

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Two efficient near-infrared (NIR) luminescent $[Ir(C^N)_2(N^O)]$ -characteristic complexes with 8-hydroxyquinoline (8-Hq) as the ancillary ligand

Jiahao Guo¹, Jin Zhou¹, Guorui Fu, Yani He, Wentao Li, Xingqiang Lü*

School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi'an, 710069, Shaanxi, China

G R A P H I C A L A B S T R A C T

Replaced by the large π -conjugation-induced C^N ligand **Hdpbq**, the distinctive bathochromatic shift into a typical NIR region ($\lambda_{em} = 786$ nm) for [Ir(dpbq)₂(8-*q*)] (2) relative to that ($\lambda_{em} = 687$ nm with a shoulder at 756 nm) of [Ir(iqbt)₂(8-*q*)] (1) while relatively lower quantum efficiency $\Phi_{em} = 0.16$ versus $\Phi_{em} = 0.05$ are observed.

ARTICLE INFO

Keywords: [Ir(C^N)₂(N[°]O)]-characteristic Ir(III)-complex NIR luminescence Phosphorescence Ligands-perturbed effect

ABSTRACT

Through the utilization of **Hiqbt** (1-(benzo[*b*]-thiophen-2-yl)-isoquinoline) or **Hdpbq** (2,3-diphenyl benzo[*g*] quinoxaline) as the C^N main ligand and **8-Hq** (8-hydroxyquinoline) as the N^O ancillary ligand, two [Ir (C^N)₂(N^O)]-characterized heteroleptic complexes [Ir(iqbt)₂(8-*q*)] (1) and [Ir(dbpq)₂(8-*q*)] (2) with desirable soluble and NIR-phosphorescent properties ($\lambda_{em} = 687$ nm with a shoulder at 756 nm, lifetime $\tau = 0.73 \,\mu$ s and quantum efficiency $\Phi_{em} = 0.16$ for complex 1 *versus* $\lambda_{em} = 786$ nm, lifetime $\tau = 0.47 \,\mu$ s and quantum efficiency $\Phi_{em} = 0.05$ for complex 2) are obtained, respectively. In comparison, the distinctive bathochromatic shift into a typical NIR region of complex 2, arisen from the large-molecule-conjugation-induced narrow energy gap, gives rise to its relatively lower quantum efficiency than that of complex 1.

Near-infrared (NIR) emitting materials have aroused particular interest in electroluminescent diodes promising for military optoelectronics [1], telecommunications [2] and wound healing [3]. In this perspective, although significant efforts have been devoted to inorganic NIR-emitting materials (nano-crystal [4], halide perovskite [5] or quantum dot [6], *etc*) for practical NIR-light-emitting diodes (NIR-

* Corresponding author.

E-mail address: lvxq@nwu.edu.cn (X. Lü).

¹ Both authors contributed equally.

https://doi.org/10.1016/j.inoche.2019.01.019 Received 26 December 2018; Accepted 12 January 2019 Available online 15 January 2019 1387-7003/ © 2019 Elsevier B.V. All rights reserved.

Scheme 1. Reaction scheme for the synthesis of complexes [Ir(iqbt)₂(8-q)] (1) and [Ir(dpbq)₂(8-q)] (2).

LEDs), organic-counterparts [7] for NIR organic or polymer lightemitting diodes (NIR-OLEDs or NIR-PLEDs) still dominate in the academic community, which should be arisen from their more versatile and advanced properties in terms of broadened photo- and electro-luminescent spectra as well as endless structure modifications. Moreover, compared with fluorescent small-molecule dyes [8] and conjugated polymers [9] with ${}^{1}\pi$ - π *-transitions for NIR luminescence, transitionmetal-complex- (Pt(II) or Ir(III)-complex etc) [7] and Ln³⁺-complexresourced (Ln = Nd, Yb or Er) [10] phosphors are worthy of a particular interest because of their harvesting of both singlet and triplet excitons toward a theoretic 100% internal emission efficiency. Noticeably, in contrast to the narrow-energy-gap-confined [11] rather low NIR quantum efficiency for Ln^{3+} -complex-based (Ln = Nd, Yb or Er) with the emissive wavelength above 900 nm and the notorious efficiency-roll-off [12] inherently contributed from facile aggregation of Pt (II)-centered square-planar system, the compromise of both desirable high-efficiency and low-efficiency-roll-off, to the best of our knowledge, should be expected for iridium(III)-complexes characteristic of typical octahedral configuration and rather short phosphorescent lifetime.

