ORIGINAL RESEARCH

Synthesis and in vitro evaluation of ferutinol aryl esters for estrogenic activity and affinity toward cannabinoid receptors

Ahmed M. Galal Osman · Ehab A. Abourashed · Desmond Slade · Safwat A. Ahmed · Waseem Gul · Shabana I. Khan · Tarek Abo Elfadl · Olivia R. Dale · Afeef S. Husni · Stephen J. Cutler · Mahmoud A. ElSohly

Received: 12 August 2014/Accepted: 26 December 2014 © Springer Science+Business Media New York 2015

Abstract Ferutinin (1), the major constituent of *Ferula* hermonis and other Ferula species, is a sesquiterpene ester with remarkable estrogenic activity, beside other valuable medicinal properties. To investigate the influence of chemical modification of the ferutinin structure on its estrogenic effect and binding affinity toward the cannabinoid CB1 and CB2 receptors, twelve derivatives of 1 were prepared and evaluated in vitro, together with the parent compound, for the respective bioactivities, based on the recent evidence for estrogen–endocannabinoid interaction. Nine of the prepared derivatives (3-11) are new semisynthetic esters of 1. The parent compound ferutinin (1) exhibited the highest level of estrogenic

A. M. G. Osman (⊠) National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

e-mail: amgalalv@olemiss.edu

E. A. Abourashed Department of Pharmaceutical Sciences, Chicago State University, Chicago, IL 60628, USA

D. Slade MRI Global, 425 Volker Boulevard, Kansas City, MO, USA

S. A. Ahmed Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt

W. Gul · M. A. ElSohly ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA

S. I. Khan

National Center for Natural Products Research and Department of Biomolecular Science, School of Pharmacy, The University of Mississippi, University, MS 38677, USA activity (EC₅₀ 0.3 μ M and a percent maximal 17 β estradiol response of 90 % at 1 μ M). Compound **6** was found to be a selective agonist for CB2 receptor (EC₅₀ 0.051 μ M, Ki 0.025 μ M), with much less affinity for CB1 receptor (EC₅₀ 97 μ M, Ki 48.5 μ M). Compound **8** was a selective agonist for CB1 (EC₅₀ 62, Ki 0.031 μ M) with no affinity toward CB2.

Keywords Ferutinin · *Ferula hermonis* · Semi-synthetic derivatives · Estrogenic activity · Cannabinoid receptors

T. A. Elfadl

Department of Pharmaceutical Chemistry, Asuit University, Asuit, Egypt

O. R. Dale National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA

A. S. Husni · S. J. Cutler Division of Medicinal Chemistry, Department of Biomolecular Science, University of Mississippi, University, MS 38677, USA

M. A. ElSohly (🖂) Department of Pharmaceutics, University of Mississippi, University, MS 38677, USA e-mail: melsohly@olemiss.edu

Introduction

Ferutinin (1), the major constituent of Ferula hermonis Boiss. (family Apiaceae), is known to possess antioxidant (Ibraheim et al., 2012), acetylcholinesterase inhibition (Dall'Acqua et al., 2010), nitric oxide synthase enhancing activities (Colman-Saizarbitoria et al., 2006), and in vitro induction of apoptosis in human RBCs (Gao et al., 2013). Ferutinin also binds to estrogen receptors (ER) in vitro, acting as an agonist for ER α and an agonist/antagonist for ER β , hence displaying estrogenic and antiestrogenic activity, respectively (Appendino et al., 2004; Ikeda et al., 2002; Zanoli et al., 2005). The in vivo evaluation of ferutinin on sexual behavior of male rats revealed that it is able to stimulate sexual behavior in impotent male rats after acute ingestion. It also exerted a negative influence on the sexual capacity of potent male rats by reducing testosterone serum levels as well as negatively affecting appetitive and consummatory sexual behavior (Hadidi et al., 2003; Zanoli et al., 2003; Zanoli et al., 2005). The effect of ferutinin on sexual behavior of female rats indicated that it did not have the capacity to alter sexual motivation. However, it significantly inhibited female receptivity, suggesting an important role for ferutinin in sexual behavior impairment of hormone-primed female rats (Zanoli et al., 2009; Zavatti et al., 2006). In addition, ferutinin was demonstrated to possess antiosteoporotic effect as potent as estradiol benzoate on bone mass, and in a number of cases, it was reported to be superior to the human estrogen (Palumbo et al., 2009). A published molecular modeling and QSAR studies established that the estrogenic activity of ferutinin is attributed to the presence of the *p*-hydroxybenzoyl moiety as well as substitution of the daucane double bond (Rasulev et al., 2007). Recent reports indicated that 17β -estradiol interacts with the endocannabinoid receptors (CB1 and CB2)

