Journal Pre-proof

Colorimetric analysis of malononitrile via the formation of a novel NBD-based CH-acidic dye

Na Yeong Kim, Myung Gil Choi, Kang Min Lee, Sungguan Hong, Suk-Kyu Chang

PII: S0143-7208(19)31407-X

DOI: https://doi.org/10.1016/j.dyepig.2019.108034

Reference: DYPI 108034

- To appear in: Dyes and Pigments
- Received Date: 17 June 2019
- Revised Date: 6 August 2019
- Accepted Date: 7 November 2019

Please cite this article as: Kim NY, Choi MG, Lee KM, Hong S, Chang S-K, Colorimetric analysis of malononitrile via the formation of a novel NBD-based CH-acidic dye, *Dyes and Pigments* (2019), doi: https://doi.org/10.1016/j.dyepig.2019.108034.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Graphical Abstract

Journal Prendice

1	Colorimetric analysis of malononitrile via the formation of a novel
2	NBD-based CH-acidic dye
3	
4	Na Yeong Kim, Myung Gil Choi, Kang Min Lee, Sungguan Hong,* and Suk-Kyu Chang*
5	Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
6	
7	*Corresponding author. Tel.: +82 2 820 5199; Fax: +82 2 825 4736.
8	E-mail address: sungguanhong@cau.ac.kr (S. Hong); skchang@cau.ac.kr (SK. Chang)
9	
10	Abstract:
11	Malononitrile is a key starting material used in synthetic organic, medical, and
12	industrial chemistry, but it is also a notorious cyanogenic toxicant. However,
13	selective and sensitive analytical methods for this key chemical are rare. In this
14	research, a novel reaction-based colorimetric signaling probe for the selective
15	analysis of malononitrile via the S_NAr -type nucleophilic substitution reaction of an
16	NBD-based phenyl selenoether was investigated. The probe exhibited a pronounced
17	colorimetric response, with a color change from yellow to violet due to its CH-
18	acidity. The interference of sulfide ions and several transition metal ions was

Journal Pre-proof

19	effectively circumvented with the use of copper foil as a sulfide scavenger and
20	EDTA as a masking agent for the metal ions. The detection limit of the probe for
21	malononitrile was found to be 264 nM. It was also demonstrated that this convenient
22	colorimetric analysis of malononitrile in chemical and industrial applications using
23	the probe can be conducted with an office scanner.
24	
25	Keywords: Malononitrile sensing; 4-Nitrobenzoxadiazole; Colorimetric signaling;
26	CH-acidic dye; Masking agent; Office scanner.
27	
28	1. Introduction

1. Introduction 28

29	Malononitrile is a versatile compound with exceptional reactivity that acts as a key
30	starting material for a number of synthetic organic, medical, and industrial chemistry
31	applications [1]. For example, it is frequently used in the synthesis of various
32	heterocyclics, pharmaceuticals, pesticides, fungicides, and charge-transfer salts [2].
33	It is also used in the manufacture of lubricating oil additives [3], dyes and acrylic
34	fibers [4], thiamine and anti-cancer agents [5], 2-chlorobenzalmalononitrile (CS-gas,
35	also known as tear gas), which is used for self-defense purposes [6], and as a

leaching agent for gold [7]. In analytical chemistry, malononitrile has been used in the detection of 1,2-quinones in color tests via paper chromatography and spot plates [8,9], the spectrophotometric determination of vitamin K_3 [10], and the analysis of sialic acids using postcolumn fluorescence labeling in high-performance liquid chromatography [11].

Despite these practical uses, malononitrile is a notorious cyanogenic toxicant [3] 41 that is characterized by a number of serious symptoms, such as irritation of the eyes 42 and skin, headaches, dizziness, convulsions, dyspnea, nausea, and vomiting [12]. 43 Therefore, particular care should be taken in handling malononitrile because it 44 exhibits extensive chemical reactivity and has a low LD_{50} (66 mg/kg) [13]. As such, 45 the National Institute for Occupational Safety and Health (NIOSH) has established a 46 recommended exposure limit (REL) of 3 ppm (8 mg/m³) as an 8-hour time-weighted 47average [14]. Therefore, the development of a selective and sensitive analytical 48method for the detection of malononitrile is very important not only for the health of 49 workers in various industrial activities but also for analytical assays involving this 50 key reagent. 51

Despite this need, only a few studies have analyzed malononitrile and its derivatives
from this perspective (Table S1, Supplementary Data). Malononitrile has primarily

