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ABSTRACT: The generation of metal carbenes from readily available alkynes represents a significant advance in metal carbene 
chemistry. However, most of these transformations are based on the use of noble-metal catalysts and successful examples of such an 
asymmetric version are still very scarce. Here a copper-catalyzed enantioselective cascade cyclization of N-propargyl ynamides is 
reported, enabling the practical and atom-economical construction of diverse chiral polycyclic pyrroles in generally good to excel-
lent yields with wide substrate scope and excellent enantioselectivities (up to 97:3 e.r.). Importantly, this protocol represents the 
first copper-catalyzed asymmetric diyne cyclization. Moreover, mechanistic studies revealed that the generation of donor/donor 
copper carbenes is presumably involved in this 1,5-diyne cyclization, which is distinctively different from the related gold catalysis, 
and thus it constitutes a novel way for the generation of donor/donor metal carbenes. 

 

INTRODUCTION 

Catalytic transformations involving metal carbenes are ar-
guably the most important aspect of homogeneous transition 
metal catalysis.1 Recently, catalytic generation of metal 
carbenes from readily available alkynes represents a 
significant advance in metal carbene chemistry,2 and most 
general methods for the generation of metal carbene 
intermediates via this non-diazo approach include the 
cycloisomerization of 1,6-enynes,3 1,2-acyloxy migration of 
propargylic carboxylates,4 alkyne oxidation with pyridine N-
oxides or sulfoxides and alkyne amination based on azides,5 
isoxazoles6 or sulfilimines7 (Scheme 1A). In addition, the 
generation of donor/donor carbenes via transition metal-
catalyzed enynal/enynone cyclization has also been nicely 
exploited by López, Zhu and others (Scheme 1B).8 
Nevertheless, new ways for the generation of metal carbenes 
from alkynes, especially those based on the use of non-noble 

metal catalysts and the asymmetric version, remain 
challenging yet highly desirable. 

Over the past decades, transition metal (M: Au, Pt, Ag, Rh, 
Ru, Ir) catalyzed  intramolecular cyclizations of 1,n-diynes (n 
= 3, 4, 5, 6, 7, etc.) have proven to be a powerful method for 
the rapid construction of various structurally complex cyclic 
molecules due to their high bond-forming efficiency and atom 
economy.9-14 Among those, catalytic 1,5-diyne cyclization, 
primarily via metal vinylidene,11 carbene12 or vinyl cation in-
termediates,13 has attracted increasing attention in recent years. 
Despite these remarkable achievements, these reactions have 
so far been mostly limited to the noble-metal catalysts. 
Moreover, no direct catalytic asymmetric intramolecular 
cyclizations of 1,5-diynes have been reported to the best of our 
knowledge.15,16 Therefore, it is highly desirable to develop a 
non-noble metal catalyzed asymmetric cyclization of diynes, 
which not only represents an attractive and efficient strategy to 
build chiral cyclic molecules, but also may help to elucidate 
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the reaction mechanism. As a continuation of our work on 
developing ynamide chemistry for heterocycle synthesis,17,18 
we herein report an efficient copper-catalyzed enantioselective 
cascade cyclization of N-propargyl ynamides, which repre-
sents the first copper-catalyzed asymmetric diyne cyclization 
(Scheme 1C). This method enables the practical and atom-
economical19 construction of diverse chiral polycyclic pyrroles 
in generally good to excellent yields with wide substrate scope 
and excellent enantioselectivities (up to 97:3 e.r.). Furthermore, 
mechanistic studies revealed that the generation of do-
nor/donor copper carbene intermediates is presumably in-
volved in this 1,5-diyne cyclization, which is distinctively 
different from the related gold catalysis, and thus it constitutes 
a novel way for the generation of donor/donor metal carbenes.  