and may, thus, have a modulating effect on colon cancer cell growth (CB1) or osteoblast differentiation (CB2) (Proto et al., 2012), (Sophocleous et al., 2011). Ligands for CB1 and CB2 receptors have emerged as lead compounds in developing therapeutic agents for a number of health disorders, such as diabetes, drug dependence, obesity, neurodegenerative diseases, including multiple sclerosis (Diaz et al., 2008; Greineisen and Turner, 2010; Guindon and Hohmann, 2008; Malfitano et al., 2013; Pryce et al., 2014; Ribeiro et al., 2013; Rivers and Ashton, 2010). The recent discovery of β -caryophyllene as a non-cannabinoid CB2 selective agonist $(Ki = 0.155 \ \mu\text{M})$ of plant origin warrants further investigation to discover natural products with better or comparable activity (Gertsch et al., 2010). Based on the above-mentioned literature data, in particular the recently discovered relationship between estrogens and the endocannabinoid system, the goal of this work was to prepare a number of ferutinin derivatives, establish their identity via spectroscopic analysis, primarily 1D and 2D NMR, in addition to UV and HRESMS, and examine their estrogenic activity as well as their interaction with the cannabinoid receptors. The structural modification of ferutinin (1) was mainly targeting the aromatic core, since this part of the molecule has been proven to significantly contribute to the estrogenic activity (Rasulev et al., 2007) and might also affect the affinity toward the cannabinoid receptors. Thus, compounds 3-9 (Scheme 1) were prepared with psubstituents conceivably capable of forming stronger hydrogen or halogen bonds with the estrogen/cannabinoid receptors in lieu of the *p*-hydroxyl group, which would presumably enhance their effect. Compound 10 (Scheme 2) was prepared to evaluate the effect of introducing a multifunctional aromatic core, capable of forming hydrogen bonds, in an attempt to enhance the binding affinity. Compounds 11 and 12 (Scheme 2) were also prepared to introduce oxygen-carrying

Scheme 1 Reagents and conditions: a KOH, reflux, 2 h; b toluene, acid chloride, Et₃N, DMAP, reflux

Scheme 2 Reagents and conditions: a CH₂Cl₂, nalidixic acid, 0 °C, Et₃N, ethylchloroformate, overnight stirring; b CH₂Cl₂/MeOH, mesotetraphenylporphine, O₂, light, 13 °C, 3 h; c Pd(C)/MeOH, 24 h

functionalities in the daucane core and examining their effect on receptor binding affinity. Compound **13** (Scheme 2) was hitherto prepared and tested for estrogenic (Appendino *et al.*, 2004), but not for binding affinity at the cannabinoid CB1 and CB2 receptors. The daucane alcohol (hydrolysis product of **1**, ferutinol or jaeschkeanadiol **2**) was also evaluated along with the other derivatives.

Results and discussion

Chemistry

Alkaline hydrolysis of ferutinin (1) was exploited as the pivotal step toward the preparation of the new ester analogs of **1**. Coupling of the resulting daucane alcohol **2** to the relevant acyl chloride or nalidixic acid afforded compounds **3–10** in yields sufficient for full characterization

and biological evaluation of these new compounds. Compound **10** was synthesized using nalidixic acid and ethylchloroformate activation to form a mixed carboxylic– carbonic anhydride which was then decomposed to afford **10**. Compounds **11** and **12** were synthesized via singlet oxygen photooxygenation of ferutinin, using *meso*-tetraphenylporphine as a photosensitizer and incandescent light to afford 9-hydroperoxyferutinin and 8,9-epoxyferutinin (Galal *et al.*, 2001; Wasserman *et al.*, 1986), respectively. The epoxy compound (**12**) was found to be identical with a natural one that has been previously isolated (Galal, 2000). The 8,9-dihydroferutinin (**13**) (Scheme 2) was prepared following a published procedure (Appendino *et al.*, 2004).

Bioassays

Compounds 1-13 were evaluated in vitro for estrogenic activity and binding to cannabinoid (subtype CB1 and

CB2) receptors. Compound 1 exhibited the highest estrogenic activity among all the tested compounds with an EC_{50} of 0.3 μ M, which is in line with earlier results reported by Appendino et al. (Appendino et al., 2004). Of the semisynthetic analogs, only 3, 4, and 11 exhibited weak activities (EC₅₀ = 310.0, 300.0, and 16.0 μ M, respectively, Table 1). The estrogenic activity of compound 12 was previously reported to be comparable to 1 (Appendino et al., 2004). Overall, the estrogenic activities displayed by the compounds included in the current study were weaker than that of the human estrogen 17β -estradiol (EC₅₀) 0.005μ M). Modifications at the aromatic *p*-position, removal of the aromatic system, and relocation of the daucane double bond all lead to significant reduction or loss of estrogenic activity of 1. Compound 10 did not show any affinity despite possessing a heteroaromatic moiety with two nitrogen atoms, which was presumed to enhance the binding affinity through formation of hydrogen bonding between the aromatic system and the receptor site. This might be due to the existence of a bulk interaction between 10 and the receptor site that leads to failure of binding. In a recent report, Proto et al. (2012) demonstrated the interaction between 17β-estradiol and the CB1 receptor to suppress colon cancer cell proliferation. This finding, in conjunction with the fact that 1 possesses pronounced estrogenic activity, prompted us to evaluate parent compound 1 and the derivatives 2-13 for their binding affinity toward CB1 and CB2 receptors (Table 2). Compounds that showed sufficient binding affinity to the cannabinoid receptors were developed to the functional assays (Table 3). Compounds 6 and 8 showed significant and selective affinity to CB2 and CB1, with Ki 25 and 31 nM, respectively. In the functional assays, both 6 and 8 were shown to be agonists at CB2 and at CB1, respectively. The parent compound **1** exhibited much weaker binding affinity to both receptors, with Ki 7100 and 3634 nM at the CB1 and CB2, respectively. Ferutinin (1) and its 8,9-dihydroferutinin derivative (13) did not show any noticeable activity, indicating the insignificance of the double bond for the CB1 or CB2 binding. The binding affinity of the epoxide derivative (12) at CB1 when compared to that of ferutinin was found to be relatively weaker. Replacement of the hydroxyl group of the *p*-hydroxyphenyl residue with bromine or iodine, in an attempt to enhance the ability of formation of hydrogen/halogen bonds with the amino acid residues at the receptor site to increase binding affinity, resulted in marginal improvement. The fluoro-derivative exhibited weaker affinity at the CB2. Likewise, replacement of the hydroxyl with cyano group leads to a relative improvement in the binding affinity for CB1. Replacement of the *p*-hydroxyphenyl moiety of ferutinin with pyridine moiety marginally enhanced the binding affinity toward CB2 receptor. Compounds 6 and 8 displayed significant