54	been analyzed using gas chromatography [15] and gas chromatography-mass
55	spectrometry [16]. Polarographic analysis based on its electroactivity compared to
56	the closely related compounds cyanoacetic acid, malonic acid, and succinic acid
57	dinitrile has also been reported [17]. In addition, due to their greater convenience,
58	several colorimetric detection methods have been reported. For instance,
59	malononitrile and its derivatives have been detected and quantified according to their
60	reaction with benzofuran oxide in an alkaline medium, which produces an intense
61	violet color [18]. In addition, the reaction of malononitrile with 4-(4'-
62	nitrobenzyl)pyridine leads to the generation of a yellow color [19], while it also
63	reacts with conventional coloring reagents (e.g., diazotized <i>p</i> -nitroaniline) to produce
64	a blue color [20]. Colorimetric spot tests using nitroprusside (Fe(CN) ₅ NO ₂) [21] and
65	the 2,4-dinitrobenzenediazonium coupling reaction [22] have also been reported.
66	However, a more selective and sensitive analytical method is required because most
67	of these colorimetric methods, except the benzofuran oxide method, essentially use a
68	qualitative approach involving TLC visualization or spot testing and thus cannot
69	provide practical and analytically useful quantitative information.

For this reason, we designed a new colorimetric reaction-based probe for the selective and sensitive signaling of malononitrile using the nucleophilic aromatic

72	substitution (S_NAr) reaction with a selenoether derivative of 7-nitrobenz-2-oxa-1,3-
73	diazole (NBD) dye. Recently, selective colorimetric probes for hydrogen sulfide
74	based on the S_NAr -type reaction of NBD thioethers through the thiol extrusion and
75	formation of a uniquely colored nitrobenzofurazan-thiol ($\lambda_{max} = 534$ nm) have been
76	reported [23-26]. Following these reports, a variety of NBD derivatives based on
77	amines [27], ethers [28], and thioethers [29] with several dye subunits, such as
78	rhodamine and fluorescein, have been designed through the thiolysis-type cleavage
79	of C-N, C-O, and C-S bonds to detect hydrogen sulfide and various biothiols,
80	including cysteine (Cys) and reduced glutathione (GSH); these have been
81	summarized in a recent review [30].

2. Materials and methods

2.1 General. Malononitrile, 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl),
phenol, thiophenol, benzeneselenol, and diphenyl diselenide were purchased from
Merck KGaA. Other chemicals and solvents were obtained from commercial sources
at spectroscopic grade. ¹H (300 MHz and 600 MHz) and ¹³C (150 MHz) NMR
spectra were measured on Varian Gemini 2000 and VNS NMR spectrometers, using

residual solvent signals as a reference. UV-vis spectra were recorded using a Scinco

S-3100 spectrophotometer. Fluorescence spectra were measured with a Scinco

89

90

105

91	FluoroMate FS-2 fluorescence spectrophotometer. Mass spectra were acquired using
92	a Micromass Autospec mass spectrometer.
93	2.2 Preparation of malononitrile-selective NP-O, NP-S, and NP-Se probes. NBD-
94	based malononitrile-selective probes (NP-O, NP-S, and NP-Se) were prepared
95	according to a previously reported procedure [31]. Phenol (0.28 g, 3.0 mmol, for NP-
96	O), thiophenol (0.33 g, 3.0 mmol, for NP-S), or benzeneselenol (0.47 g, 3.0 mmol,
97	for NP-Se) was dissolved in ethanol (20 mL), and triethylamine (0.42 mL, 3.0 mmol)
98	was added to the solution. A solution of NBD-Cl (0.20 g, 1.0 mmol) in 5 mL of
99	ethanol was slowly added to the reaction mixture and stirred at room temperature
100	overnight. The reaction mixture was diluted with distilled water and extracted with
101	dichloromethane. The organic phase was separated, washed with water several times,
102	and then evaporated. The residue was purified using short-column chromatography
103	(silica gel, dichloromethane). NP-O: 65%. Yellow crystal. ¹ H NMR (600 MHz,
104	DMSO- d_6) δ 8.64 (d, $J = 8.4$ Hz, 1H), 7.61 (dd, $J = 8.5$, 7.3 Hz, 2H), 7.48–7.40 (m,

106 136.0, 131.3, 130.6, 127.4, 121.3, 109.9; LRMS (EI⁺); m/z calcd for C₁₂H₈N₃O₄

6

3H), 6.69 (d, J = 8.4 Hz, 1H); ¹³C (150 MHz, DMSO- d_6) δ 153.7, 153.3, 145.8, 144.8,

