A Novel and Convenient Approach to 2-Unsubstituted Imidazolium and Thiazolium Salts

Georges Morel*

Synthèse et Electrosynthèse Organiques, UMR 6510, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France Fax +33(223)236738; E-mail: Georges.Morel@univ-rennes1.fr Received 19 June 2003

Abstract: The selective reductive cleavage of highly functionalized 5-(*tert*-butylamino)-2-(phenylthio)thiazolium chlorides and mesoionic 2-(phenylthio)thiazolium-5-thiolates has been effected efficiently at room temperature using an excess of PhSH in the presence of Et₃N to give the corresponding 2-unsubstituted imidazolium and thiazolium-5-thiolates. The NaBH₄ reduction of 2-(methylthio)imidazolium chlorides and the H₂O₂ treatment of a thiazoline-2thione are also reported.

Key words: thiazoles, imidazoles, mesoionic compounds, reduction

Thiazolium cations, which are active moieties of thiamine (vitamin B₁), have attracted great interest in recent years from both chemical and biological viewpoints. Especially, the reactivities of the C-2 acidic proton and the nucleophilic carbene character of intermediates formed by this proton abstraction have been discussed for a long time.¹ Conjugated bases are now recognized to be of particular importance for access to dimeric 2,2'-bithiazolinylidenes (dithiadiazafulvalenes)¹⁻³ which are excellent π -donor organic materials. Deprotonation of 2-unsubstituted imidazolium salts has also received considerable attention on account of the possible isolation of corresponding bases.⁴ Such carbenoid species appear to be more reluctant to produce 2,2'-bitmidazolinylidenes (tetraazafulvalenes).²

We previously developed one-pot preparations of highly substituted imidazolium⁵ and thiazolium^{6,7} halides like **1–3** (Figure 1). Considering the remarkable ease with which our reactions occur, it appeared attractive to examine the possibilities of generating 2-unsubstituted imidazolium and thiazolium salts by the reductive cleavage of these 2-(methylthio) and 2-(phenylthio) derivatives. The

results of such investigation are described in the present paper.

NaBH₄ treatment in EtOH solution of thiazolium cations possessing a piperidino or a thio group at the 2-position produced either the 2-piperidino-2,3-dihydrothiazoles⁸ or the 2-unsubstituted thiazolidines.^{7,9} An attempt to remove the phenylthio substituent of **2a** (R = Me) under identical conditions resulted in the ring-opening of the reduced thiazolium salt via the α -aminothioamide **4**. In contrast to these observations, NaBH₄ induced a selective cleavage of the C–S bond of the 2-(methylthio)imidazolium chloride **1** to afford the expected salt **5** in moderate yield.¹⁰

The literature reports that reaction of thiazoline-2-thiones with H_2O_2 causes the formation of reduced thiazolium hydrogensulfates. To achieve the anion interchange, a barium halide¹¹ or a strong protonic acid³ was included in the reaction mixture. Conversion of the 2-(phenylthio)thiazolium iodide **3a** (R = Me) to the thiazoline-2-thione **6** was carried out in the presence of sodium hydrosulfide, by analogy with the procedure employed in the related selenone series¹² (Scheme 1). However, the H_2O_2 sequence was found to be unsatisfactory in the case of **6** owing to a ready oxidation of the anticipated 5-(methylthio)thiazolium salt **7**. A longer reaction time (6 h) promoted the complete formation of the sulfoxide derivative **8**.¹³

A new method is based on our recent discovery¹⁴ that the reaction of the 2-(phenylthio)thiazolium salt **2a** with PhSH/Et₃N promotes the formation of the imidazolium-4-thiolate **9a** which is then quantitatively converted into the methiodide **10a**. Such a result was rationalized assuming a Dimroth type rearrangement with a subsequent reduction of the transient mesoionic imidazole **11a** (Scheme 2).

SYNLETT 2003, No. 14, pp 2167–2170 Advanced online publication: 29.10.2003 DOI: 10.1055/s-2003-42100; Art ID: D14703ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1

Scheme 2 a: R = Me, b: R = Et, c: R = CH2Ph, d: R = 4-MeOC₆H₄ e: R = 2,6-Me₂C₆H₃

The development of this simple and mild reduction process provides further examples of 2-unsubstituted imidazolium-4-thiolates **9**. In support of the proposal displayed in Scheme 2, we also describe additional data based on the action of PhSH/Et₃N on the thiazolium-5-thiolates 12^7 (Scheme 3) that are structurally analogous to intermediates **11**.