Scheme 1. Generation of Metal Carbenes from Alkynes    
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RESULTS AND DISCUSSION 

Based on our previous work on the gold-catalyzed cyclization 
of N-propargyl ynamides,20 we chose alkenyl N-propargyl 
ynamide 1a as the model substrate for the initial study, and 
selected results are listed in Table 1.21 Somewhat surprisingly, 
typical gold catalysts such as Ph3PAuNTf2 and IPrAuNTf2 
were not effective in catalyzing this cascade cyclization (Table 
1, entries 1 and 2) and, instead, we were delighted to find that 
the desired tetracyclic pyrrole 2a was obtained in 67% yield 
with excellent diastereoselectivity (d.r. > 50/1) in the presence 
of 10 mol % of AgNTf2 (Table 1, entry 3). Gratifyingly, sub-
sequent screenings on the non-noble metal catalysts (Table 1, 
entries 4–7) demonstrated that 2a could be formed in 87% 
yield by employing Cu(CH3CN)4PF6 as catalyst (Table 1, en-

try 6). Of note, the reaction proved to be less efficient when it 
was performed at lower temperatures (Table 1, entries 8 and 9). 
Other Lewis acids, including Zn(OTf)2, Y(OTf)3 and 
Yb(OTf)3, and Brønsted acids failed to catalyze this cascade 
reaction.21 Interestingly, the use of racemic SEGPHOS as ad-
ditive could slightly improve the reaction yield (Table 1, entry 
10). 

Table 1. Optimization of Reaction Conditions for the Cas-
cade Cyclization of Ynamide 1aa 

 

 

aReaction conditions: 1a (0.1 mmol), catalyst (0.01 mmol), 
DCE (2 mL), rt-60 oC, 1-24 h, in vials. bMeasured by 1H NMR 
using 2,6-dimethoxytoluene as the internal standard. c Racemic 
SEGPHOS (0.012 mmol) was employed as additive. 

With the optimal reaction conditions in hand (Table 1, entry 
6), the scope of this Cu-catalyzed cascade cyclization was then 
investigated. As summarized in Table 2, an initial 
investigation of N-protecting groups of the ynamides 
demonstrated that the reaction proceeded efficiently with 
various aryl sulfonyl groups to afford the desired tetracyclic 
pyrroles 2a–2d in 73−86% yields while only 53% yield was 
obtained in case of Ms-protected ynamide. In addition, a wide 
array of aryl-substituted N-propargyl ynamides (R1 = Ar) 
bearing both electron-donating and -withdrawing groups were 
well tolerated in this reaction, leading to the desired pyrrole-
based cyclopropanaphthalenes 2f–2q in generally good to 
excellent yields. The reaction was also extended to the 
naphthyl- and heterocycle-substituted N-propargyl ynamides 
to produce the corresponding 2r (96%), 2s (97%), and 2t 
(77%), respectively. The method also occurred smoothly for 
different aryl-substituted ynamides, and the desired products 
2u–2w were formed in 60-85% yields. Moreover, ester-
substituted ynamide (R3 = CO2Et) and ynamide bearing a 
terminal alkene moiety were suitable substrates for this tandem 
cyclization, furnishing the expected products 2x and 2y in 
56% and 50% yields, respectively. Interestingly, N-propargyl 
ynamide with an n-propyl group on the N-propargyl also 
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underwent efficient cyclization to deliver the desired product 
2z in 82% yield. Importantly, excellent diastereoselectivities 
(d.r. > 50/1) were achieved in all cases. 

Table 2. Reaction Scope of the Cascade Cyclization of 
Ynamides 1a  

 

2t, 77% (36 h)

2a, PG = Ts, 86% (2 h)
2b, PG = SO2Ph, 73% (5 h)
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aReaction conditions: 1 (0.1 mmol), Cu(CH3CN)4PF6 (0.01 mmol), 
DCE (2 mL), 60 oC, 1-36 h, in vials; isolated yields are reported. 
PG = protecting group, MBS = 4-methoxybenzenesulfonyl, Bs = 
4-bromobenzenesulfonyl. 