[M+H]⁺: 258.0, found 258.1. NP-S: 69%. Yellow crystal. ¹H NMR (600 MHz,

108	DMSO- d_6) δ 8.51 (d, $J = 8.0$ Hz, 1H), 7.79–7.74 (m, 2H), 7.71–7.63 (m, 3H), 6.83 (d,
109	$J = 8.0$ Hz, 1H); ¹³ C (150 MHz, DMSO- d_6) δ 149.0, 143.3, 140.4, 135.7, 133.3,
110	133.0, 131.6, 131.2, 126.4, 123.8; LRMS (EI ⁺); m/z calcd for C ₁₂ H ₈ N ₃ O ₃ S [M+H] ⁺ :
111	274.1, found 274.0. NP-Se: 72%. Amber crystal. ¹ H NMR (600 MHz, DMSO- d_6) δ
112	8.45 (d, J = 7.8 Hz, 1H), 7.83–7.78 (m, 2H), 7.67–7.56 (m, 3H), 7.03 (d, J = 7.8 Hz,
113	1H); ¹³ C (150 MHz, DMSO- <i>d</i> ₆) δ 150.2, 143.0, 136.9, 134.2, 132.5, 131.05, 131.04,
114	127.7, 124.2; LRMS (EI ⁺); m/z calcd for C ₁₂ H ₈ N ₃ O ₃ Se [M+H] ⁺ : 321.8, found 321.9.
115	2.3 Preparation of NBD malononitrile derivative 1. Signaling product 1 was
116	independently prepared via the reaction of NBC-Cl with malononitrile in ethanol.
117	NBD-Cl (0.20 g, 1.0 mmol) was dissolved in ethanol (10 mL), and sodium carbonate
118	(0.11 g, 1.0 mmol) was added to the solution. Malononitrile (0.07 g, 1.0 mmol) was
119	added to the reaction mixture, and the solution was stirred at 50 °C. After stirring for
120	3 h, the solvent was removed under reduced pressure. Acetone (10 mL) was added to
121	the residue, and the precipitate was filtered and dried in a vacuum oven. 1: 95%.
122	Dark violet crystal. ¹ H NMR (600 MHz, DMSO- d_6) δ 8.19 (d, $J = 9.0$ Hz, 1H), 6.49
123	(d, $J = 9.0$ Hz, 1H); ¹³ C (150 MHz, DMSO- d_6) δ 146.8, 144.7, 142.6, 134.3, 119.9,

124 118.8, 118.6, 108.6, 51.1; HRMS (ESΓ); *m/z* calcd for C₉H₂N₅O₃⁻ [M–H]⁻: 228.0163,
125 found 228.0159.

2.4 Preparation of stock solutions. Stock solutions $(5.0 \times 10^{-4} \text{ M})$ of NP-O, NP-S, and NP-Se were prepared in spectroscopic-grade DMSO, and a stock solution of malononitrile $(1.0 \times 10^{-2} \text{ M})$ was prepared in distilled water. Other stock solutions of metal ions and anions $(1.0 \times 10^{-2} \text{ M})$ were prepared in distilled water using the perchlorate and sodium salts of metal ions and anions, respectively. A solution of ethylenediaminetetraacetic acid (EDTA, $1.0 \times 10^{-1} \text{ M}$) was also prepared in deionized water.

2.5 Measurement of signaling behavior. All measurements were carried out under 133 optimal conditions with a 10% aqueous DMSO solution buffered with tris buffer (pH 134 9.0). The solutions used to measure malononitrile signaling were prepared by mixing 135 a stock solution of the probe (NP-O, NP-S, or NP-Se; 60 μ L, 5.0 \times 10⁻⁴ M), 136 malononitrile or the tested metal ions and anions (30 μ L, 1.0 \times 10⁻² M), and tris 137 buffer solution (150 µL, pH 9.0, 0.20 M) in a vial. The sample solution was diluted 138 using deionized water and DMSO to give a final volume of 3.0 mL with a 1:9 (v/v)139 140 ratio of water to DMSO. The final concentrations of the probe, analyte (malononitrile

or metal ions/anions), and buffer in the solution were 1.0×10^{-5} M, 1.0×10^{-4} M, and 141 1.0×10^{-2} M, respectively. 142 2.6 Suppression of sulfide and transition metal ion interference. 143 A. Suppression of sulfide interference. To prevent sulfide interference, copper foil 144 (battery electrode grade) was used. A square piece of copper foil (10.0 mm \times 10.0 145 mm, 18 mg) was fully soaked in the prepared sample solution for 1 min and was then 146 removed. The NP-Se probe was added to the solution treated with copper foil, and 147changes in the UV-vis spectrum or green channel of the sample solution were 148 149 measured. B. Suppression of transition metal ion interference. The interference of transition 150 metal ions in malononitrile signaling was successfully prevented using an EDTA as a 151 masking agent. After the signaling was complete, 15.0 μ L of EDTA solution (1.0 \times 152 10^{-1} M) was added to the solution, and changes in the UV-vis spectrum or green 153 channel of the sample solution were measured. 154 2.7 Determination of the detection limit. The detection limit for malononitrile was 155 calculated according to IUPAC recommendations using the equation $3s_{bl}/m$, where s_{bl} 156 157 is the standard deviation of the blank responses (number of measurements = 15), and

158 m is the slope of the obtained titration curve [32].