Table 1 Estrogenic activity of compounds 1, 3, 4, and 11

Compound	Estrogenic activity		
	EC50 (µM)	% Maximal 17β-estradiol response	
1	0.3	90 % at 1 μM	
3	310.0	44 % at 500 μM	
4	300.0	99 % at 500 μM	
11	16.0	79 % at 125 μM	
17β-estradiol	0.005	-	

EC50: half maximal effective concentration

% maximal response = (max sample absorbance/max 17 β -estradiol absorbance) \times 100

Compounds 2, 5, 6, 7, 8, 9, and 10 were inactive (No estrogenic effect up to 500 μ M)

Table 2 Binding affinity of compounds 1-13 for CB1 and CB2 receptors expressed as Ki (nM)

Compound CB1/Ki (µM)		CB2/Ki (µM)
1	7.08	3.63
2	130.80	52.00
3	2.50	0.78
4	1.59	0.12
5	NT^{a}	4.30
6	0.33	4.35
7	4.05	NT
8	0.922	0.55
9	25.20	0.58
10	9.20	0.46
11	NT	NT
12	9.17	NT
13	11.86	4.46

^a Not tested

Table 3 Results of functional assays of compounds 3, 4, 6, 8, and 9for CB1 and CB2 receptors

Compound	CB1/Ki (µM)	CB2/Ki (µM)		
3	1.24	NA^{a}		
4	27.96	NA		
6	48.50	0.025		
8	0.03	NA		
9	1.10	0.499		
CP-55,940	0.0008	0.0021		

^a No activity

binding affinities at CB1 and CB2, respectively, and were found to be agonists for CB2 and CB1 receptors, respectively, as shown in (Table 3) and (Fig. 1). Compound **11** was not tested for binding affinity to the cannabinoid receptors owing to low yield and decomposition. In Fig. 1 Dose–response curves of compounds 3, 4, 6, 8, and 9 at cannabinoid receptors (CB1 and/or CB2)

conclusion, these results warrant further investigation of compounds 6 and 8, as cannabinoid agonists, for possible development as potential therapeutic candidates. Further modifications are thus needed to characterize the structural parameters of this series of ferutinin derivatives necessary for binding to the cannabinoid receptors. The results of binding assays are displayed in (Table 2), whereas the results of functional assays are shown in (Table 3) and (Fig. 1).

Conclusion

Compounds 3-13 were synthesized from readily available starting materials and utilizing straightforward reactions. The new compounds in addition to 1 and 2 were evaluated for their in vitro estrogenic activities as well as affinity to cannabinoid receptors. Compounds 2-11 exhibited estrogenic activities that were weaker than the parent compound 1. Nevertheless, compounds 6 and 8 showed significant binding affinities at the cannabinoid receptors and were found to be agonists for CB2 and CB1, respectively, as shown in (Table 3) and (Fig. 1). The current results necessitate further investigation for possible development of compounds 6 and 8 as potential therapeutic candidates.

Experimental

Chemistry

General experimental procedures 1D and 2D NMR spectra were recorded in CDCl₃ on a Bruker Avance DPX-400 spectrometer and on a Varian AS 400 spectrometer. HRESIMS was obtained using a Bruker Bioapex FTMS in ESI mode. LRESIMS was obtained using a 3200 Q Trap LC/MS/MS (Applied Biosystems MDS Sciex, Foster City, CA). TLC was carried out on aluminum-backed plates precoated with silica gel F_{254} (20 × 20 cm, 200 μ M, 60 Å, Merck). Visualization was accomplished by spraying with *p*-anisaldehyde [0.5 mL in glacial acetic acid (50 mL) and H₂SO₄ (97 %, 1 mL)] spray reagent followed by heating. Flash silica gel (40–63 μ M, 60 Å, Silicycle) was used for column chromatography. Ferutinin (1) was prepared and characterized as described elsewhere (Galal *et al.*, 2001).