After establishing a general and reliable method for this 
copper-catalyzed diyne cyclization, we focused on the 

development of a chiral copper complex-catalyzed 
enantioselective version (Table 3). To our delight, the asym-
metric tandem reaction of 1a could proceed smoothly in the 
presence of Cu(CH3CN)4PF6 (10 mol %), bisoxazoline (BOX) 
ligands (12 mol %) and NaBArF

4 (12 mol %). The screening of 
a variety of BOX ligands L1–L9 (Table 3, entries 1–9) re-
vealed that diphenyl-substituted BOX ligands L5–L9 gave the 
significantly improved enantioselectivities (Table 3, entries 5–
9), and e.r. of 88:12 was achieved by employing L6 as chiral 
ligand (Table 3, entry 6). Lowering the reaction temperature 
resulted in substantially increasing enantioselectivities (Table 
3, entries 10 and 11), and a 99% yield with 96:4 e.r. was 
furnished when running the reaction at 30 oC (Table 3, entry 
11). It is notable that the use of chiral copper complex 
significantly promotes the reaction at this temperature as the 
racemic reaction proceeds in low efficiency at 30 oC (Table 1, 
entry 9). Further solvent screening failed to improve the 
enantioselectivity (Table 3, entries 12 and 13). 

Table 3. Optimization of Reaction Conditions for the 
Asymmetric Cascade Cyclization of Ynamide 1aa  

 

O

N N

O

R3 R3

R1 R2

L1, R1, R2 = Me, R3 = Cy
L2, R1, R2 = Me, R3 = tBu
L3, R1 = Me, R2 = Bn, R3 = Cy
L4, R1 = Me, R2 = 4-Ph-C6H4CH2, R

3 = Cy

O

N N

O
R1 R2

Ph

Ph

Ph

Ph

L5, R1, R2 = Me
L6, R1, R2 = Bn
L7, R1, R2 = 2-Me-C6H4CH2
L8, R1, R2 = 4-Ph-C6H4CH2
L9, R1, R2 = 4-tBu-C6H4CH2  

entry

1

2

3

4

5

6

7

8

9

10

11

12

13

L1

L2

L3

L4

L5

L6

L7

L8

L9

L6

L6

L6

L6

DCE, 50 oC, 30 h

DCE, 50 oC, 27 h

DCE, 50 oC, 35 h

DCE, 50 oC, 35 h

DCE, 50 oC, 20 h

DCE, 50 oC, 20 h

DCE, 50 oC, 33 h

DCE, 50 oC, 33 h

DCE, 50 oC, 33 h

DCE, 40 oC, 29 h

DCE, 30 oC, 60 h

DCM, 30 oC, 65 h

CHCl3, 30
oC, 65 h

85

90

90

95

90

99

99

99

99

99

99

95

95

70:30

66:34

78:22

81.5:18.5

85:15

88:12

85:15

87:13

86:14

93:7

96:4

92:8

90.5:9.5

yield (%)b

(+)-2aconditions
e.r.c

(+)-2aL

 
aReaction conditions: 1a (0.05 mmol), Cu(CH3CN)4PF6 (0.005 
mmol), L (0.006 mmol), NaBArF

4 (0.006 mmol), solvent (1 mL) 
30-50 oC, 20-65 h, in Schlenk tubes. bMeasured by 1H NMR 
using 2,6-dimethoxytoluene as the internal standard. cDeter-
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mined by HPLC analysis. NaBArF
4 = sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl] borate. 

Under the optimized reaction conditions (Table 3, entry 11), 
the substrate scope of the Cu-catalyzed asymmetric synthesis 
of tetracyclic pyrroles (+)-2 was then examined and the results 
are shown in Table 4. Besides the Ts-protected model 
substrate, the reaction also underwent efficiently with SO2Ph-  

Table 4. Scope of the Asymmetric Cascade Cyclization of 
Ynamides 1a  

 

aReaction conditions: 1 (0.1 mmol), Cu(CH3CN)4PF6 (0.01 mmol), 
L6 (0.012 mmol), NaBArF

4 (0.012 mmol), DCE (2 mL), 30 oC, 
60-132 h, in Schlenk tubes; yields are those for the isolated prod-
ucts; ers are determined by HPLC analysis. bAt 25 oC. cL8 was 
used. dCu(CH3CN)4PF6 (20 mol %), L6 (24 mol %), NaBArF

4 (24 
mol %), at 40 oC. 