159 **2.8 Calculation of pKa for CH-acidic dye 1.** To calculate the acid dissociation 160 constant (K_a) for CH-acidic dye **1**, changes in the absorbance at 577 nm of CH-acid **1** 161 as a function of the solution pH in water were measured. The pH of the sample 162 solution was adjusted using HCl solution. From the obtained pH-dependent plot, the 163 p K_a of CH-acid **1** was calculated using the Henderson-Hasselbalch equation [33]:

$$pK_a = pH - \log\left(\frac{[A^-]}{[HA]}\right)$$

164 **2.9 Evidence for the signaling process.** A deuterated phosphate buffer solution 165 (0.10 mL, pH 7.0) containing malononitrile (6.6 mg, 0.10 mmol) was added to a 166 solution of **NP-Se** (3.2 mg, 0.010 mmol) in 0.90 mL of DMSO- d_6 . After mixing, the 167 ¹H NMR spectrum of the mixture (**NP-Se** + malononitrile) was obtained. As a 168 reference, the ¹H NMR spectra of independently prepared compound **1** and diphenyl 169 diselenide were acquired in the same deuterated phosphate-buffered DMSO- d_6 (1:9, 170 v/v).

171 2.10 Colorimetric analysis using an office scanner [34]. The red, green, and blue 172 channel values of the signaling solutions were recorded using an office scanner 173 (Perfection V550, Epson Inc.). To obtain images of the samples, solutions with 174 varying concentrations of malononitrile were treated with the probe, and 0.30 mL of 175 the solution was placed in a 96-well plate. Images of the plate were captured using a

Journal Pre-proof

transmittance-type	scanner	(resolution:	1200;	image	type:	24-bit	color).	The	color

177 channels of the scanned images were estimated using a color analysis program 178 (Adobe, Photoshop CS6). Because the change in the green channel levels was more 179 pronounced than the red or blue channels, the Δ Green value (255 – green channel 180 level) was used when plotting the results.

181

176

182 **3. Results and discussion**

A malononitrile-selective probe was designed based on the nucleophilic substitution 183 capability of malononitrile on NBD phenyl ether derivatives. We expected that the 184 reaction of a reactive malononitrile anion at the ether-substituted C-4 atom of the 185 malononitrile moiety of the probe would result in the formation of a novel CH-acidic 186 dye. The produced compound exhibited pronounced chromogenic behavior owing to 187 the deprotonation of the methine proton of the malononitrile moiety and to the 188 extended cross-conjugation of the anionic species through the nitro group of the 189 NBD moiety. To achieve this, three candidate NBD-based compounds containing 190 ether, thioether, and selenoether functions (NP-O, NP-S, and NP-Se) were prepared 191 via the reaction of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with phenol, thiophenol, 192

193	and benzeneselenol, respectively (Scheme 1). Preliminary research demonstrated that
194	all three compounds readily reacted with malononitrile to generate intensely violet-
195	colored solutions within 1 h at 20 $^{\circ}$ C. However, the reaction speed of the probes with
196	malononitrile differed, decreasing in the order of $NP-O > NP-Se > NP-S$ (Fig. S1,
197	Supplementary Data). The ether derivative NP-O exhibited the most favorable
198	signaling speed; however, the stability of the probe in the measurement solution was
199	not satisfactory. The nearly colorless NP-O solution progressively became more
200	yellow due to the formation of a hydroxylated NBD derivative (7-nitro-2,1,3-
201	benzoxadiazol-4-ol) [35] via a hydrolysis reaction (Fig. S2, Supplementary Data).
202	The thioether NP-S also showed a similar undesirable response but to a lesser extent.
203	On the other hand, the selenoether NP-Se showed relatively good stability, remaining
204	stable for up to 12 h after preparation. After further optimization, NP-Se was
205	selected as the probe for the sensing of malononitrile because it demonstrated
206	satisfactory selectivity, reaction speed, and probe stability under the target
207	measurement conditions.

Scheme 1. Preparation of NBD-based malononitrile signaling probes (NP-O, NP-S,
and NP-Se).

212

The NP-Se probe solution was lightly yellow-colored and exhibited a UV-vis 213 absorption maximum at 434 nm in tris-buffered DMSO (pH = 9.0, 1:9, v/v). The 214 215 mixing of the NP-Se solution with malononitrile resulted in the development of a violet-colored solution. In addition, a 250-fold increase in absorbance (A/A_0) at 577 216 nm was measured, while there were no discernible changes in the absorption spectra 217 in the presence of other tested common metal ions (Fig. 1). However, of the tested 218 anions, significant responses to sulfide ions were observed (Fig. S3, Supplementary 219 220 Data). Sulfide-induced interference was not unexpected because the NBD phenyl selenoether derivative has previously been used as a colorimetric sulfide-signaling 221 probe [23-26]. We attempted to suppress sulfide interference to allow exclusive 222 223 malononitrile-selective signaling using several transition metal ions, metal powders, and metal foils. Subsequently, it was found that, in the presence of copper foil 224