General procedure for synthesis of ferutinol esters (3-9) The sesquiterpenediol starting material, 2, was prepared via alkaline hydrolysis of 1 by refluxing with 10 % KOH for 2 h. The liberated alcohol was subsequently extracted with ether followed by vacuum removal of solvent to obtain 2. The identity of 2 was confirmed by comparison of its NMR data with the literature. Ferutinol 2 (75 mg, 0. 315 mmol) was dissolved in dry toluene (3 mL), 0.5 mL of

triethylamine added, and the reaction mixture was stirred until clear solution was obtained. To this solution was added each of the following acid chlorides (two equivalents): pchlorobenzovl chloride, p-bromobenzovl chloride, p-iodobenzoyl chloride, p-fluorobenzoyl chloride, p-cyanobenzoyl chloride, p-trifluoromethylbenzoyl chloride, and isonicotinovl chloride hydrochloride plus a catalytic amount of 4-dimethylaminopyridine (DMAP). The reaction mixture was heated at 95-100 °C for 2-12 h, during which time the progress of the reaction was monitored by TLC. The reaction was quenched when TLC showed the disappearance or the presence of persistent traces of the starting material. The reaction mixture was then purified on silica gel column or by preparative TLC to isolate the target compounds. Isonicotinovl chloride hydrochloride was dissolved in triethylamine, since it is insoluble in toluene.

Ferutinyl 6-p-bromobenzoate (3) Yield, 26 %, oil; $R_{\rm f} = 0.7$ (Hexanes-EtOAc, 80:20); UV (MeOH) $\lambda_{\rm max}$ 235 sh, 250 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.83 (3H, d, J = 6.8 Hz, H-12), 0.95 (3H, d, J = 7.2 Hz, H-13), 1.10 (3H, s, H-15), 1.81 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz)H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.52 (1H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-7), 1.50–1.67 (4H, m, H-2, H-3), 5.29 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.54 (1H, t, J = 6.2 Hz, H-9), 7.57 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.85 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.3 (C-1), 32.1 (C-2), 41.2 (C-3), 86.5 (C-4), 60.1 (C-5), 72.0 (C-6), 44.3 (C-7), 133.5 (C-8), 125.5 (C-9), 41.5 (C-10), 37.5 (C-11), 18.7 (C-12), 17.7 (C-13), 26.7 (C 14), 20.4 (C-15), 166.0 (C-1'), 129.6 (C-2'), 131.3 (C-3'), 132.0 (C-4'), 128.5 (C-5'), 132.0 (C-6'), 131.3 (C-7'); HRESIMS: m/z 443.1211 $[M + Na]^+$ (calcd for C₂₂H₂₉BrNaO₃, 443.1198).

Ferutinyl 6-*p*-*iodobenzoate* (4) Yield 27.1 %, white amorphous solid; $R_f = 0.76$ (Hexanes- EtOAc, 83:17); UV (MeOH) λ_{max} 255 nm; ¹H NMR (400 MHz, CDCl₃): δ 0.83 (3H, d, J = 6.8 Hz, H-12), 0.94 (3H, d, J = 7.2 Hz, H-13), 1.10 (3H, s, H-15), 1.80 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.50 (1H, m, H-11), 2.27 (1H, d, J = 14.0 Hz, H-5) 2.47 (2H, m, H-5) 2.47 (2H, m, H-11), 2.27 (1H, d, J = 14.0 Hz, H-5) 2.47 (2H, m, H-11)H-7), 1.50–1.66 (4H, m, H-2, H-3), 5.27 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.53 (1H, bt, J = 6.2 Hz, H-9), 7.70 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.77 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (100 MHz, CDCl₃): δ 44.3 (C-1), 32.2 (C-2), 41.2 (C-3), 86.5 (C-4), 60.1 (C-5), 72.0 (C-6), 44.3 (C-7), 133.5 (C-8), 125.5 (C-9), 41.5 (C-10), 37.5 (C-11), 18.7 (C-12), 17.7 (C-13), 26.7 (C 14), 20.4 (C-15), 166.7 (C-1'), 130.2 (C-2'), 131.9 (C-3'), 138.0 (C-4'), 101.3 (C-5'), 138.0 (C-6'), 131.9 (C-7'); HRESIMS: m/z 491.1063 $[M + Na]^+$ (calcd for C₂₂H₂₉INaO₃, 491.1059).

Ferutinyl 6-p-fluorobenzoate (5) Yield 33.4 %, white amorphous solid; $R_{\rm f} = 0.62$ (Hexanes- EtOAc, 85:15); UV

(MeOH) λ_{max} 225 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.83 (3H, d, J = 6.8 Hz, H-12), 0.95 (3H, d, J = 7.2 Hz, H-13), 1.10 (3H, s, H-15), 1.81 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.52 (1H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-7), 1.50–1.67 (4H, m, H-2, H-3), 5.29 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.54 (1H, t, J = 6.2 Hz, H-9), 8.53 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.13 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.3 (C-1), 32.1 (C-2), 41.2 (C-3), 86.5 (C-4), 60.1 (C-5), 72.0 (C-6), 44.3 (C-7), 133.6 (C-8), 125.5 (C-9), 41.5 (C-10), 37.5 (C-11), 18.7 (C-12), 17.7 (C-13), 26.7 (C 14), 20.4 (C-15), 165.8 (C-1'), 126.9 (C-2'), 132.3 (C-3'), 116.6 (C-4'), 161.4 (C-5'), 116.6 (C-6'), 132.3 (C-7'); HRESIMS: *m*/z 383.2001 [M + Na]⁺ (calcd for C₂₂H₂₉FNaO₃, 383.1998).

