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Two efficient near-infrared (NIR) luminescent [Ir(C^N)2(N^O)]-characteristic
complexes with 8-hydroxyquinoline (8-Hq) as the ancillary ligand
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G R A P H I C A L A B S T R A C T

Replaced by the large π-conjugation-induced C^N ligand Hdpbq, the distinctive bathochromatic shift into a typical NIR region (λem = 786 nm) for [Ir(dpbq)2(8-q)]
(2) relative to that (λem =687 nm with a shoulder at 756 nm) of [Ir(iqbt)2(8-q)] (1) while relatively lower quantum efficiency Φem =0.16 versus Φem =0.05 are
observed.
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A B S T R A C T

Through the utilization of Hiqbt (1-(benzo[b]-thiophen-2-yl)-isoquinoline) or Hdpbq (2,3-diphenyl benzo[g]
quinoxaline) as the C^N main ligand and 8-Hq (8-hydroxyquinoline) as the N^O ancillary ligand, two [Ir
(C^N)2(N^O)]-characterized heteroleptic complexes [Ir(iqbt)2(8-q)] (1) and [Ir(dbpq)2(8-q)] (2) with desirable
soluble and NIR-phosphorescent properties (λem =687 nm with a shoulder at 756 nm, lifetime τ =0.73 μs and
quantum efficiency Φem = 0.16 for complex 1 versus λem =786 nm, lifetime τ =0.47 μs and quantum efficiency
Φem = 0.05 for complex 2) are obtained, respectively. In comparison, the distinctive bathochromatic shift into a
typical NIR region of complex 2, arisen from the large-molecule-conjugation-induced narrow energy gap, gives
rise to its relatively lower quantum efficiency than that of complex 1.

Near-infrared (NIR) emitting materials have aroused particular in-
terest in electroluminescent diodes promising for military optoelec-
tronics [1], telecommunications [2] and wound healing [3]. In this

perspective, although significant efforts have been devoted to inorganic
NIR-emitting materials (nano-crystal [4], halide perovskite [5] or
quantum dot [6], etc) for practical NIR-light-emitting diodes (NIR-
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LEDs), organic-counterparts [7] for NIR organic or polymer light-
emitting diodes (NIR-OLEDs or NIR-PLEDs) still dominate in the aca-
demic community, which should be arisen from their more versatile
and advanced properties in terms of broadened photo- and electro-lu-
minescent spectra as well as endless structure modifications. Moreover,
compared with fluorescent small-molecule dyes [8] and conjugated
polymers [9] with 1π-π*-transitions for NIR luminescence, transition-
metal-complex- (Pt(II) or Ir(III)-complex etc) [7] and Ln3+-complex-
resourced (Ln=Nd, Yb or Er) [10] phosphors are worthy of a parti-
cular interest because of their harvesting of both singlet and triplet
excitons toward a theoretic 100% internal emission efficiency. Notice-
ably, in contrast to the narrow-energy-gap-confined [11] rather low
NIR quantum efficiency for Ln3+-complex-based (Ln=Nd, Yb or Er)
with the emissive wavelength above 900 nm and the notorious effi-
ciency-roll-off [12] inherently contributed from facile aggregation of Pt
(II)-centered square-planar system, the compromise of both desirable
high-efficiency and low-efficiency-roll-off, to the best of our knowledge,
should be expected for iridium(III)-complexes characteristic of typical
octahedral configuration and rather short phosphorescent lifetime.