Journal Pre-proot

(battery electrode grade), sulfide ion interference was completely suppressed without 225 significantly affecting malononitrile signaling (Fig. S4, Supplementary Data). The 226 sulfide ions were found to be removed from the solution via deposition on the 227surface of the copper foil, which was confirmed by energy-dispersive X-ray analysis 228 (Fig. S5, Supplementary Data). In fact, copper or copper naphthenate has been used 229 as a sulfide scavenger for corrosion prevention via the deactivation of corrosive 230 sulfur [36]. In contrast to this prominent colorimetric response, no practically useful 231 changes in the fluorescence of the NP-Se probe were observed for any of the tested 232 species (Fig. S6, Supplementary Data). 233

234

236	Fig. 1. Selective signaling of malononitrile by NP-Se compared to common metal
237	ions as expressed by the absorbance ratio (A/A_0) at 577 nm. Inset: Changes in the
238	absorption spectra of the probe in the presence of malononitrile or the metal ions
239	shown in the main graph. [NP-Se] = 1.0×10^{-5} M, and [Malononitrile] = [M ⁿ⁺] = 1.0
240	$\times 10^{-4}$ M in a mixture of tris buffer (pH = 9.0, 0.10 M) and DMSO (1:9, v/v). MAL =
241	malononitrile.

The prominent colorimetric response of the **NP-Se** probe is due to the S_NAr -type 243 244 reaction with malononitrile to form the strongly colored CH-acidic dye 1 (Scheme 2). The postulated conversion of **NP-Se** to dye **1** via the well-established nucleophilicity 245 246 of malononitrile anions was supported by NMR and mass spectroscopy. As shown in Fig. 2, in the presence of 1 equiv of malononitrile, the ¹H NMR resonance ascribable 247 to NP-Se disappeared completely, and only new resonances for compound 1 and 248 249 diphenyl diselenide were observed. The nucleophilic substitution of the **NP-Se** probe with malononitrile produced dye 1 and benzeneselenol, which was subsequently 250 oxidized by the DMSO in the signaling solution to diphenyl diselenide as shown in 251 Scheme 2. It is known that DMSO works well as a mild oxidant in many organic 252 synthetic applications [37,38]. The postulated conversion was corroborated by the 253

Journal Pre-proof

observation that the ¹H NMR spectra of benzeneselenol and diphenyl diselenide in deuterated phosphate-buffered DMSO- d_6 , as well as the mass spectra of these compounds in DMSO solution, were nearly identical (Figs. S7 and S8, Supplementary Data). In addition, the mass spectrum of the purified reaction product also confirmed the postulated structure of compound **1** by revealing a peak at m/z =228.0159 (calcd. for C₉H₂N₅O₃⁻ [M–H]⁻ = 228.0163; Fig. S9, Supplementary Data).

260

261

262 Scheme 2. Colorimetric signaling of malononitrile using the NP-Se probe.

Fig 2. Partial ¹H NMR spectra of NP-Se in the presence and absence of malononitrile,

reference **1**, and diphenyl diselenide in a mixture of deuterated phosphate buffer (pH 7.0) and DMSO- d_6 (1:9, v/v). [**NP-Se**] = [**1**] = [Diphenyl diselenide] = 1.0×10^{-2} M. The ¹H NMR spectrum of **NP-Se** + malononitrile was obtained by mixing **NP-Se** (10 mM) and malononitrile (10 mM) without further purification.

The violet color of the signaling product is due to the strong CH acidity of the methine proton in signaling product **1**, which is ascribable to the presence of efficient electron-withdrawing substituents of an NBD moiety and two cyano groups. Malononitrile itself is an inherently CH-acidic compound with a pK_a of 11.2 [6]. The presence of the NBD moiety, which has strong electron-withdrawing and resonancestabilizing properties, on the malononitrile subunit would further enhance the acidity

Journal Pre-proof

of the resulting compound [39]. The effective stabilization of anionic structure **1** can be demonstrated using resonance structures (Scheme 2). The acid dissociation constant (pK_a) of the resulting CH-acid **1** was estimated using UV–vis spectroscopy with the Henderson–Hasselbalch equation and found to be –0.83 (Fig. 3).

282

Fig 3. Changes in the absorbance at 577 nm of CH-acid dye 1 as a function of solution pH in water. $[1] = 1.0 \times 10^{-5}$ M in distilled water. The pH of the solution was adjusted with HCl solution.