Ferutinyl 6-*p*-chlorobenzoate (6) Yield 48 %, white amorphous solid; $R_f = 0.7$ (Hexanes- EtOAc, 85:15); UV (MeOH) λ_{max} 245 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.84 (3H, d, J = 6.8 Hz, H-12), 0.95 (3H, d, J = 7.2 Hz, H-13),1.10 (3H, s, H-15), 1.82 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.52 (1H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-5) 2.49 (2H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-11)H-7), 1.50–1.67 (4H, m, H-2, H-3), 5.30 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.54 (1H, t, J = 6.2 Hz, H-9), 7.42 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.94 (2H, d, J = 8.4 Hz, H-4', H-6'); 13 C NMR (CDCl₃, 100 MHz) δ 44.0 (C-1), 32.0 (C-2), 41.2 (C-3), 86.3 (C-4), 60.0 (C-5), 71.7 (C-6), 44.0 (C-7), 133.3 (C-8), 125.3 (C-9), 41.3 (C-10), 37.2 (C-11), 18.5 (C-12), 17.4 (C-13), 26.4 (C 14), 20.2 (C-15), 165.6 (C-1'), 129.0 (C-2'), 129.0 (C-3'), 132.0 (C-4'), 128.8 (C-5'), 132.0 (C-6'), 129.0 (C-7'); HRESIMS: m/z 399.1710 $[M + Na]^+$ (calcd for C₂₂H₂₉ClNaO₃, 399.1703).

Ferutinyl 6-*p*-*cyanobenzoate* (7) Yield 30.1 %, white amorphous solid; $R_{\rm f} = 0.48$ (Hexanes- EtOAc, 80:20); UV (MeOH) λ_{max} 245 nm; ^1H NMR (CDCl_3, 400 MHz) δ 0.80 (3H, d, J = 6.8 Hz, H-12), 0.94 (3H, d, J = 7.2 Hz, H-13),1.04 (3H, s, H-15), 1.80 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.52 (1H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-5) 2.49 (2H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-11)H-7), 1.50–1.67 (4H, m, H-2, H-3), 5.28 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.51 (1H, t, J = 6.2 Hz, H-9), 8.07 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.71 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.2 (C-1), 32.1 (C-2), 41.2 (C-3), 86.5 (C-4), 60.0 (C-5), 72.5 (C-6), 44.2 (C-7), 133.4 (C-8), 125.6 (C-9), 41.5 (C-10), 37.5 (C-11), 18.7 (C-12), 17.7 (C-13), 26.7 (C 14), 20.3 (C-15), 164.9 (C-1'), 134.6 (C-2'), 130.2(C-3'), 132.5 (C-4'), 116.5 (C-5'), 132.5 (C-6'), 130.2 (C-7'), 118.1 (CN); HRESIMS: m/z 390.2039 $[M + H]^+$ (calcd for C₂₃H₂₉NNaO₃, 390.2045).

Ferutinyl 6-p-trifluoromethylbenzoate (8) Yield 44.4 %, wax; $R_{\rm f} = 0.66$ (Hexanes-EtOAc, 80:20); UV (MeOH)

 $λ_{max}$ 215, 225, 275 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.93 (3H, d, J = 6.8 Hz, H-12), 0.98 (3H, d, J = 7.2 Hz, H-13), 1.13 (3H, s, H-15), 1.83 (3H, s, H-14), 2.12 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.60 (1H, m, H-11), 2.33 (1H, d, J = 14.0 Hz, H-5), 2.32 (2H, m, H-7), 1.25–1.60 (4H, m, H-2, H-3), 5.40 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.60 (1H, t, J = 6.2 Hz, H-9), 8.15 (2H, d, J = 8.4 Hz, H-3', H-7'), 7.75 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.0 (C-1), 32.1 (C-2), 41.3 (C-3), 86.3 (C-4), 60.1 (C-5), 72.3(C-6), 41.3 (C-7), 133.7 (C-8), 125.7 (C-9), 41.4 (C-10), 37.3 (C-11), 18.5 (C-12), 17.3 (C-13), 26.5 (C 14), 20.5 (C-15), 165.2 (C-1'), 133.3 (C-2'), 130.1 (C-7'), 124.9 (CF₃); HRESIMS: m/z 409.1996 [M-H]⁻ (calcd for C₂₃H₂₈F₃O₃, 409.1991).

Ferutinyl 6-*isonicotinate* (9) Yield 40 %; white solid; $R_{\rm f} = 0.15$ (Hexanes-EtOAc, 80:20); UV (MeOH) $\lambda_{\rm max}$ 255, 335 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.84 (3H, d, J = 6.8 Hz, H-12), 0.95 (3H, d, J = 7.2 Hz, H-13), 1.10 (3H, s, H-15), 1.82 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz, H-10a), 2.24 (1H, d, J = 14.0 Hz, H-10b), 2.52 (1H, m, H-11), 2.28 (1H, d, J = 14.0 Hz, H-5) 2.49 (2H, m, H-7), 1.50–1.67 (4H, m, H-2, H-3), 5.30 (1H, dt, J = 10.0, 2.8 Hz, H-6), 5.54 (1H, t, J = 6.2 Hz, H-9), 8.04 (2H, d, J = 8.4 Hz, H-3', H-7'), 8.90 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.0 (C-1), 33.0 (C-2), 41.2 (C-3), 86.3 (C-4), 60.0 (C-5), 73.6 (C-6), 44.0 (C-7), 133.0 (C-8), 125.3 (C-9), 41.3 (C-10), 37.3 (C-11), 18.6 (C-12), 17.5 (C-13), 26.7 (C-14), 20.3 (C-15), 163.2 (C-1'), 142.4 (C-2'), 125.5 (C-3'), 146.7 (C-4'), 146.7 (C-6'), 125.5 (C-7'); HRESIMS: m/z 344.2243 [M + H]⁺ (calcd for C₂₁H₃₀NO₃, 344.2226).