As a matter of fact, from the viewpoint of lowing the emissive energy of iridium(III)-complexes to a restrictive NIR region (700-2500 nm), several approaches have been reported. Utilizing the large π -conjugation porphyrin- [13] or corrole-based [14] macrocycles as the ligands is highly praised at first, since their substantial NIR phosphorescence is commonly originated from the intraligand charge transfer (³ILCT) in the Ir(III)-complexes. However, despite the desirable emission wavelength extended to 800 nm or above for these Ir(III)complexes, distinctively low NIR quantum efficiencies regulated by energy-gap law [11] actually limit their use for NIR-OLEDs. In contrast, one of the most successful approaches relies on the π -conjugated expansion of the main C^N-cyclometalated ligand especially incorporated with electron-rich substituents to afford the fac-[Ir(C^N)₃]-characteristic homoleptic complex [15] with the expected NIR luminescence ranging at 700-800 nm. Nonetheless, severe aggregation-induced quenching effect from the large π -conjugation of the C^N main ligand,

also makes the molecular design of the fac-[Ir(C^N)₃]-complex much challenging in the obtainment of its efficient NIR-OLED or NIR-PLED. Convincingly, significant electronic perturbation can be achieved by modification of the L^X ancillary ligands [16], from which, the energy gap of its typical [Ir(C^N)₂(L^X)]-complex is actually adjusted, while bathochromic-shift to effectively narrow the energy gap for NIR luminescence does not have a universal effect. For example, within the typical $[Ir(C^N)_2(N^O)]$ -complexes with pic as the ancillary ligand, contrast to the rational blue-shift for the well-known Flrpic complex (Flrpic = bis[2-(4,6-difluorophenyl)pyridinato-C²,N](pic)-iridium(III))[17], a slight red-shifting [18] at 698 nm for [Ir(iqbt)₂(pic)] is realized in relative to that (690 nm) of the fac-[Ir(iqbt)₃] [19]. Moreover, in consideration of the resolution to [Ir(iqbt)2(pic)] insolubility for solution-processed OLEDs, the success of our reported two [Ir(iqbt)₂(N^O)]complexes [20] with pic-derived hpa or BF2-hpa as the N^O ancillary ligand, motivates us a particular concern on the evolution of some other N^O ancillary ligands. Herein, with 8-hydroxyquinoline (8-Hq) as the N^O ancillary ligand, its two new [Ir(C^N)₂(N^O)]-heteroleptic complexes with different π -conjugation C^N main ligands of **Hight** or Hdpbg are rationally designed, from which, the desirable red-shifted emission within the NIR regime affected by the electronic perturbations of the C^N main ligand and the N^O ancillary ligand are also explored.

The C^N main ligand **Hiqbt** was synthesized by an improved Suzuki coupling reaction [19] between cost-effective 2-Cl-isoquinoline while not 2-Br-isoquinoline and benzo[*b*]-thien-2-y boronic acid in 73% yield. As to the C^N main ligand **Hdpbq**, it was obtained from the equimolar condensation of 2,3-naphthalenediamine with benzyl in the presence of oxalic acid according to the well-established procedure from the literature [21]. As shown in Scheme 1, each of the μ -chloro-bridged dimmer intermediates [**Ir(iqbt)**₂(μ -Cl)]₂ and [**Ir(dpbq)**₂(μ -Cl)]₂ were rationally prepared from the reaction of IrCl₃·3H₂O with the corresponding C^N main ligand of **Hiqbt** or **Hdpbq**, and used directly for the next step without further purification. Further through the reaction of the N^OO ancillary ligand 8-H*q* with the corresponding μ -chloro-bridged dimmer intermediate [**Ir(iqbt)**₂(μ -Cl)]₂ or [**Ir(dpbq)**₂(μ -Cl)]₂, two

Table 1

Photo-physical and electrochemical properties of complexes 1-2 in solution at room tempera	ature.
--	--------

Complex	Absorption	Emission					Energy level	
	$\lambda_{abs}{}^a$	λ_{em}^{a}	τ^{a}	$\Phi_{\rm em}{}^{\rm a}$	$k_{\rm r}^{\rm a}$	k _{nr} ^a	HOMO ^b	LUMO ^b
_	(nm)	(nm)	(μs)		$(\times 10^5 \text{s}^{-1})$	$(\times 10^5 \text{s}^{-1})$	(eV)	(eV)
[Ir(iqbt) ₂ (8-q)] (1) [Ir(dbpq) ₂ (8-q) (2)] (2)	229, 284, 367, 443, 500, 654 238, 285, 325, 411, 541, 689	687, 756(sh) 786	0.73 0.47	0.16 0.05	2.19 1.06	1.15 2.02	-5.172 -5.148	-2.662 -3.140

Rate constant *k*r and *k*nr are calculated using the equations $kr = \Phi_{em}/\tau$ and $k_{nr} = (1-\Phi_{em})/\tau$ on the assumption that $\Phi_{ISC} = 1$ (ISC = intersystem crossing). ^a In degassed CH₂Cl₂ solution.