Scheme 3 a: R = Me, b: R = Et, c: R = CH2Ph, d: R = 4-MeOC₆H₄

Our results are summarized in the Table 1. Reductions were typically carried out at room temperature in anhydrous THF or $CHCl_3$ containing a large excess of benzenethiol and Et_3N . It was thus possible to isolate in moderate to high yields a series of mesoionic imidazoles **9** and thiazoles **13** of very poor solubility in common organic solvents, which nevertheless displayed an excellent reactivity towards electrophilic compounds as CH_3I . All the products were characterized by satisfactory elemental analyses and usual spectroscopic methods.¹⁵

Large amounts of diphenyl disulfide were also recovered as well as the *N-tert*-butyl-2-phenyl-2-oxo-thio-acetamide¹⁶ in the case of starting material **2**. Omission of Et_3N from the PhSH treament of **12a** resulted in the complete recovery of starting thiazole.

On account of its operational ease, it was reasonable to expect that a similar process could occur with N,N'-bridged bis(thiazolium) salts to furnish the corresponding 2, 2'-un-substituted bis(imidazolium) species. The reaction has been performed as represented in Scheme 4 by the conversion of the N, N'-polymethylene dication **15** to the bisimidazole **16** in 53% yield.¹⁷

Table 12-Unsubstituted Imidazolium and Thiazolium-ThiolatesAccording to Schemes 2 and 3

Substrate	Solvent	PhSH (and Et ₃ N) mol equiv	Time (h) ^a	Product/yield (%) ^b
2a	THF	3	23	9a (72)
2b	THF	4	28	9b (71)
2c	CHCl ₃	4	28	9c (86)
2d	CHCl ₃	4	28	9d (49)
2e	CHCl ₃	4	28	9e (66)
12a	THF	3	24	13a (80)
12b	THF	4	48	13b (58)
12c	CHCl ₃	3	28	13c (86)
12d	CHCl ₃	3	48	13d (94)

^a The reactions were run until starting compounds were completely transformed on the basis of ¹H NMR analyses.

^b Yields refer to isolated pure mesoionic compounds.

Thiolate ions have already been shown to reduce a range of compounds.¹⁸ In particular, the reduction of α -sulfenylated carbonyl derivatives¹⁹ apparently involves direct nucleophilic attack by thiolates on the sulfur atom. A variety of studies have also suggested the occurrence of a single electron transfer pathway from thiolates to organic substrates.²⁰ We did not attempt here to distinguish between these two mechanisms.

In conclusion, the PhSH/Et₃N reduction of 2-(phenylthio)thiazolium derivatives provides an efficient synthetic route to 2-unsubstituted imidazolium and thiazolium salts. The need to use an excess of malodorous PhSH is widely compensated by the ready availability of starting

Scheme 4

materials and the simplicity of the process. Our approach avoids the classical quaternization of imidazoles and thiazoles, which sometimes requires prolonged reflux times²¹ or drastic conditions.²² Further use of salts **5**, **10** and **14** for the preparation of carbenes or dimers is under consideration.