Synthesis of ferutinyl 6-nalidixate (10) Nalidixic acid (1. 0 mmol) was suspended in dichloromethane (20 mL) and stirred at 0 °C. To the stirred suspension, triethyl amine (1. 1 mmol) was added followed by drop wise addition of ethylchloroformate (1.1 mmol) and the stirring continued for 20 min. The resulting clear solution was then added to a stirred solution of ferutinol (1.1 mmol) in dichloromethane and stirring continued overnight. Solvent was evaporated under reduced pressure, and the product was purified on silica gel column.

Ferutinyl 6-nalidixate (10) Yield 90 %; white solid; $R_{\rm f} = 0.59$ (Hexanes–acetone, 70:30); UV (MeOH) $\lambda_{\rm max}$ 250 sh, 255, 325 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (3H, d, J = 6.8, H-12), 0.98 (3H, d, J = 7.2, H-13), 1.10 (3H, s, H-15), 1.81 (3H, s, H-14), 2.04 (1H, d, J = 8.8, H-10a), 2.11 (1H, d, J = 14.0, H-10b), 2.52 (1H, m, H-11), 2.11 (1H, d, J = 14.0, H-5) 2.41 (2H, m, H-7), 1.50–1.62 (4H, m, H-2, H-3), 5.01 (1H, dt, J = 10.0, 2.8, H-6), 5.50 (1H, t, J = 6.2, H-9), 8.34 (1H, s, H-2'), 8.53 (1H, d,
$$\begin{split} J &= 7.6 \text{ Hz}, \text{ H-5'}), 7.20 \text{ (1H, d, } J &= 6.7 \text{ Hz}, \text{ H-6'}), 2.61 \\ (3\text{H, s, H-10'}), 4.36, 4.47 \text{ (2H, q, } J &= 7.2, \text{H-11'}), 1.44 \text{ (3H, t, } J &= 7.2, \text{H-12'}); ^{13}\text{C NMR} \text{ (CDCl}_3, 100 \text{ MHz}) \delta 44.3 \text{ (C-1)}, 32.2 \text{ (C-2)}, 41.8 \text{ (C-3)}, 86.1 \text{ (C-4)}, 60.8 \text{ (C-5)}, 73.4 \text{ (C-6)}, 44.3 \text{ (C-7)}, 133.9 \text{ (C-8)}, 125.1 \text{ (C-9)}, 41.9 \text{ (C-10)}, 37.1 \text{ (C-11)}, 19.0 \text{ (C-12)}, 17.8 \text{ (C-13)}, 27.1 \text{ (C 14)}, 20.2 \text{ (C-5)}, 147.2 \text{ (C-2')}, 114.1 \text{ (C-3')}, 174.5 \text{ (C-4')}, 137.0 \text{ (C-5')}, 121.3 \text{ (C-6')}, 163.1 \text{ (C-7')}, 148.8 \text{ (C-8')}, 121.2 \text{ (C-9')}, 25.3 \text{ (C-10')}, 46.7 \text{ (C-11')}, 15.4 \text{ (C-12')}, 166.6 \text{ (C-13')}; \text{HRESIMS:} m/z \quad 453.2747 \quad [\text{M} + \text{H}]^+ \text{ (calcd for } \text{C}_{27}\text{H}_{37}\text{N}_2\text{O}_4, 453.2753). \end{split}$$

Synthesis of 9-hydroperoxyferutinin (11) and 8,9-epoxyferutinin (12) Ferutinol (100 mg) was dissolved in 25 mL of a mixture of dichloromethane/ethanol (1:1) in a Dudley tube fitted in a cooling bath and then was added the photosensitization dye *meso*-tetraphenylporphine (~ 2.0 mg). The wine-red reaction mixture was then subjected to 500 W incandescent light, while oxygen was gently bubbled through, and the temperature of the bath was maintained at 13 °C. After 3 h of irradiation, the reaction was complete (disappearance of ferutinol on TLC) (Wasserman *et al.*, 1986). The solvent was distilled off from the reaction mixture to leave an olive green residue which was purified by normal phase preparative scale TLC to afford 9-hydroperoxyferutinin (11) and the known 8,9-epoxyferutinin (12).