^b HOMO and LUMO levels are obtained from electrochemical determination, respectively.

new Ir(III)-complexes [Ir(iqbt) $_2(8-q)$] (1) and [Ir(dpbq) $_2(8-q)$] (2) are isolated, respectively.

The two Ir(III)-complexes 1-2 are much soluble in common organic solvents except water, which significantly different from the relative insolubility [Ir(iqbt)₂(pic)] [18] while comparable to that of our reported two [Ir(iqbt)₂(N^O)]-complexes [20] with pic-derived hpa or BF₂-hpa as the N^O ancillary ligand, renders the incorporation of the 8-Hq N^O ancillary ligand for its new [Ir(C^N)₂(8-q)] complexes (HC^N = Hiqbt or Hdpbq) an opportunity to solution-processed electro-luminescent devices. Moreover, Ir(III)-complexes 1-2 were well-characterized by EA, FT-IR, ¹H NMR and ESI-MS. In the ¹H NMR spectrum (Fig. 1S) of complex 1, the iridium(III)-induced significantly spread shifts of the $(iqbt)^-$ or $(dpbq)^-$ and $(L^n)^-$ combined proton resonances (δ = 9.13–6.39 ppm) relative to those (δ = 8.65–7.43 ppm) of the free Hight ligand are observed. Moreover, the proton signals of the $(iqbt)^{-}$ and $(8-q)^{-}$ ligands with a stipulated molar ratio of 2:1 could further confirm the $[Ir(iqbt)_2(8-q)]$ (1) characteristic of the typical [Ir(C^N)₂(N^O)]-heteroleptic complexes [22]. For comparison, despite the similar combination of both the $(dpbq)^{-}$ and $(8-q)^{-}$ proton resonances (also in Fig. 1S) in a 2:1 M ratio for complex 2, its evident converge ($\delta = 8.72-6.25$ ppm) of the proton signals relative to those (δ = 9.13–6.39 ppm) of complex 1, should be arisen from the strong current-circular effect with the large π -conjugated (**dpbq**)⁻ C^N ligand for complex **2** as compared to the $(iqbt)^-$ C^N ligand in complex **1**. Furthermore, the ESI-MS spectra of the two iridium(III)-complexes 1-2 exhibit a similar pattern, where a strongest mass peak at m/z 858.10 (1) or 1000.15 (2) assigned to the major species $[M + H]^+$, respectively, indicates that each of the respective heteroleptic [Ir(C^N)₂(N^O)] unit retains stable in solution. The thermal stability of the two iridium(III)-

Fig. 1. Normalized UV–Visible-NIR absorption for the Ir(III)-complexes **1–2** in contrast to those of the three ligands **Hiqbt**, **Hdpbq**, **8-Hq** in degassed CH₂Cl₂ solution at RT.

complexes 1–2 investigated by thermogravimetric analysis (TGA; Fig. 2S) shows that their decomposition temperatures (T_d , corresponding to 5% weight loss) can be up to 300 °C.

