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A 2-substituted-8-hydroxyquinoline ligand (E)-2-[2-(4-nitrophenyl)ethenyl]-8-hydroxyquinoline (HL) was
synthesized and characterized by ESI-MS, NMR spectroscopy and elemental analysis. Using solvothermal
method, a dimeric complex [Zn2Cl2L2]·2DMF (1) was fabricated by self-assembly of Zn(II) ions with ligand
HL, and characterized with single-crystal X-ray diffractions, powder X-ray diffractions (PXRD), thermal anal-
yses (TGA) and elemental analyses (EA). Complex 1 features a lamellar solid constructed by aromatic stac-
king interactions and nonclassical C\H…O hydrogen bonds. To further investigate the property of the
above complex, the photoluminescent properties of 1 are also discussed.

© 2012 Elsevier B.V. All rights reserved.
Since the reports by C. W. Tang and Vanslyke [1], organic light-
emitting diodes (OLEDs) have received considerable attention due to
their potential application in various displays [2–4]. The organic devices
offer clear advantages over inorganic counterparts, such as low cost and
high luminous efficiency. These devices are able to produce all emission
colors in accordancewith awide selection of organic emittingmaterials.
Over the years, extensive efforts have been devoted to the development
of highly efficient OLEDs, especially the white OLEDs. To obtain white
emission, various strategies for small-molecule OLEDs have been devel-
oped,mainly concerning fabricatingmultiplayer devices by consecutive
evaporation involving three primary colors (blue, green, and red) or
two special colors (blue and yellow). However, multiplayer construc-
tion of devices will increase the cost of fabrication processes. In order
to reduce the cost and obtain white OLEDswithminimal process of fab-
rication, it would be necessary to discover multifunction and highly ef-
ficient yellow light‐emitting materials.

Motivated by the success of tris(8-hydroxyquinolinato)aluminum
(Alq3) in vacuum-deposited LEDs, organic chelate metal complexes
based on 8-hydroxyqunoline derivatives have in particular attracted a
lot of attention [5]. Recent reports have suggested that the zinc analog
of Alq3, bis(8-hydroxyquinoline) zinc (II) (Znq2) complexesmay be po-
tential candidates to enhance the electron-transporting properties for
OLEDs [6]. Additionally, Sapochak et al. revealed that improvements of
EL performance might be achieved by control of the oligomerization
of 8-hydroxyquinoline chelates of Zn(II) and/or by improving the PL ef-
ficiency by judicious substitution of the ligand [6b]. In contrast, many
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solid EL metal complex materials have only been identified by their
chemical compositions rather than their structures. So some of their
molecular structures may bemuchmore complicated than their empir-
ical formulae. These Zn(II) complexes may actually be characterized to
be dimeric or multinuclear structures in the solid [7]. This fact shows
that in the absence of X-ray structures, some conclusions about their lu-
minescence properties may be controversial [8]. Therefore, it is impor-
tant to obtain the single crystal because X-ray diffraction on single
crystals is the best method for providing their molecular structure and
packing. On the other hand, in order to retain the excellent photoelec-
tron properties of 8-hydroxyquinoline itself and achieve yellow-light
emission, a feasible approach is to modify the 2-, 5- or 7-position of
the 8-hydroxyquinoline rings with different functional groups [9]. In-
spired by these results, we have focused on the synthesis ofmultinuclear
zinc(II) complexes based on novel substituted 8-hydroxyquinoline [10],
which indicated that the trimeric zinc(II) complexes emit yellow lumi-
nescence in solution and solid state.

In our continuing efforts to design and synthesize yellowemittingma-
terials, we have obtained some novel substituted 8-hydroxyquinoline
ligands successfully, and report herein the syntheses, crystal structure,
and luminescence property of one neutral, dimeric Zn(II) complexes,
namely [Zn2Cl2L2]·2DMF (1) [HL=(E)-2-[2-(4-nitrophenyl)ethenyl]-8-
hydroxyquinoline]. The supramolecular structure of 1 features a lamellar
solid constructed by aromatic stacking interactions and nonclassical
C\H…O hydrogen bonds. We also investigated its thermal stability, fluo-
rescence property, which indicated that 1 emits yellow luminescence at
579 nm in the solid state.

As outlined in Scheme 1, bidentate ligand HL (2) [11] was synthesized
byDeacetylation of (E)-2-[2-(4-nitrophenyl)ethenyl]-8-acetoxyquinoline
[12], which was obtained by the condensation of 8-hydroxyquinaldine
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Scheme 1. Synthesis of ligand HL and complex 1.
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with 4-Nitrobenzaldehyde in acetic anhydride. Heating ZnCl2 and HL in a
mixture of DMF andMeOH afforded red, block crystals [13]. It was formu-
lated as Zn2Cl2L2·2DMF on the basis of X-ray crystallography, elemental
analysis and IR spectroscopy.

Single-crystal structure analysis reveals that 1 crystallizes in the tri-
clinic space group P-1 with Z=2 [14]. The asymmetric unit contains
one half of a formula unit, that is, one unique Zn(II) atom, ligand L, a
chlorine atom and one coordinated DMF molecule (Fig. 1). The struc-
ture of 1 is built around a dimeric Zn (II) structure. The zinc atoms
(Zn1 and Zn1A) found in the dimeric unit are pentacoordinate, and
adopt a trigonal–bipyramidal geometry with the equatorial plane occu-
pied by the NO2 donors of two L ligands and the apical position by one
chlorine atom and one oxygen atom of DMFmolecule. The bond lengths
around Zn(II) are 1.999(2)–2.151(2) for Zn1–O, 2.206(2) for Zn1–N and
2.267(8) for Zn1–Cl, respectively. The two Zn(II) ions are bridged by
phenolato oxygen atoms of two L ligands, with the Zn…Zn distance of
3.346(3) Å and the Zn\O\Zn angle of 107.406(5)°. However, complex
1 appears to be neutral, since its hydroxyl groups of coordinated L li-
gands are deprotoned.