9-Hydroperoxyferutinin (11) Yield 11.4 %; oil; $R_{\rm f} = 0.33$ (Hexanes-EtOAc, 70:30); UV (MeOH) $\lambda_{\rm max}$ 255 nm; ¹H NMR (CDCl₃, 400 MHz) δ 0.83 (3H, d, J = 6.8 Hz, H-12), 0.89 (3H, d, J = 7.2 Hz, H-13), 1.14 (3H, s, H-15), 1.88 (3H, s, H-14), 2.06 (1H, d, J = 8.8 Hz)H-10a), 2.11 (1H, d, J = 14.0 Hz, H-10b), 2.40 (1H, m, H-11), 2.11 (1H, d, J = 14.0 Hz, H-5) 1.50–1.67 (4H, m, H-2, H-3), 5.50 (1H, bs, H-6), 4.45 (1H, bs, H-9), 5.83 (1H, d, J = 10.4 Hz, H-7), 7.90 (2H, d, J = 8.4 Hz, H-3', H-7'), 6.86 (2H, d, J = 8.4 Hz, H-4', H-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 44.5 (C-1), 32.0 (C-2), 42.1 (C-3), 87.1 (C-4), 54.1 (C-5), 73.0 (C-6), 128.0 (C-7), 137.2 (C-8), 83.5 (C-9), 42.4 (C-10), 37.1 (C-11), 18.6 (C-12), 17.7 (C-13), 24.5 (C 14), 20.2 (C-15), 167.5 (C-1'), 121.8 (C-2'), 132.4 (C-3'), 115.7 (C-4'), 161.5 (C-5'), 115.7 (C-6'), 132.4 (C-7'); HRESIMS: m/z 413.1958 $[M + H]^+$ (calcd for C₂₂H₃₀NaO₆, 413.1940).

In vitro biological assays

Estrogenic assay The estrogenic activity was determined by the YES (yeast estrogen screen) assay as described earlier with some modifications (Beresford *et al.*, 2000; Tabanca *et al.*, 2004).

Saccharomyces cerevisiae cells expressing the estrogen receptor alpha (ER- α) were cultured at 30 °C for 24 h. For

the assay, 1.5 mL of the culture and 250 uL of chlorophenol red β -D-galactopyranoside (CPRG, 10 mg/mL) were added to 25 mL of growth medium. Test compounds (10 mM) or 17\beta-estradiol (1 mM, positive control) were dissolved in DMSO. Serial dilutions were made, and 10 µL of the diluted samples were transferred from the dilution plate to the assay plate and mixed with 190 µL of yeast cell suspension containing CPRG. The highest DMSO concentration was 5 %. The plate was incubated at 30 °C for 48 h, and the absorbance was measured at a dual wavelength of 540/630 nm. Dose curves were generated, and half maximal effective concentration (EC_{50}) values were obtained. Highest effective dose was determined for each compound showing estrogenic response, and the percent maximal response at the highest effective dose was calculated in comparison to 17β -estradiol.

Cell culture HEK293 cells (ATCC #CRC-1573) were stably transfected via electroporation with full-length human recombinant cDNA for cannabinoid receptor subtypes 1 and 2 (obtained from Origene). These cells were maintained in a Dulbecco's modified Eagles's medium/F-12 (50/50) nutrient mixture supplemented with 10 % fetal bovine serum, 1 % penicillin/streptomycin, and either 1 % G418 sulfate (Geneticin), depending on the cell line. Percentages are based on a total media volume of 500 mL. Both cannabinoid cell lines were kept at 37 °C and 5 % CO₂. Membranes were prepared by scraping the cells in a 50 mM Tris-HCl buffer, homogenized via sonication, and centrifuged for 40 min at 13,650 rpm at 4 °C. These were kept at 80 °C until used for binding and functional assays. Protein concentration was determined via Bio-Rad protein assay (Bradford, 1976).

Radioligand binding for cannabinoid receptor subtypes In the primary bioassay screen, compounds were tested at a final concentration of 10 µM for competitive binding to the respective receptor. For the cannabinoid receptor assays, test compounds were added into a 96-well plate followed by 0.6 nM [3H]CP-55,940 and 10 µg of cannabinoid membrane resuspended in 50 mM Tris (pH 7. 4), 154 mM NaCl, and 20 mM Di-Na-EDTA supplemented with 0.02 % BSA. The cannabinoid assay was allowed to incubate at 37 °C for 90 min. The reaction was then terminated by rapid filtration using GF/C (presoaked in 0.3 % BSA) and washed with the buffer. Dried filters were then covered with scintillant and measured for the amount of radioligand retained using a PerkinElmer Topcount (PerkinElmer Life Sciences Inc., Boston, MA, USA). Nonspecific binding, which was determined in the presence of 1 µM CP-55,940 for cannabinoid receptors, was subtracted from the total binding to yield the specific-binding values. Compounds showing competitive inhibition of the labeled ligand to bind to the receptor at 50 % or greater were tested in a dose–response curve with concentrations of the test compound ranging from 300 μ M to 1.7 nM. Ki and IC₅₀ values were calculated using GraphPad Prism 5.

 $l^{35}S$ -GTP- γS binding In the functional assay for cannabinoid receptor binding, membranes (20 µg/well) were incubated with 0.5 nM [³⁵S]-GTP- γS and test compound in 50 mM Tris–HCl, 0.2 mM EGTA, 9 mM MgCl₂, 150 mM NaCl, 50 µM GDP, and 1.4 mg mL⁻¹ BSA. The reaction incubated for 2 h at 30 °C and was terminated by rapid vacuum filtration with cold 10 mM Tris–HCl in a Perkin-Elmer harvester through GF/B filters. Nonspecific binding was determined by 40 µM of GTP- γS .

Acknowledgments The authors thank the United States Department of Agriculture, Agriculture Research Service Specific Cooperative Agreement No. 58-6408-7-012, for partial support of this work. The authors are also grateful to Dr. Bharathi Avula for helping with the HRESIFTMS analyses.