The photo-physical properties of the C^N main ligand Hight or Hdpbq, the N^O ancillary ligand 8-Hq and their two Ir(III)-complexes 1-2 in solution were explored using absorption and photo-luminescence spectrometers, and the results are summarized in Table 1 and Figs. 1-2 and 3-5S. In contrast to the strong absorption bands limited to the λ_{abs} < 400 nm range for the ligands Hiqbt, Hdpbq, and 8-Hq, as shown in Fig. 1, both complexes 1-2 exhibit significantly broadened UV-visible-NIR absorption spectra: the intense absorption bands below 400 nm assigned to the spin-allowed intra-ligand π - π * transitions; the moderate absorption bands in the 400-600 nm region probably arisen from the mixed ${}^{3}LC/{}^{1,3}MLCT$ (LC = ligand-centered; MLCT = metal-toligand charge transfer, $d-\pi^*$) transitions [20]; and the weak absorption bands (654 nm for complex 1 or 689 nm for complex 2) extending over 600 nm possibly attributed to the ground-state excitation into the lowest triplet state (S₀ - T₁). Worthy of notice, the low-energy ³LC/^{1,3}MLCT absorption of complex **1** locates at $\lambda_{abs} = 500$ nm, which is distinctively blue-shifted by 39 nm relative to that ($\lambda_{abs} = 539$ nm) of the parent fac-[Ir(iqbt)₃] complex [19]. Similarly, an evident blue-shift by 25 nm as compared with the low-energy $^{3}\text{LC}/^{1,3}\text{MLCT}$ absorption $(\lambda_{abs} = 525 \text{ nm})$ of complex [Ir(iqbt)₂(pic)] [18], should result from the change in N^O-chelate ancillary ligand field strength. As to complex 2 based on the larger π-conjugation C^N ligand Hdpbq, besides the decreased Ir(III)-centered d-(t_{2g}) orbital energy (541 nm) relative to that (500 nm) of complex 1, the lowest-energy absorption edge almost extends to ca. 700 nm, indicating that the molecular conjugation is significantly increased for the formation of [Ir(dbpq)₂(8-q)] (2) in a delocalized state. Upon photo-excitation ($\lambda_{ex} = 387 \text{ nm}$, Fig. 3S), as

Fig. 2. Normalized NIR photo-luminescence spectra for complexes 1–2 in degassed CH₂Cl₂ solution at RT.

Fig. 3. Cyclic voltammograms of complexes 1–2 recorded *versus* Fc^+/Fc in solution at RT under a N₂ atmosphere (scan rate = 100 mV s^{-1}).

shown in Fig. 2, the strong emission peak (687 nm) of complex 1 lies at the edge of the NIR region besides a shoulder peak at 756 nm. By contrast, complex 2 exhibits a typical NIR luminescence with the emissive wavelength up to 786 nm. Due to the non-emissive character (Fig. 4S) of both the C^N main ligand Hight or Hdpbg and the N^O ancillary ligand 8-Hq in that NIR region, the NIR emissions of complexes 1-2 should originate from the ligands-perturbed ³LC/^{1,3}MLCTexcited state. Moreover, the NIR emissive nature of the two complexes is characteristic of typical phosphorescence (Fig. 5S), confirming from the substantial $\tau = 0.73 \,\mu s$ for complex 1 and $\tau = 0.47 \,\mu s$ for complex 2, respectively. Worthy of notice, although the desirable bathochromatic shifts of complex 1 at 687 nm relative to those (682-683 nm) [18] of complexes [Ir(iqbt)₂(N^N)]⁺ while the slight blue-shifts relative to those of complexes fac-[Ir(iqbt)₃] (690 nm) [19], pic-derived [Ir $(iqbt)_2(N^O)$] (692–700 nm) [18, 20]and $[Ir(iqbt)_2(0^0)]$ (707-710 nm) [23] are observed, its attractive quantum yield of $\Phi_{\rm em} = 0.16$ endowed by strong ligands-perturbed effect, can be further validated from the considerably high radiative rate constant $(k_{\rm r} = 2.19 \times 10^5 \,{\rm s}^{-1})$ and the relatively low non-radiative rate constant $(k_{nr} = 1.15 \times 10^5 \text{ s}^{-1})$. For comparison, the distinctively low quantum efficiency ($\Phi_{\rm em} = 0.05$) for complex **2** advantageous of a typical NIR (786 nm) phosphorescence, should be regulated from the energy-gap law [11] and also confirmed by its two times smaller k_r of $1.06 \times 10^5 \,\mathrm{s}^{-1}$ while two times larger k_{nr} of $2.02 \times 10^5 \,\mathrm{s}^{-1}$ as compared to complex 1.