286

Based on these promising results, we carried out further experiments to characterize the colorimetric signaling properties of **NP-Se** with regards to

289	malononitrile in detail. To confirm possible interference from other commonly
290	encountered ionic species, the effect of common metal ions and anions on
291	malononitrile signaling was investigated. We found that some metal ions,
292	particularly the transition metal ions Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , and Pb^{2+} , led to an
293	undesirable negative deviation in absorbance, possibly due to the interaction with the
294	phenolate anion and the adjacent nitrogen ligand of the oxadiazole moiety of
295	signaling product 1 (Fig. S10, Supplementary Data). Therefore, to expand the
296	applicability of the probe for use in practical applications where these interfering
297	ions might be present, we attempted to suppress unwanted changes using a chelating
298	agent, which could sequester the interfering transition metal ions. To achieve this,
299	after the signaling had been completed, EDTA solution (5 equiv for the analyte) was
300	added to the signaling mixture. As a result, most of the interference from the
301	transition metal ions was found to be effectively suppressed; the absorbance ratio
302	$A_{\text{Metal+MAL}}/A_{\text{MAL}}$ observed at 577 nm varied between 0.96 and 1.12 (Fig. 4). On the
303	other hand, for anions, no measurable interference was observed, with a nearly
304	constant $A_{\text{Anion+MAL}}/A_{\text{MAL}}$ ratio (Fig. S11, Supplementary Data).

306

Fig. 4. Competitive signaling of malononitrile by NP-Se in the presence of common metal ions in the background expressed by the absorbance ratio $(A_{Metal+MAL}/A_{MAL})$ at 577 nm. [NP-Se] = 1.0×10^{-5} M, and [Malononitrile] = $[M^{n+}] = 1.0 \times 10^{-4}$ M, [EDTA] = 5.0×10^{-4} M in a mixture of tris buffer (pH = 9.0, 0.10 M) and DMSO (1:9, v/v). All measurements were carried out after treatment of the signaling solution with EDTA solution. MAL = malononitrile.

The signaling speed of **NP-Se** for malononitrile was relatively slow, with complete signaling requiring about 40 min (Fig. S12, Supplementary Data). However, the signaling process could be sped up by increasing the temperature of the solution. As the temperature rose, the signaling speed progressively increased; at 20 °C, a

Journal Pre-proof

318	saturated signal was attained after about 40 min, which fell to about 20 min and 10
319	min at 30 °C and 40 °C, respectively.
320	Next, to determine the detection limit of NP-Se for malononitrile, UV-vis titration
321	was carried out (Fig. S13, Supplementary Data). The absorbance of NP-Se at 577 nm
322	steadily increased with an increase in the concentration of malononitrile, whereas the
323	absorbance at 434 nm simultaneously decreased. The malononitrile concentration-
324	dependent change in absorbance for NP-Se exhibited a linear calibration trend up to
325	1.0×10^{-5} M. From this plot, the detection limit of NP-Se for malononitrile was
326	calculated to be 3.66×10^{-7} M according to IUPAC recommendations $(3s_{bl}/m)$ [33].
327	The observed sensitivity of the probe for malononitrile detection was thus found to
328	be superior to other reported analytical methods (Table S1, Supplementary Data).
329	Finally, the rapid and convenient detection of malononitrile with a daily-use IT
330	device was investigated. Recently, colorimetric analysis using smartphones and
331	scanners that do not rely on complex and/or heavy instruments has attracted
332	significant research interest [40]. The proposed probe is particularly suitable for this
333	purpose because the colorimetric response to malononitrile is clearly evident to the
334	naked eye. We tested the use of an office scanner as a signal-capturing device for the
335	rapid and convenient analysis of malononitrile. Using the red, green, and blue

336	channel levels of images of the signaling solution attained using a color analysis
337	program (Adobe, Photoshop CS6), linear calibration curves were plotted as a
338	function of the concentration of malononitrile up to 2.0×10^{-5} M, with satisfactory
339	R^2 values (0.9814 – 0.9954; Fig. S14, Supplementary Data). Based on the most
340	sensitive plot using the green channel, the detection limit of malononitrile measured
341	by the scanner was calculated to be 2.64×10^{-7} M (Fig. 5).

Fig. 5. Malononitrile concentration-dependent changes in Δ Green values (Δ Green value = 255 – green channel level) of NP-Se. Inset: photographic images of the signaling solutions in the presence of varying concentrations of malononitrile. [NP-Se] = 1.0×10^{-5} M, and [Malononitrile] = $0 - 1.0 \times 10^{-4}$ M in a mixture of tris buffer

(pH = 9.0, 0.10 M) and DMSO (1:9, v/v). The inset images were obtained using a 348 transmittance-type office scanner, and the error bars were estimated from three 349 independent experiments. 350

- 351
- 352
- 353
- 354

4. Conclusions 355

n-h In this study, we developed a novel reaction-based colorimetric probe for the 356 synthetically important chemical malononitrile. The selenoether-based probe 357 demonstrated a marked change in color from yellow to violet via an S_NAr-type 358 reaction with malononitrile to form a novel CH-acidic dye. Interference from sulfide 359 ions and some transition metal ions was readily suppressed using copper foil and 360 post-treatment with the chelating agent EDTA, respectively. By elevating the 361 temperature of the signaling solution, the signaling speed was noticeably enhanced. 362 363 Based on colorimetric behavior of the probe, which can be readily detected by the

- naked eye, malononitrile monitoring and analysis can be successfully conducted
- using an office scanner with a detection limit of 2.64×10^{-7} M.