References

- (a) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1991, 113, 985. (b) Chen, Y.-T.; Jordan, F. J. Org. Chem. 1991, 56, 5029. (c) López-Calahorra, F.; Castells, J.; Domingo, L.; Martí, J.; Bofill, J. M. Heterocycles 1994, 37, 1579.
 (d) Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. Liebigs Ann./Recueil 1997, 365; and references therein.
- (2) For a review on the synthesis of DTDAFs and TAFs, see: Beckert, R. *Adv. Heterocycl. Chem.* **2000**, *77*, 115.
- (3) For recent examples on the DTDAF series: Guérin, D.; Carlier, R.; Lorcy, D. J. Org. Chem. **2000**, 65, 6069.
- (4) Reviews: (a) Herrmann, W. A.; Köcher, C. Angew. Chem. Int. Ed. Engl. 1997, 36, 2162. (b) Arduengo, A. J. Acc. Chem. Res. 1999, 32, 913. (c) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
- (5) Malvault, Y.; Marchand, E.; Morel, G. J. Org. Chem. 1992, 57, 2121.
- (6) Berrée, F.; Malvault, Y.; Marchand, E.; Morel, G. J. Org. Chem. 1993, 58, 6022.
- (7) Touimi Benjelloun, A.; Morel, G. Sulfur Lett. 1996, 20, 107.
- (8) (a) Bssaibis, M.; Robert, A.; Lemaguerès, P.; Ouahab, L.; Carlier, R.; Tallec, A. J. Chem. Soc., Chem. Commun. 1993, 601. (b) Bssaibis, M.; Robert, A.; Souizi, A. A. J. Chem. Soc., Perkin Trans 1 1994, 1469.
- (9) Touimi Benjelloun, A.; Morel, G.; Marchand, E. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 133, 195.
- (10) Experimental Procedure: NaBH₄ (0.25 g, 6.6 mmol) was added portionwise over a period of 3 min to a solution of 1methyl imidazolium chloride 1 (0.68 g, 2 mmol) in 95% EtOH (15 mL). After 45 min at r.t., the mixture was poured into 60 mL of water and washed with Et₂O. The aq phase was saturated with NaCl and extracted with CH_2Cl_2 (2 × 10 mL). The combined CH₂Cl₂ layers were dried over Na₂SO₄ and concentrated to dryness. Trituration of the residue with CH₂Cl₂–Et₂O gave a crystalline material (5, 0.28 g, 48%); mp 222 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.97$ (d, J = 6.2Hz, 6 H), 1.66 (d, J = 6.6 Hz, 6 H), 2.99 (m, 1 H), 3.82 (s, 3 H), 4.58 (d, *J* = 4 Hz, NH), 5.02 (m, 1 H), 7.50 (m, 5 H), 10.34 (s, 1 H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 23.0, 23.1, 34.8 (3 × qd), 47.8, 48.6 (2 dm), 121.5 (m), 125.9, 129.3, 130.1, 130.5 (arom C), 131.7 (dm, ${}^{1}J = 215$ Hz), 134.9 (m). MS (FAB): m/z [M]⁺ calcd for C₁₆H₂₄N₃: 258.1970; found: 258.1955. Anal. Calcd for C₁₆H₂₄ClN₃: C, 65.40; H, 8.23; N, 14.30. Found C, 65.60; H, 8.28; N, 14.17.
- (11) Leeper, F. J.; Smith, D. H. C. *Tetrahedron Lett.* **1988**, *29*, 1325.

- Bellec, N.; Lorcy, D.; Boubekeur, K.; Carlier, R.; Tallec, A.; Los, S.; Pukacki, W.; Trybula, M.; Piekara-Sady, L.; Robert, A. *Chem. Mater.* **1999**, *11*, 3147; and references therein.
- (13) Procedure for Preparation of Thiazolium Hexafluorophosphates 7 and 8: To a solution of 6 (0.5 g, 2 mmol) in acetone (12 mL) were added HPF₆ (3 mmol, from 60% solution in water) and H_2O_2 (10 mmol, from 35% solution in water). The reaction medium was stirred at 0 °C for 30 min then at r.t. for 45 min and concentrated in vacuo. The residual syrup was triturated with Et₂O to afford a mixture of salts 7 and 8 as insoluble viscous oil. NMR data for salt 7 (in admixture with 8): ¹H NMR (200

NMR data for salt 7 (in admixture with 8): 'H NMR (200 MHz, CDCl₃): $\delta = 2.47$ (s, 3 H), 3.95 (s, 3 H), 7.50 (m, 5 H), 9.65 (s, 1 H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.3$ (q, ¹J = 143 Hz), 42.6 (qd, ¹J = 146 Hz, ³J = 2 Hz), 125.9 (m), 130.0, 130.7, 132.0 138.0 (arom C), 147.5 (m), 158.0 (dq, ¹J = 216 Hz, ³J = 4 Hz).

A similar treatment for 6 h gave a viscous oil insoluble in CH₂Cl₂. ¹H NMR spectroscopy analysis confirmed that the sulfoxide **8** was greatly preponderant (95%) in this final product; (0.54 g, 70% yield). ¹H NMR (500 MHz, D₂O): $\delta = 2.93$ (s, 3 H), 3.94 (s, 3 H), 7.60 (m, 5 H), 10.26 (s, 1 H). ¹³C NMR (125.8 MHz, D₂O): $\delta = 41.4$ (q, ¹*J* = 142 Hz), 41.7 (qd, ¹*J* = 147 Hz, ³*J* = 2.3 Hz), 123.7, 129.7, 129.9, 132.4 (arom C), 144.9, 148.5 (2×m), 162.3 (dq, ¹*J* = 220 Hz, ³*J* = 4.7 Hz). MS (EI): *m*/*z* [M – HPF₆]⁺ calcd for C₁₁H₁₁NOS₂: 237.02821; found: 237.02835.