and Bs-protected ynamides 1, furnishing the corresponding 
tetracyclic N-heterocycles (+)-2b (97%, e.r. of 94:6) and (+)-
2d (94%, e.r. of 90:10), respectively. In addition, various aryl-
substituted N-propargyl ynamides (R1 = Ar) were applicable 
substrates to generate the desired products in 65-99% yields 
with the e.r. of 90:10-97:3. The absolute configuration of (+)-
2f was confirmed by X-ray diffraction (Figure 1). Interestingly, 
the naphthyl-substituted ynamide 1r and heterocycle-
substituted ynamide 1t were also suitable substrates for this 
reaction to give the corresponding (+)-2r (99%) and (+)-2t 
(85%) with good enantioselectivity, and L8 was employed as 
chiral ligand in the former case. Then, other aryl-substituted 
ynamides such as 1u and 1w were investigated, and the 
desired products (+)-2u and (+)-2w were obtained with good 
enantioselectivity. Finally, it was found that the different 
alkenyl-substituted substrates 1x–1y also underwent smooth 
cyclization to afford the expected products (+)-2x and (+)-2y 
with the e.r. of 70:30. It should be specially mentioned that the 
use of chiral copper complex significantly promotes the 
reaction efficiency, and substantially improved yields were 
obtained in almost all cases compared with the corresponding 
racemic cases. Inspired by these, we were also delighted to 
find that the cyclization of 3-iodophenyl and vinyl-substituted 
ynamides, which were not successful substrates (<30% yield) 
in racemic reactions, could proceed efficiently to deliver the 
corresponding chiral products (+)-2aa (71%) and (+)-2ab 
(85%),  respectively. Our attempts to extend the reaction to 
alkyl-substituted ynamide (R1 = alkyl) have been unsuccessful 
as yet.21 Once again, excellent diastereoselectivities (d.r. > 
50/1) were achieved in all cases. 

 
Figure 1. Structure of compound (+)-2f in its crystal. 

Inspired by the above copper-catalyzed asymmetric tandem 
cyclization/cyclopropanation reaction, we then wondered 
whether this asymmetric catalysis is applicable to our previous 
protocol on the catalytic cascade cyclization of N-propargyl 
ynamides.20b Particularly, this study may help to elucidate the 
reaction mechanism. If such an asymmetric reaction can be 
achieved, the proposed vinyl cation pathway is less likely as 
the formed chiral carbon center is not bound to the chiral cop-
per species in this process. As outlined in Table 5, we were 
delighted to find that the asymmetric cascade cyclization of N-
propargyl ynamide 3a afforded the desired tricyclic pyrrole (-
)-4a in excellent yields and promising enantioselectivities by 
employing Cu/BOX ligands as chiral metal complexes (Table 
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5, entries 1−4). Gratifyingly, further ligand screening revealed 
that the chiral biphosphine ligands L10–L13 (Table 5, entries 
5–8) gave the significantly improved enantioselectivities, and 
e.r. of 91:9 was obtained in the presence of L11 and L12 as 
chiral ligands (Table 5, entries 6 and 7). Subsequently, differ-
ent solvents were investigated (Table 5, entries 9–12), and 
toluene was found to be the best solvent (Table 5, entry 9). A 
significant temperature effect was observed (Table 5, entries 
13 and 14), and lowering the reaction temperature to 20 °C 
allowed for the isolation of (-)-4a with the e.r. of 97:3 (Table 5, 
entry 14).  
Table 5. Optimization of Reaction Conditions for the 
Asymmetric Cascade Cyclization of Ynamide 3aa  

 

 

entry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

L1

L2

L3

L6

L10

L11

L12

L13

L11

L11

L11

L11

L11

L11

DCE, 40 oC, 2 h

DCE, 40 oC, 2 h

DCE, 40 oC, 2 h

DCE, 40 oC, 9 h

DCE, 40 oC, 6 h

DCE, 40 oC, 6 h

DCE, 40 oC, 6 h

DCE, 40 oC, 6 h

toluene, 40 oC, 9 h

PhCl, 40 oC, 9 h

PhF, 40 oC, 9 h

PhCF3, 40
oC, 9 h

toluene, 30 oC, 15 h

toluene, 20 oC, 24 h

86

88

89

86

83

90

87

85

84

85

90

73

83

84

56:44

55:45

54:46

70:30

90:10

91:9

91:9

85.5:14.5

94.5:5.5

93:7

93:7

90:10

95.5:4.5

97:3

yield (%)b

(-)-4aconditions
e.r.c

(-)-4aL

 
aReaction conditions: 3a (0.05 mmol), Cu(CH3CN)4PF6 (0.005 
mmol), L (0.006 mmol), NaBArF