367 Acknowledgments

368 This research was supported by a Chung-Ang University research grants in 2017.

369 Appendix. Supplementary data

- 370 Supplementary data associated with this article can be found in the online version at
- 371 doi:**.***
- 372

373 **References**

- 374 [1] Freeman F. Chemistry of malononitrile. Chem Rev 1969;69:591–624.
- 375 [2] Fatiadi AJ, New applications of malononitrile in organic chemistry Part I.
- 376 Synthesis 1978;1978:165–204.
- 377 [3] Lin Z, Zhang W, Wang L, Yu H, Wu C. Mechanism of the synergistic
- toxicity of malononitrile and *p*-nitrobenzaldehyde with photobacterium
- phosphoreum. Toxicol Mech Methods 2003;13:241–5.

	urn	D	re.	31	
JU	uuu			J.	

380	[4]	Clayton GD, Clayton FE. Patty's industrial hygiene and toxicology. In: Vol.
381		2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York: John Wiley & Sons
382		Inc.; 1993-1994, p. 3157.
383	[5]	Jain AK, Sharma S, Vaidya A, Ravichandran V, Agrawal RK. 1,3,4-
384		Thiadiazole and its derivatives: a review on recent progress in biological
385		activities. Chem Biol Drug Des 2013;81:557–76.
386	[6]	Kirk-Othmer Encyclopedia of Chemical Technology. In: Vo. 1, 4th ed. New
387		York: John Wiley & Sons Inc.; 1995, p. 942.
388	[7]	Lewis RJ. Hawley's condensed chemical dictionary. 13th ed. New York: John
389		Wiley & Sons, Inc.; 1997, p. 696.
390	[8]	Junek H, Hamböck H. Eine farbreaktion zum nachweis von o-chinonen der
391		naphthalin- und phenanthrenreihe. Mikrochim Acta 1966;54, 522-5.
392	[9]	Junek H, Hamböck H, Sterk H. Synthesen mit nitrilen, 18. mitt.:
393		untersuchungen über den farbstoff aus phenanthrenchinon und malonitril.
394		Mon Chem 1968;99:1028–33.
395	[10]	Hassan SSM. Manual and semiautomated spectrophotometric determination
396		of vitamin K_3 by reactions with piperidine and malononitrile. J Assoc Off
397		Anal Chem 1981;64:611–5.

398	[11]	Honda S, Iwase S, Suzuki S, Kakehi K. Fluorometric determination of sialic
399		acids using malononitrile in weakly alkaline media and its application to
400		postcolumn labeling in high-performance liquid chromatography. Anal
401		Biochem 1987;160:455–61.
402	[12]	Karalliedde L, Wheeler H, Maclehose R, Murray V. Possible immediate and
403		long-term health effects following exposure to chemical warfare agents.
404		Public Health 2000;114:238–48.
405	[13]	Rao P, Singh P, Yadav SK, Gujar NL, Bhattacharya R. Acute toxicity of
406		some synthetic cyanogens in rats: Time-dependent cyanide generation and
407		cytochrome oxidase inhibition in soft tissues after sub-lethal oral intoxication.
408		Food Chem Toxicol 2013;59:595–609.
409	[14]	NIOSH Pocket Guide to Chemical Hazards. "#0378". National Institute for
410		Occupational Safety and Health (NIOSH). Last reviewed: November 29, 2018.
411	[15]	Sass S, Fisher TL, Jascot MJ, Herban J. Gas-liquid chromatography of some
412		irritants at various concentrations. Anal Chem 1971;43:462-4.
413	[16]	USEPA; EMMI. EPA's Environmental Monitoring Methods Index. Version
414		1.1. PC# 4082. Rockville, MD: Government Institutes, 1997.

			D			~ 1
	սւս	aı			ιU	\mathbf{O}

415	[17]	Zollinger DP, Bos M, Van Veen-Blaauw AMW, Van Der Linden WE.
416		Polarographic determination of malononitrile. Talanta 1984;31:723-5.
417	[18]	Haddadin M, Khalidi U, Turjuman N, Ghougassian R. Sensitive test for
418		detection and determination of malononitrile and its derivatives. Anal Chem
419		1974;46:2072.
420	[19]	Ludemann WD, Stutz MH, Sass S. Thin-layer chromatography of some
421		irritants. Anal Chem 1969;41:679–81.
422	[20]	Eulenhöfer HG. Dünnschichtchromatographische trennung von dinitrilen
423		unter besonderer berücksichtigung tautomerer formen des malonsäuredinitrils
424		und einfache nachweisreaktion. J Chromatogr A 1968;36:198–204.
425	[21]	Johar GS, Singh JP. New spot tests for nitroprusside, malononitrile, and
426		dithiophthalimide. Mikrochim Acta 1974;62:437–41.
427	[22]	Juvvik P, Solheim E. Thin-layer chromatography of 2,4-
428		dinitrobenzenediazonium coupling products with malononitrile and some
429		analogues. J Chromatogr A 1973;84:414-6.
430	[23]	Montoya LA, Pearce TF, Hansen RJ, Zakharov LN, Pluth MD. Development
431		of selective colorimetric probes for hydrogen sulfide based on nucleophilic
432		aromatic substitution. J Org Chem 2013;78:6550-7.