As a matter of fact, from the viewpoint of lowing the emissive en-
ergy of iridium(III)-complexes to a restrictive NIR region
(700–2500 nm), several approaches have been reported. Utilizing the
large π-conjugation porphyrin- [13] or corrole-based [14] macrocycles
as the ligands is highly praised at first, since their substantial NIR
phosphorescence is commonly originated from the intraligand charge
transfer (3ILCT) in the Ir(III)-complexes. However, despite the desirable
emission wavelength extended to 800 nm or above for these Ir(III)-
complexes, distinctively low NIR quantum efficiencies regulated by
energy-gap law [11] actually limit their use for NIR-OLEDs. In contrast,
one of the most successful approaches relies on the π-conjugated ex-
pansion of the main C^N-cyclometalated ligand especially incorporated
with electron-rich substituents to afford the fac-[Ir(C^N)3]-character-
istic homoleptic complex [15] with the expected NIR luminescence
ranging at 700–800 nm. Nonetheless, severe aggregation-induced
quenching effect from the large π-conjugation of the C^N main ligand,

also makes the molecular design of the fac-[Ir(C^N)3]-complex much
challenging in the obtainment of its efficient NIR-OLED or NIR-PLED.
Convincingly, significant electronic perturbation can be achieved by
modification of the L^X ancillary ligands [16], from which, the energy
gap of its typical [Ir(C^N)2(L^X)]-complex is actually adjusted, while
bathochromic-shift to effectively narrow the energy gap for NIR lumi-
nescence does not have a universal effect. For example, within the ty-
pical [Ir(C^N)2(N^O)]-complexes with pic as the ancillary ligand, con-
trast to the rational blue-shift for the well-known Flrpic complex
(Flrpic= bis[2-(4,6-difluorophenyl)pyridinato-C2,N](pic)-iridium(III))
[17], a slight red-shifting [18] at 698 nm for [Ir(iqbt)2(pic)] is realized
in relative to that (690 nm) of the fac-[Ir(iqbt)3] [19]. Moreover, in
consideration of the resolution to [Ir(iqbt)2(pic)] insolubility for solu-
tion-processed OLEDs, the success of our reported two [Ir(iqbt)2(N^O)]-
complexes [20] with pic-derived hpa or BF2-hpa as the N^O ancillary
ligand, motivates us a particular concern on the evolution of some other
N^O ancillary ligands. Herein, with 8-hydroxyquinoline (8-Hq) as the
N^O ancillary ligand, its two new [Ir(C^N)2(N^O)]-heteroleptic com-
plexes with different π-conjugation C^N main ligands of Hiqbt or
Hdpbq are rationally designed, from which, the desirable red-shifted
emission within the NIR regime affected by the electronic perturbations
of the C^N main ligand and the N^O ancillary ligand are also explored.

The C^N main ligand Hiqbt was synthesized by an improved Suzuki
coupling reaction [19] between cost-effective 2-Cl-isoquinoline while
not 2-Br-isoquinoline and benzo[b]-thien-2-y boronic acid in 73% yield.
As to the C^N main ligand Hdpbq, it was obtained from the equimolar
condensation of 2,3-naphthalenediamine with benzyl in the presence of
oxalic acid according to the well-established procedure from the lit-
erature [21]. As shown in Scheme 1, each of the μ-chloro-bridged
dimmer intermediates [Ir(iqbt)2(μ-Cl)]2 and [Ir(dpbq)2(μ-Cl)]2 were
rationally prepared from the reaction of IrCl3⋅3H2O with the corre-
sponding C^N main ligand of Hiqbt or Hdpbq, and used directly for the
next step without further purification. Further through the reaction of
the N^O ancillary ligand 8-Hq with the corresponding μ-chloro-bridged
dimmer intermediate [Ir(iqbt)2(μ-Cl)]2 or [Ir(dpbq)2(μ-Cl)]2, two

Scheme 1. Reaction scheme for the synthesis of complexes [Ir(iqbt)2(8-q)] (1) and [Ir(dpbq)2(8-q)] (2).
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new Ir(III)-complexes [Ir(iqbt)2(8-q)] (1) and [Ir(dpbq)2(8-q)] (2) are
isolated, respectively.