4 (0.006 mmol), solvent (1 mL),  
30-40 °C, 2-24 h, in Schlenk tubes. bMeasured by 1H NMR using 
2,6-dimethoxytoluene as the internal standard. cDetermined by 
HPLC analysis. PMP: 4-methoxyphenyl. 

Based on the optimized reaction conditions (Table 5, entry 
14), we also evaluated the scope of the asymmetric cascade 
cyclization of ynamides 3 (Table 6). Besides the Ts-protected 
substrate 3a, ynamides with different N-protected groups such 
as SO2Ph-, MBS- and Bs-protected N-propargyl ynamides 
were also tolerated, affording the corresponding tricyclic N-
heterocycles (-)-4b (70%, 95:5 e.r.), (-)-4c (80%, 96:4 e.r.), (-
)-4d (71%, 96.5:3.5 e.r.), respectively. The absolute configura-
tion of (-)-4d was unambiguously determined to be (R) by X-
ray diffraction (Figure 2). Then, various aryl-substituted yna-
mides (R1 = Ar) bearing both electron-donating and -
withdrawing groups were investigated to generate the desired 
products (-)-4e–4h in 63-76% yields with the e.r. of 89:11-
91:9, and a longer reaction time was needed in the latter case. 
The reaction was also extended to the heterocycle-substituted 
ynamide 3i. In addition, a variety of aryl- and naphthyl-
substituted N-propargyl ynamides were also screened and  

Table 6. Scope of the Asymmetric Cascade Cyclization of 
Ynamides 3a  

 

aReaction conditions: 3 (0.2 mmol), Cu(CH3CN)4PF6 (0.02 mmol), 
L11 (0.024 mmol), NaBArF

4 (0.024 mmol), toluene (3 mL), 20 oC, 
18-72 h, in Schlenk tubes; yields are those for the isolated prod-
ucts; ers are determined by HPLC analysis. bAt 25 °C. cAt 30 °C. 
dAt 0 °C. e(S)-SEGPHOS was employed as chiral ligand. 
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Figure 2. Structure of compound (-)-4d in its crystal. 

transformed into the desired pyrrole-fused indenes (-)-4j–4r 
in generally good to excellent yields with the e.r. of 92:8-96:4. 
Our attempts to extend the reaction to alkyl- or alkenyl-
substituted ynamide only led to the formation of the corre-
sponding products in low yields (<30%).21 Finally, it was 
found that the reaction occurred smoothly by employing (S)-
SEGPHOS as chiral ligand, delivering the desired (+)-4a in 
76% yield and e.r. of 5:95 with the opposite enantioselectivity.  

Scheme 2. Gram-Scale Reaction and Synthetic Transfor-
mations 
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Further synthetic transformations of the as-synthesized pyr-
role-based cyclopropanaphthalenes and -indenes were then 
explored (Scheme 2). First, facile deprotection of (+)-2a, 
which could be synthesized on a gram scale in excellent yield 

and enantioselectivity under the standard conditions, led to the 
formation of 2ac in almost quantitative yield. Then, protection 
of 2ac with Me and Boc group afforded the desired 2ad in 
82% yield and 2ae in 80% yield, respectively. In addition, the 
N-Ts group in (-)-4a, prepared on a gram scale in 75% yield 
with the e.r. of 96:4 in the presence of only 3 mol % of 
Cu(CH3CN)4PF6 and 3.6 mol % of L11 and NaBArF

4, could be 
selectively reduced into the corresponding dihydropyrrole 4aa 
in 94% yield and pyrrolidine 4ab bearing three contiguous 
stereocenters with excellent diastereoselectivity (d.r. > 50/1) in 
77% yield, respectively. Of note, this tricyclic pyrrolidine 
motif can be found in a variety of bioactive molecules and 
may be of medicinal interest.22 Importantly, the enantioselec-
tivity was well maintained in all these transformations. 