References

- Appendino G, Spagliardi P, Sterner O, Milligan S (2004) Structureactivity relationships of the estrogenic sesquiterpene ester ferutinin. modification of the terpenoid core. J Nat Prod 67:1557–1564
- Beresford N, Routledge EJ, Harris CA, Sumpter JP (2000) Issues arising when interpreting results from an in vitro assay for estrogenic activity. Toxicol Appl Pharmacol 162:22–33
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
- Colman-Saizarbitoria T, Boutros P, Amesty A, Bahsas A, Mathison Y, Garrido MDR, Israel A (2006) Ferutinin stimulates nitric oxide synthase activity in median eminence of the rat. J Ethnopharmacol 106:327–332
- Dall'Acqua S, Maggi F, Minesso P, Salvagno M, Papa F, Vittori S, Innocenti G (2010) Identification of non-alkaloid acetylcholinesterase inhibitors from *Ferulago campestris* (Besser) Grecescu (Apiaceae). Fitoterapia 81:1208–1212
- Diaz P, Xu J, Astruc-Diaz F, Pan H-M, Brown DL, Naguib M (2008) Design and synthesis of a novel series of N-Alkyl isatin acylhydrazone derivatives that act as selective cannabinoid receptor 2 agonists for the treatment of neuropathic pain. J Med Chem 51:4932–4947
- Galal A (2000) Sesquiterpenes from *Ferula hermonis* Boiss. Pharmazie 55:961–962
- Galal AM, Abourashed EA, Ross SA, ElSohly MA, Al-Said MS, El-Feraly FS (2001) Daucane sesquiterpenes from *Ferula hermonis*. J Nat Prod 64:399–400
- Gao M, Wong SY, Lau PM, Kong SK (2013) Ferutinin induces in Vitro eryptosis/erythroptosis in human erythrocytes through membrane permeabilization and calcium influx. Chem Res Toxicol 26:1218–1228
- Gertsch J, Pertwee RG, Di Marzo V (2010) Phytocannabinoids beyond the Cannabis plant—do they exist? Br J Pharmacol 160:523–529
- Greineisen WE, Turner H (2010) Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists. Int Immunopharmacol 10:547–555

- Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334
- Hadidi KA, Aburjai T, Battah AK (2003) A comparative study of *Ferula hermonis* root extracts and sildenafil on copulatory behaviour of male rats. Fitoterapia 74:242–246
- Ibraheim ZZ, Abdel-Mageed WM, Dai H, Guo H, Zhang L, Jaspars M (2012) Antimicrobial antioxidant daucane sesquiterpenes from *Ferula hermonis* Boiss. Phytother Res 26:579–586
- Ikeda K, Arao Y, Otsuka H, Nomoto S, Horiguchi H, Kato S, Kayama F (2002) Terpenoids found in the Umbelliferae family act as agonists/antagonists for ER α and ER β : differential transcription activity between ferutinine-liganded ER α and ER β . Biochem Biophys Res Commun 291:354–360
- Malfitano AM et al (2013) Effects on immune cells of a new 1,8naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS One 8:e62511
- Palumbo C et al (2009) Influence of ferutinin on bone metabolism in ovariectomized rats. I: role in preventing osteoporosis. J Bone Miner Metab 27:538–545
- Proto MC et al (2012) Interaction of endocannabinoid system and steroid hormones in the control of colon cancer cell growth. J Cell Physiol 227:250–258
- Pryce G et al (2014) Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists. FASEB J 28(117–130):1. doi:10.1096/fj.1013-239442
- Rasulev BF, Saidkhodzhaev AI, Nazrullaev SS, Akhmedkhodzhaeva KS, Khushbaktova ZA, Leszczynski J (2007) Molecular modelling and QSAR analysis of the estrogenic activity of terpenoids isolated from Ferula plants. SAR QSAR Environ Res 18:663–673
- Ribeiro R, Yu F, Wen J, Vana A, Zhang Y (2013) Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis. Neuroscience 254:427–442
- Rivers JR-J, Ashton JC (2010) The development of cannabinoid CBII receptor agonists for the treatment of central neuropathies. Cent Nerv Syst Agents Med Chem 10:47–64
- Sophocleous A, Landao-Bassonga E, van't Hof RJ, Idris AI, Ralston SH, Landao-Bassonga E, Landao-Bassonga E (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152:2141–2149
- Tabanca N et al (2004) Estrogenic activity of isolated compounds and essential oils of Pimpinella species from Turkey, evaluated using a recombinant yeast screen. Planta Med 70:728–735
- Wasserman HH, Lu TJ, Scott IA (1986) The total synthesis of tetracycline. J Am Chem Soc 108:4237–4238
- Zanoli P, Benelli A, Rivasi M, Baraldi C, Vezzalini F, Baraldi M (2003) Opposite effect of acute and subchronic treatments with *Ferula hermonis* on copulatory behavior of male rats. Int J Impot Res 15:450–455
- Zanoli P, Rivasi M, Zavatti M, Brusiani F, Vezzalini F, Baraldi M (2005) Activity of single components of *Ferula hermonis* on male rat sexual behavior. Int J Impot Res 17:513–518
- Zanoli P, Zavatti M, Geminiani E, Corsi L, Baraldi M (2009) The phytoestrogen ferutinin affects female sexual behavior modulating ER α expression in the hypothalamus. Behav Brain Res 199:283–287
- Zavatti M, Montanari C, Zanoli P (2006) Role of ferutinin in the impairment of female sexual function induced by *Ferula hermonis*. Physiol Behav 89:656–661