H-6), 6.40 (1H, dd, J = 2, 2 Hz, H-2), 6.33 (1H, dd, J = 2, 2 Hz, H-4), 4.86 (1H, d, J = 8 Hz, H-1'), 3.90 (1H, dd, J = 12, 2 Hz, H-6'a), 3.71 (1H, dd, J = 12, 5 Hz, H-6'b), 3.54 (2H, t, J = 8 Hz, H-11), 3.46 (1H, dd, J = 9, 8 Hz, H-2'), 3.44-3.48 (2H, m, H-2' and 5'), 3.42 (1H, dd, J = 9, 9 Hz, H-4'), 2.51 (2H, t, J = 7 Hz, H₂-7), 1.61 (2H, m, H₂-8), 1.55 (2H, m, H₂-10), 1.37 (2H, m, H₂-9); ¹³C NMR (CD₃OD, 100 MHz): Table 1; HR-ESI-TOF-MS (positive-ion mode) m/z: 381.1523 [M+Na]⁺ (calc. for C₁₇H₂₆O₈Na, 381.1519).

4.4.3. Grevilloside C (3)

Amorphous powder; $[\alpha]_D^{31}$ –49.6 (c = 0.75, MeOH); IR $v_{\rm max}$ (film) cm⁻¹: 3388, 2932, 1713, 1597, 1508, 1457, 1173, 1075; UV $\lambda_{\rm max}$ (MeOH) nm ($\log \varepsilon$): 275 (3.27), 225 (3.52); ¹H NMR (CD₃OD, 400 MHz) δ : 6.44 (1H, dd, J = 2, 2 Hz, H-6), 6.39 (1H, dd, J = 2, 2 Hz, H-2), 6.31 (1H, dd, J = 2, 2 Hz, H-4), 4.85 (1H, d, J = 8 Hz, H-1'), 3.89 (1H, dd, J = 12, 2 Hz, H-6'a), 3.70 (1H, dd, J = 12, 5 Hz, H-6'b), 3.43–3.48 (1H, m, H-5'), 3.44 (1H, dd, J = 9, 8 Hz, H-2'), 3.42 (1H, dd, J = 9, 9 Hz, H-3'), 3.40 (1H, dd, J = 9, 9 Hz, H-4'), 2.52 (2H, m, H₂-7), 2.30 (2H, m, H₂-10), 1.60–1.64 (4H, m, H₂-8 and H₂-9); ¹³C NMR (CD₃OD, 100 MHz): Table 1; HR-ESI-TOF-MS (positive-ion mode) m/z: 395.1318 [M+Na]⁺ (calc. for C₁₇H₂₄O₉Na, 395.1312).

4.4.4. Grevilloside D (4)

Amorphous powder; $[α]_D^{25}$ –27.6 (c = 0.13, MeOH); IR $ν_{max}$ (film) cm⁻¹: 3366, 2923, 1596, 1508, 1456, 1299, 1171, 1073; UV $λ_{max}$ (MeOH) nm (log ε): 223 (4.01), 273 (3.47); ¹H NMR (CD₃OD, 400 MHz) δ: 6.44 (1H, dd, J = 2, 2 Hz, H-6), 6.38 (1H, dd, J = 2, 2 Hz, H-2), 6.32 (1H, dd, J = 2, 2 Hz, H-4), 4.85 (1H, d, J = 8 Hz, H-

Table 1¹³C NMR spectroscopic data for grevillosides A–F (**1–6**) (100 MHz, CD₃OD)

	1	2	3	4	5	6
1	160.3	160.0	160.2	160.2	160.2	160.6
2	102.8	102.5	102.7	102.7	102.8	107.4
3	159.5	159.2	159.4	159.4	159.4	160.0
4	110.6	110.7	110.7	110.7	110.7	110.1
5	144.7	146.3	145.9	146.2	145.3	137.8
6	109.2	109.3	109.2	109.3	109.3	108.9
7	34.6	36.9	36.6	36.8	36.2	146.3
8	131.3	32.1	31.7	28.6	27.6	119.7
9	127.7	26.5	25.7	33.2	34.4	170.3
10	31.8	33.4	34.8	62.9	177.6	
11	62.8	63.0	177.6			
1′	102.3	102.2	102.3	102.3	102.3	102.4
2′	75.0	74.9	75.0	75.0	75.0	75.0
3′	78.2	78.0	78.1	78.2	78.1	78.3
4′	71.5	71.4	71.5	71.5	71.5	71.5
5′	78.1	78.0	78.1	78.2	78.1	78.1
6′	62.6	62.5	62.5	62.7	62.6	62.6

1'), 3.89 (1H, dd, J = 12, 2 Hz, H-6'a), 3.70 (1H, dd, J = 12, 5 Hz, H-6'b), 3.55 (2H, t, J = 7 Hz, H-11), 3.35–3.43 (4H, m, H-2', 3', 4' and 5'), 2.53 (2H, t, J = 7 Hz, H₂-7), 1.65 (2H, quintetd, J = 7, 2 Hz, H₂-8), 1.54 (2H, quintetd, J = 7, 2 Hz, H₂-9); 13 C NMR (CD₃OD, 100 MHz): Table 1; HR-ESI-TOF-MS (positive-ion mode) m/z: 379.1365 [M+Na]⁺ (calc. for C₁₆H₂₄O₈Na, 367.1363).