To understand the mechanism of this diyne cyclization, sev-
eral control experiments were conducted. First, it was found 
that when ynamide 3s was subjected to this copper-catalyzed 
cascade reaction, the corresponding alkene-pyrrole 5a was 
isolated in 27% yield (eq 1).21 Interestingly, the reaction of 
methyl-blocked diyne 3t with styrene under the current copper 
catalysis could lead to the formation of the corresponding 
pyrrole-based cyclopropane 5b in 80% yield (eq 2). In addi-
tion, the reactions were also conducted in the presence of 5 
equiv of CD3OD by employing Cu(I) and Au(I) catalysts, re-
spectively, and substantially different deuterium incorporation 
(<1% vs 30%) was observed (eq 3). These results further con-
firm that copper carbenes are presumably involved as key in-
termediates in such a cascade cyclization, which has been 
strongly supported by the realization of the above asymmetric 
process. Thus, the copper-catalyzed diyne cyclization is dis-
tinctively different from the related gold catalysis, where the  
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vinyl cation intermediate is presumably involved.20b Moreo-
ver, we also performed deuterium labeling studies and found 
that two deuteriums on the methylene group of substrate are 
totally transferred to two deuteriums on the pyrrole α-positions, 
thus indicating that this process is most likely to involve an 
intramolecular hydride shift (eq 4). Finally, the relevant kinet-
ic isotopic effect (KIE) studies were also performed, and no 
significant primary kinetic isotope effects were observed,21 

which indicated that the cleavage of aromatic C−H bond 
should not be involved in the rate-limiting step. 

On the basis of the above experimental results and previous 
protocols on ynamide chemistry,18 a plausible mechanism for 
the synthesis of tetracyclic pyrrole 2a and tricyclic pyrrole 4g 
is illustrated in Scheme 3 (path a). Initially, electron-rich 
ynamide moiety attacks the [Cu]-activated another C−C triple 
of 1a to afford the vinyl copper intermediate A23,24 or its reso-
nance form B.10a Subsequent [1,4]-H shift25,26 generates the 
donor/donor copper carbene intermediate C. Of note, C-H 
insertion followed by electrocyclic ring opening via the for-
mation of Dewar pyrrole may also be possible for this pro-
cess.25b,27 Finally, intermediate C undergoes intramolecular 
cyclopropanation to deliver the desired product 2a in the case 
of R = styryl. Alternatively, [1,4]-H shift may occur first and 
then form the copper carbene C. In the case of R = H, the 
formed donor/donor copper carbene intermediate would be 
trapped by the aryl group via C−H insertion, furnishing the 
corresponding tricyclic pyrrole 4g. In particular, the use of 
chiral copper complexes would lead to the chiral tricyclic pyr-
roles. Instead, the vinyl cation intermediate E, which is gener-
ated from the phenyl acetylene group attack of [Cu]-activated 
ynamide (path b), is presumably involved in the related gold 
catalysis.20b 

Scheme 3. Plausible Reaction Mechanism 

 

CONCLUSION 

In summary, we have developed an efficient copper-catalyzed 
enantioselective tandem reaction of N-propargyl ynamides via 
intramolecular cyclization-initiated cyclopropanation and C−H 
insertion, enabling the practical and atom-economical 
construction of diverse chiral polycyclic pyrroles in generally 

good to excellent yields with wide substrate scope and 
excellent enantioselectivities (up to 97:3 e.r.). To our best 
knowledge, this protocol represents the first copper-catalyzed 
asymmetric diyne cyclization. Moreover, mechanistic studies 
revealed that this copper-catalyzed 1,5-diyne cyclization 
presumably proceeds through donor/donor copper carbene 
intermediates, which is distinctively different from the related 
gold catalysis. Thus, the generation of donor/donor metal 
carbenes directly from diyne cyclization is achieved, which 
constitutes a novel way for the generation of metal carbenes 
via non-diazo approach. The development of non-noble metal-
catalyzed asymmetric cascade cyclization of ynamides for 
heterocycle synthesis and mechanistic investigations are the 
subjects of ongoing research in our laboratory.  
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