For insight into the electronic structures of the two NIR-emissive complexes 1-2, their electrochemical properties in anhydride MeCN solution were investigated, and the results were summarized in Table 1 and Fig. 3. During the anodic scan shown in Fig. 3, a reversible oxidation process is detected at half-wave potentials of +0.372 and + 0.348 V versus Fc⁺/Fc for complexes 1-2, respectively, which should originate from the one-electron oxidation [12] of the Ir(III)center and the cyclometalated benzo[b]thiophene or benzo[g]quinoxaline moieties. As compared with complex 1, the Hdpbq-based complex 2 starts to be oxidized at the more positive potential with the shift of 0.024 V, which should reasonably ascribed to its more difficult oxidation due to the stronger π -back-bonding effect from the Ir(III)-center to the C^N main ligands. Considering no distinctive reduction waving for each of the two Ir (III)-complexes and basing on the reasonable $E_{\rm g}^{\rm OPT}$ value of 2.07 eV for complex 1 or 1.90 eV for complex 2 estimated from the low-energy absorbance edge (599 nm for complex 1 versus 653 nm for complex 2), the determined HOMO and LUMO levels of -5.172 and - 2.662 eV for complex 1 or - 5.148 and - 3.140 eV for complex $\mathbf{2}$ are obtained, respectively. In agreement with the $E_{\mathrm{g}}^{\mathrm{OPT}}$ -sized trend [20] and the actual bathochromatic shift of complex 2 in comparison

with complex **1**, complex **2** exhibits a slightly narrower HOMO-LUMO gap of 2.008 eV than that (2.662 eV) of complex **1**.

In summary, through **Hiqbt** or **Hdpbq** as the C^N main ligand and **8-Hq** as the N^O ancillary ligand, two new soluble Ir(III)-complexes [Ir (iqbt)₂(8-q)] (1) and [Ir(dbpq)₂(8-q)] (2) characteristic of a similar [Ir (C^N)₂(N^O)]-heteroleptic configuration are obtained, respectively. In comparison with the photo-physical property ($\lambda_{em} = 687$ nm with a shoulder at 756 nm, lifetime $\tau = 0.73 \,\mu$ s and quantum efficiency $\Phi_{em} = 0.16$) for complex 1, complex 2 with large-molecule-conjugation exhibits the distinctive bathochromatic shift into a typical NIR region ($\lambda_{em} = 786$ nm), endowing a particular opportunity to future NIR-OLED.

Acknowledgements

This work is funded by the NNSF (21373160 and 21173165) and the Graduate Innovation and Creativity Fund (YZZ17127) of Northwest University in P. R. of China.

Appendix A. Supplementary data

The information of raw materials and methods, and the synthesis and characterization of the two C^N ligands **Hiqbt** and **Hdpbq**, the two μ -chloro-bridged dimmer intermediates [**Ir(iqbt)**₂(μ -**Cl**)]₂ and [**Ir** (**dpbq)**₂(μ -**Cl**)]₂ and their two Ir(III)-complexes [Ir(iqbt)₂(8-q)] (1) and [Ir(dpbq)₂(8-q)] (2) depicted in the Supporting information. The ¹H NMR spectra, the TG curves, the solution visible emission and/or excitation spectra of the ligands **Hiqbt**, **Hdpbq** and **8-Hq** and the two Ir (III)-complexes 1–2 and the time-decayed curves deposited in Figs. 1–4S, respectively. Supplementary data to this article can be found online at https://doi.org/10.1016/j.inoche.2019.01.019.