433	[24]	Wei C, Wei L, Xi Z, Yi L. A FRET-based fluorescent probe for imaging H2S
434		in living cells. Tetrahedron Lett 2013:54:6937–9.

- 435 [25] Montoya LA, Pluth MD. Hydrogen sulfide deactivates common
 436 nitrobenzofurazan-based fluorescent thiol labeling reagents. Anal Chem
 437 2014;86:6032–9.
- 438 [26] Hammers MD, Pluth MD. Ratiometric measurement of hydrogen sulfide and
- 439 cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy.
- 440 Anal Chem 2014;86:7135–40.
- 441 [27] Song F, Li Z, Li J, Wu S, Qiu X, Xi Z, Yi L. Investigation of thiolysis of
- NBD amines for the development of H₂S probes and evaluating the stability
- 443 of NBD dyes. Org Biomol Chem 2016;14:11117–24.
- 444 [28] Wei C, Zhu Q, Liu W, Chen W, Xi Z, Yi L. NBD-based colorimetric and
- fluorescent turn-on probes for hydrogen sulfide. Org Biomol Chem
- 446 **2014;12:479–85**.
- 447 [29] Sun L, Jiang Y, Zhang C, Ji X, Lv D, Xi Z, Yi L. A NBD-S-rhodamine dyad
 448 for dual-color discriminative imaging of biothiols and Cys/Hcy. New J Chem
- 449 **2018;42:15277–83**.

450	[30]	Yi L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence
451		detection of H_2S and biothiols: design and biological applications. Org
452		Biomol Chem 2017;15:3828–39.
453	[31]	Bae J, Choi MG, Choi J, Chang SK. Colorimetric signaling of hydrogen
454		sulfide by reduction of a phenylseleno-nitrobenzoxadiazole derivative. Dyes
455		Pigment 2013;99:748–52.
456	[32]	Harris DC. Quantitative Chemical Analysis. 8th ed. New York: Freeman;
457		2010, pp.103–105.
458	[33]	Harris DC. Quantitative Chemical Analysis. 8th ed. New York: Freeman;
459		2010, p.190.
460	[34]	Christodouleas DC, Nemiroski A, Kumar AA, Whitesides GM. Broadly
461		available imaging devices enable high-quality low-cost photometry. Anal
462		Chem 2015;87:9170–8.
463	[35]	Waalboer DCJ, Muns JA, Sijbrandi NJ, Schasfoort RBM, Haselberg R,
464		Somsen GW, Houthoff HJ, van Dongen GAMS. Platinum(II) as bifunctional
465		linker in antibody-drug conjugate formation: coupling of a 4-nitrobenzo-2-
466		oxa-1,3-diazole fluorophore to trastuzumab as a model. ChemMedChem
467		2015;10:797-803.

468	[36]	Hjortsberg A, Gustafsson K, Dahlund M. PCT Int. Appl. 2007,
469		WO 2007144696 A2 20071221.
470	[37]	Yiannios CN, Karabinos JV. Oxidation of thiols by dimethyl sulfoxide. J Org
471		Chem 1963;28:3246–8.
472	[38]	Zou JF, Huang WS, Li L, Xu Z, Zheng ZJ, Yang KF, Xu LW. DMSO as
473		oxidant and sulfenylating agent for metal-free oxidation and methylthiolation
474		of alcohol-containing indoles. RSC Adv 2015;5:30389–93.
475	[39]	Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS, DesMarteau DD,
476		Yagupolskii LM, Yagupolskii YL, Ignat'ev NV, Kondratenko NV, Volkonskii
477		AY, Vlasov VM, Notario R, Maria PC. The gas-phase acidities of very strong
478		neutral bronsted acids. J Am Chem Soc 1994;116:3047–57.
479	[40]	Grudpan K, Kolev SD, Lapanantnopakhun S, McKelvie ID, Wongwilai W.
480		Applications of everyday IT and communications devices in modern
481		analytical chemistry: A review. Talanta 2015;136:84–94.

Highlights:

- Colorimetric malononitrile probe based on NBD-phenyl selenoether was • investigated.
- The probe manifested a color change from yellow to violet via an S_NAr-type • reaction.
- Interferences from sulfide and transition metals were suppressed by Cu foil and • EDTA.
- Colorimetric analysis of malononitrile was easily conducted with an office scanner. ٠