- (14) Touimi Benjelloun, A.; Morel, G.; Marchand, E. *Heteroatom. Chem.* **2000**, *11*, 16.
- (15) Due to its extremely unpleasant odour, manipulations of PhSH were carried out in a well-ventilated fume hood. **Typical Experimental Procedure for the Synthesis of** Representative Examples 13a and 14a and Their Spectroscopic Data: PhSH (0.33 g, 3 mmol) and Et₃N (0.3 g, 3 mmol) were added to a solution of mesoionic heterocycle 3a (0.32 g, 1 mmol) in anhyd THF (5 mL). A yellowish material precipitated slowly. The mixture was maintained at r.t. for 1 d. Thiazole 13a was collected by filtration, washed with Et₂O, water and recrystallized from MeOH (0.17 g, 0.8 mmol); mp 228–230 °C. ¹H NMR (200 MHz, CDCl₃): $\delta = 3.74$ (s, 3 H), 7.49 (m, 5 H), 8.15 (s, 1 H). MS (EI): *m*/*z* [M]⁺ calcd for C₁₀H₉NS₂: 207.01764; found: 207.01791. Anal. Calcd C, 57.97; H, 4.35; N, 6.76; S, 30.92. Found C, 57.83; H, 4.35; N, 6.58; S, 31.31. The ¹³C NMR spectrum could not be recorded because of the low solubility of 13a in CDCl₃ and other usual solvents. A suspension of 13a in CHCl₃ was treated with 2 equiv of CH₃I at r.t. for 1 h. The resulting solution was concentrated in vacuo to give a greyish solid that was recrystallized from CH₂Cl₂-Et₂O (**14a**, 94% yield); mp 152-154 °C. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 2.53 \text{ (s, 3 H)}, 4.18 \text{ (s, 3 H)}, 7.60 \text{ (s, 3 H)}$ 5 H), 11.07 (s, 1 H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.3$ $(q, {}^{1}J = 143 \text{ Hz}), 43.1 (qd, {}^{1}J = 146 \text{ Hz}, {}^{3}J = 2.3 \text{ Hz}), 125.6$ (m), 129.5, 130.6, 131.4, 137.2 (arom C), 147.0 (m), 160.0 $(dq, {}^{1}J = 219 Hz, {}^{3}J = 4.9 Hz)$. MS (EI): $m/z [M - CH_{3}I]^{+}$ calcd for C₁₀H₉NS₂: 207.01764; found: 207.01791. Anal.

Synlett 2003, No. 14, 2167-2170 © Thieme Stuttgart · New York

Calcd for $C_{11}H_{12}INS_2$: C, 37.82; H, 3.44; N, 4.01; S, 18.34. Found C, 37.84; H, 3.46; N, 4.05; S, 18.67.

- (16) Morel, G.; Marchand, E.; Touimi Benjelloun, A.; Sinbandhit, S.; Guillou, O.; Gall, P. *Eur. J. Org. Chem.* 1998, 2631.
- (17) Compound **16**; amorphous semi-solid. ¹H NMR (200 MHz, CDCl₃): $\delta = 0.97$ (m, 2 H), 1.42 (m, 2 H), 1.98 (s, 9 H), 2.36 (s, 3 H), 3.81 (t, J = 7 Hz, 2 H), 7.22 (d, J = 8 Hz, 2 H), 7.38 (d, J = 8 Hz, 2 H), 7.76 (s, 1 H). MS (FAB): m/z [M + H]⁺ calcd for C₃₄H₄₇N₄S₂: 575.32422; found: 575.32410.
- (18) Fry, A. J. In *Comprehensive Organic Synthesis*, Vol. 8; Trost, B. M.; Fleming, I., Eds.; Pergamon: New York, **1991**, 983–997.
- (19) (a) Aufauvre, Y.; Verny, M.; Vessière, R. *Bull. Soc. Chim. Fr.* **1973**, 1373. (b) Karavan, V. S.; Simonov, D. A.; Temnikova, T. I. *J. Gen. Chem. USSR* **1982**, *52*, 1757.
- (20) For examples, see: (a) Ashby, E. C.; Park, W. S.; Goel, A. B.; Su, W. Y. *J. Org. Chem.* **1985**, *50*, 5184. (b) Meissner, J. W. G.; van der Laan, A. C.; Pandit, U. K. *Tetrahedron Lett.* **1994**, *35*, 2757.
- (21) For examples, see: (a) Federsel, H.-J.; Bergman, J. *Tetrahedron Lett.* **1980**, *21*, 2429. (b) Doughty, M. B.; Risinger, G. E. *Bioorg. Chem.* **1987**, *15*, 1. (c) Shi, Z.; Thummel, R. P. J. Org. Chem. **1995**, *60*, 5935.
- (22) (a) Singh, H.; Singh, D.; Kumar, S. *Tetrahedron* 1992, 22, 4545. (b) Arduengo, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.