4.4.5. *Grevilloside E* (**5**)

4.4.6. Grevilloside F (6)

Amorphous powder; $[\alpha]_D^{27}$ –58.9 (c = 0.52, MeOH); IR $\nu_{\rm max}$ (film) cm⁻¹: 3367, 2931, 1637, 1593, 1508, 1451, 1396, 1333, 1276, 1175, 1074; UV $\lambda_{\rm max}$ (MeOH) nm (log ε): 277 (4.00), 222 (4.20); ¹H NMR (CD₃OD, 400 MHz) δ : 7.54 (1H, d, J = 16 Hz, H-7), 6.84 (1H, dd, J = 2, 2 Hz, H-6), 6.68 (1H, dd, J = 2, 2 Hz, H-2), 6.62 (1H, dd, J = 2, 2 Hz, H-2), 6.39 (1H, d, J = 16 Hz, H-8), 4.84 (1H, d, J = 8 Hz, H-1'), 3.91 (1H, dd, J = 12, 2 Hz, H-6'a), 3.71 (1H, dd, J = 12, 5 Hz, H-6'b), 3.44–3.48 (3H, m, H-2', 4' and 5'), 3.41 (1H, dd, J = 9, 9 Hz, H-3'); ¹³C NMR (CD₃OD, 100 MHz): Table 1; HR-ESI-TOF-MS (positive-ion mode) m/z: 365.0847 [M+Na]* (calc. for C₁₅H₁₈O₉Na, 365.0843).

4.4.7. Known compound isolated

Icariside F_2 (**7**), Amorphous powder, $[\alpha]_D^{29}$ -80.5 (c = 1.80, MeOH).

4.4.8. Analyses of the sugar moiety

About 500 μg each of grevillosides A-F (**1–6**) was hydrolyzed with 1 N HCl (0.1 mL) at 100 °C for 2 h. The reaction mixtures were partitioned with an equal amount of EtOAc (0.1 mL), and the aqueous layers were analyzed with a chiral detector (JASCO OR-2090plus) on an amino column [Asahipak NH2P-50 4E, CH₃CN-H₂O (4:1), 1 ml/min]. Hydrolyzates of grevillosides A-F

(**1–6**) gave the peak for D-glucose at the retention time of 14.2 min (positive optical rotation sign). Peaks were identified by co-chromatography with authentic D-glucose.

Acknowledgements

The authors are grateful for access to the superconducting NMR instrument and ESI-TOF-MS at the Analytical Center of Molecular Medicine and the Analysis Center of Life Science, respectively, of the Hiroshima University Faculty of Medicine. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science, and the Ministry of Health, Labour and Welfare. Thanks are also due to the Astellas Foundation for Research on Medicinal Resources and the Takeda Science Foundation for the financial support.

References

- Ahmed, A.S., Nakamura, N., Meselhy, M.R., Makhboul, M.A., El-Emary, N., Hattori, M., 2000. Phenolic constituents from *Grevillea robusta*. Phytochemistry 53, 149–154
- Arisawa, M., Ohmura, K., Kobayashi, A., Morita, N., 1989. A cytotoxic constituent of *Lysimachia japonica* Thunb. (Primulaceae) and the structure-activity relationships of related compounds. Chem. Pharm. Bull. 37, 2431–2434.
- Chaturvedula, V.S.P., Schilling, J.K., Miller, J.S., Andriantsiferana, R., Rasamison, V.E., Kingston, G.I., 2002. New cytotoxic bis 5-alkylresorcinol derivatives from the leaves of Oncostemon bojerianum from the Madagascar rain forest. J. Nat. Prod. 65 1627-1632
- Chen, Y., Ross, A.B., Aman, P., Kamal-Eldin, A., 2004. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. J. Agric. Food Chem. 52, 8242–8246.
- Chuang, T.-H., Wu, P.-L., 2007. Cytotoxic 5-alkylresorcinol metabolites from the leaves of *Grevillea robusta*. J. Nat. Prod. 70, 319–323.
- Jin, W., Zjawiony, J.K., 2006. 5-Alkylresorcinol from Merulius incanatus. J. Nat. Prod. 69, 704–706.
- Kozubeck, A., Tyman, J.H., 1999. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99, 1–26.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H., Oguchi, H., 1988. Studies on the glycosides of *Epimedium grandiflorum* Morr. var. *thunbergianun* (Miq.) Nakai. III. Chem. Pharm. Bull. 36, 2475–2484.
- Morimura, K., Gatayama, A., Tsukimata, R., Matsunami, K., Otsuka, H., Hirata, H., Shinzato, T., Aramoto, M., Takeda, Y., 2006. 5-O-Glucosylfalavanones from leaves of *Helicia cochinchinenesis*. Phytochemistry 67, 2681–2685.
- Ross, A.B., Shephered, M.J., Schüpphaus, M., Sinclair, V., Alfaro, B., Kamal-Eldin, A., Aman, P., 2003. Alkylresorcinols in cereals and cereal products. J. Agric. Food Chem. 51, 4111–4118.
- Takahashi, M., Fuchino, H., Satake, M., Agatsuma, Y., Sekita, S., 2004. In vitro screening of leishmanicidal activity in Myanmar timber extracts. Biol. Pharm. Bull. 27, 921–925.