References

- M.F. Harrison, J.P. Neary, W.J. Albert, M.D.W. Veillette, C. Forcest, N.P. McKenzie, J.C. Croll, Physiological effects of night vision goggle counterweights on neck musculature of military helicopter pilots. Mil. Med. 172 (2007) 864–870.
- [2] D.J.E. Knight, Laser frequency standards in the near infrared, coinciding with the optical fiber transmission bands, Laser Phys. 4 (1994) 345–348.
- [3] X.Y. Yao, C.L. Liu, G. Chen, D.X. Feng, J. Yin, Transcranial near-infrared laser therapy in improving cognitive recovery of function following traumatic brain injury, Curr. Neuropharmacol. 16 (2018) 1320–1326.
- [4] T.Q. Wu, N.R. Branda, Using low-energy near infrared light and upconverting nanoparticles to trigger photoreactions within supramolecular assemblies, Chem. Commun. 52 (2016) 8636–8644.
- [5] H. Wang, D.H. Kim, Perovskite-based photodetecttors: materials and devices, Chem. Soc. Rev. 46 (2017) 5204–5236.
- [6] J. Pichaandi, F.C.J.M. van Veggel, Near-infrared emitting quantum dots: recent progress on their synthesis and characterization, Coord. Chem. Rev. 263-264 (2014) 138–150.
- [7] C.-L. Ho, H. Li, W.-Y. Wong, Red to near-infrared organometallic phosphorescent dyes for OLED applications, J. Organomet. Chem. 751 (2014) 261–285.
- [8] A. Barbieri, E. Bandini, F. Monti, V.K. Praveen, N. Armaroli, The rise of near-infrared emitters: organic dyes, porphyrinoids, and transition metal complexes, Top. Curr. Chem. 374 (2016) 1–39.
- [9] H. Chen, B.L. Dong, Y.H. Tang, W.Y. Lin, A unique "integration" strategy for the rational design of optical tunable near-infrared fluorophore, Acc. Chem. Res. 50 (2017) 1410–1422.
- [10] S.V. Eliseeva, J.-C.G. Bünzli, Lanthanide luminescence for functional materials and bio-science, Chem. Soc. Rev. 39 (2010) 189–227.
- [11] J. Xue, L. Chen, L.J. Xin, L. Duan, J. Qiao, High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion, Chem. Sci. 7 (2016) 2888–2895
- [12] H.F. Xiang, J.H. Cheng, X.F. Ma, X.G. Zhou, J.J. Chruma, Near-infrared phosphorescence: materials and applications, Chem. Soc. Rev. 42 (2013) 6128–6185.
- [13] L. Qin, X.G. Guan, Y. Chen, J.S. Huang, C.-M. Che, Near-infrared phosphorescent supramolecular alkyl/aryl-iridium porphyrin assemblies by axial coordination, Chem. Eur. J. 24 (2018) 14400–14408.
- [14] J.H. Palmer, A.C. Durrell, Z. Gross, J.R. Winkler, H.B. Gray, J. Am. Chem. Soc. 132 (2010) 9230–9231.
- [15] J. Xue, L.J. Xin, J.Y. Hou, L. Duan, R.J. Wang, Y. Wei, J. Qiao, Homoleptic facial Ir (III) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm, Chem. Mater. 29 (2017) 4775–4782.
- [16] A.F. Henwood, E. Zysman-Colman, Lessons learned in tuning the optoelectronic properties of phosphorescent iridium(III) complexes, Chem. Commun. 53 (2017)

J. Guo et al.

807-826.

- [17] J. Liu, M.H. Jiang, X.Y. Zhou, C.J. Zhan, J. Bai, M. Xiong, F.F. Li, Y.H. Liu, Highefficient sky-blue and green emissive OLEDs based on Flrpic and Flrdfpic, Synth. Met. 234 (2017) 111–116.
- [18] G.N. Li, Y. Zou, Y.D. Yang, J. Liang, F. Cui, T. Zheng, H. Xie, Z.G. Niu, Deep-red phosphorescent iridium(III) complexes containing 1-(benzo[b]thiophen-2-yl)isoquinoline ligand: synthesis, photophysical and electrochemical properties and DFT calculations, J. Fluoresc. 24 (2014) 1545–1552.
- [19] S. Ikawa, S. Yagi, T. Maeda, H. Nakazumi, H. Fujiwara, S. Koseki, Y. Sakurai, Photoand electroluminescence from deep-red- and near-infrared-phosphorescent tris-cyclometalated iridium(III) complexes bearing largely π-extended ligands, Inorg. Chem. Commun. 38 (2013) 14–19.
- [20] G.R. Fu, H. Zheng, Y.N. He, W.T. Li, X.Q. Lü, H.S. He, Efficient near-infrared (NIR) polymer light-emitting diodes (PLEDs) based on heteroleptic iridium(III) complexes

with post-modification effects of intramolecular hydrogen bonding or BF_2 -chelation, J. Mater. Chem. C 6 (2018) 10589–10596.

- [21] H.-Y. Chen, C.-H. Yang, Y. Chi, Y.-M. Cheng, Y.-S. Yeh, P.-T. Chou, H.-Y. Hsieh, C.-S. Liu, S.-M. Peng, G.-H. Lee, Room-temperature NIR phosphorescence of new iridium (III) complexes with ligands derived from benzoquinoxaline, Can. J. Chem. 84 (2006) 309–318.
- [22] T.Y. Li, J. Wu, Z.G. Wu, Y.X. Zheng, J.L. Zuo, Y. Pan, Rational design of phosphorescent iridium(III) complexes for emission color tenability and their applications in OLEDs, Coord. Chem. Rev. 374 (2018) 55–92.
- [23] S. Kesarkar, W. Mróz, M. Penconi, M. Pasini, S. Destri, M. Cazzaniga, D. Ceresoli, P.R. Mussini, C. Baldoli, U. Giovanella, A. Bossi, Near-IR emitting iridium(III) complexes with heteroaromatic β-diketonate ancillary ligands for efficient solutionprocessed OLEDs: structure-property correlations, Angew. Chem. Int. Ed. 55 (2016) 2714–2718.