There are significant hydrogen bonds in 1.Weak nonclassical C\H…Cl
intramolecular hydrogen bonds between chlorine atom and the C\H
group of DMF (C…Cl=3.376 Å; C\H…Cl=126.0°) as well as inter-
molecular nonclassical C\H…O hydrogen bonds involving the aromatic
C\H groups and oxygen atoms of adjacent 4-nitrophenyl units of ligands
L (C…O=3.322 Å; C\H…O=148.0°) play a vital role in the consolida-
tion of the solid structure (Fig. 2). Moreover, it is notable that each clus-
ter of 1 involves abundant intermolecular π…π stacking interactions. As
shown in Fig. 3, each ligand is parallel to the one in the side of the neigh-
boring unit along the a axis, and π…π interaction exists between quino-
line and 4-nitrophenyl rings with a face-to-face distance of 3.594 Å. By
the coactions of the two kinds of noncovalent interactions, the structure
extends to a 3D network.

To prove that the crystal structure of dimeric 1 is truly representa-
tive of their bulk materials, X-ray powder diffraction (XRPD) experi-
ment was carried out on the as-synthesized samples. As we can see in
Fig. 1. Perspective views of the coordination geometries of Zn(II) atoms w
Fig. 4, the XRPD experimental patterns of 1 are in good agreement
with the simulated pattern. The thermal stability of 1 was investigated
through thermogravimetric analysis (TGA) experiments (Fig. 5) in the
temperature range of 40–800 °C under a flow of nitrogen with heating
rate of 10 °C·min−1. There is no obvious weight loss until 200 °C. On
further heating, the complexes decompose rapidly until about 225 °C
(weight loss for 1: 15.70%), which well corresponds to the loss of two
coordinated DMF molecules (calcd: 15.73%). The weight loss of 7.68%
from 422 to 455 °C was due to the release of two coordinated chlorine
atoms (calcd 7.65%). The organic groups start to decompose gradually
after the temperature increases to 460 °C. FromTGA results, the dimeric
complex is found to have formed stable five-membered chelate rings,
which may be attributed to the fact that the M\N and M\O bonds
are highly polarized. [15] Together with the results of the elemental
analyses, we can conclude that the synthesized bulk materials of 1
have high purity.

Luminescent properties of compounds HL and 1were investigated
in the solid state at room temperature (Fig. 6). The fluorescent spectra
of HL and 1 display maximum emission wavelengths at 536 and
579 nm upon excitation at 370 nm, respectively. The results indicate
that the complex 1 has yellow emission, which predominantly origi-
nates from metal-to-ligand charge transfer (MLCT) transition in the
solid state. However, the corresponding complex 1 exhibits a red
shift in the solid state compared with free ligand HL. The results
may be attributed to the following two reasons: the coordination of
metal ions enhances the mobility of the electron transition in back-
bone due to back-coupling π-bond between the metal and the ligand,
and decreases the electron transition energy of intraligand charge
transfer. On the other hand, the ligand is coordinated with metal
ions to form additional five-membered rings, which increases the
π–π* conjugation length and the conformational coplanarity, accord-
ingly reduces the energy gap between the π and π* molecular orbital
of the ligand [10]. Finally, the emission peak of compound 1 was red
shifted by ≈37 nm compared to that of Znq2 (542 nm). [16] This
red shift is connected to the 2-substituted 2-(4-nitrophenyl)ethenyl
ith 50% probability ellipsoids in 1 (H atoms were omitted for clarity).



Fig. 2. The supramolecular structure of 1 mediated by C\H…O hydrogen bonding (yellow dashed lines).
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group of ligand HL and the supramolecular interactions in 1. Howev-
er, this efficient yellow light‐emitting material has potential signifi-
cance for its employment in the white OLEDs.

In conclusion, a unique dimeric complex was fabricated by self-
assembly of Zn(II) ions with a 2-substituted-8-hydroxyquinoline ligand.
The supramolecular structure of 1 features a lamellar solid constructed
Fig. 3. π…π stacking interactions between q
by aromatic stacking interactions and nonclassical C\H…O hydrogen
bonds. Additionally, the luminescence properties of compound 1 show
that it emits yellow luminescence in solid state.With a precise knowledge
of their single-crystal structures, the present research holds great promise
in the development of novel multinuclear zinc(II) optical materials, and
may contribute to the understanding of structure–property relationships.
uinoline and 4-nitrophenyl rings in 1.
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Fig. 6. Fluorescent emission spectra of 1 and HL in the solid state at room temperature.

Fig. 5. TGA curves of complex 1.

Fig. 4. XRD patterns of complexes 1.
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Appendix A. Supplementary material

CCDC 878062 contains the supplementary crystallographic data for
1. The data can be obtained free of charge via bhttp://www.ccdc.cam.
ac.uk/conts/retrieving.html>, or from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:(+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data to
this article can be found online at http://dx.doi.org/10.1016/j.inoche.
2012.06.015.
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