The two Ir(III)-complexes 1–2 are much soluble in common organic
solvents except water, which significantly different from the relative
insolubility [Ir(iqbt)2(pic)] [18] while comparable to that of our re-
ported two [Ir(iqbt)2(N^O)]-complexes [20] with pic-derived hpa or
BF2-hpa as the N^O ancillary ligand, renders the incorporation of the 8-
Hq N^O ancillary ligand for its new [Ir(C^N)2(8-q)] complexes
(HC^N=Hiqbt or Hdpbq) an opportunity to solution-processed
electro-luminescent devices. Moreover, Ir(III)-complexes 1–2 were
well-characterized by EA, FT-IR, 1H NMR and ESI-MS. In the 1H NMR
spectrum (Fig. 1S) of complex 1, the iridium(III)-induced significantly
spread shifts of the (iqbt)− or (dpbq)− and (Ln)− combined proton
resonances (δ =9.13–6.39 ppm) relative to those (δ =8.65–7.43 ppm)
of the free Hiqbt ligand are observed. Moreover, the proton signals of
the (iqbt)− and (8-q)− ligands with a stipulated molar ratio of 2:1
could further confirm the [Ir(iqbt)2(8-q)] (1) characteristic of the ty-
pical [Ir(C^N)2(N^O)]-heteroleptic complexes [22]. For comparison,
despite the similar combination of both the (dpbq)− and (8-q)− proton
resonances (also in Fig. 1S) in a 2:1M ratio for complex 2, its evident
converge (δ =8.72–6.25 ppm) of the proton signals relative to those
(δ =9.13–6.39 ppm) of complex 1, should be arisen from the strong
current-circular effect with the large π-conjugated (dpbq)− C^N ligand
for complex 2 as compared to the (iqbt)− C^N ligand in complex 1.
Furthermore, the ESI-MS spectra of the two iridium(III)-complexes 1–2
exhibit a similar pattern, where a strongest mass peak at m/z 858.10 (1)
or 1000.15 (2) assigned to the major species [M+H]+, respectively,
indicates that each of the respective heteroleptic [Ir(C^N)2(N^O)] unit
retains stable in solution. The thermal stability of the two iridium(III)-

complexes 1–2 investigated by thermogravimetric analysis (TGA;
Fig. 2S) shows that their decomposition temperatures (Td, corre-
sponding to 5% weight loss) can be up to 300 °C.

The photo-physical properties of the C^N main ligand Hiqbt or
Hdpbq, the N^O ancillary ligand 8-Hq and their two Ir(III)-complexes
1–2 in solution were explored using absorption and photo-lumines-
cence spectrometers, and the results are summarized in Table 1 and
Figs. 1–2 and 3–5S. In contrast to the strong absorption bands limited to
the λabs < 400 nm range for the ligands Hiqbt, Hdpbq, and 8-Hq, as
shown in Fig. 1, both complexes 1–2 exhibit significantly broadened
UV–visible-NIR absorption spectra: the intense absorption bands below
400 nm assigned to the spin-allowed intra-ligand π-π* transitions; the
moderate absorption bands in the 400–600 nm region probably arisen
from the mixed 3LC/1,3MLCT (LC= ligand-centered; MLCT=metal-to-
ligand charge transfer, d-π*) transitions [20]; and the weak absorption
bands (654 nm for complex 1 or 689 nm for complex 2) extending over
600 nm possibly attributed to the ground-state excitation into the
lowest triplet state (S0 - T1). Worthy of notice, the low-energy
3LC/1,3MLCT absorption of complex 1 locates at λabs = 500 nm, which
is distinctively blue-shifted by 39 nm relative to that (λabs = 539 nm) of
the parent fac-[Ir(iqbt)3] complex [19]. Similarly, an evident blue-shift
by 25 nm as compared with the low-energy 3LC/1,3MLCT absorption
(λabs = 525 nm) of complex [Ir(iqbt)2(pic)] [18], should result from the
change in N^O-chelate ancillary ligand field strength. As to complex 2
based on the larger π-conjugation C^N ligand Hdpbq, besides the de-
creased Ir(III)-centered d-(t2g) orbital energy (541 nm) relative to that
(500 nm) of complex 1, the lowest-energy absorption edge almost ex-
tends to ca. 700 nm, indicating that the molecular conjugation is sig-
nificantly increased for the formation of [Ir(dbpq)2(8-q)] (2) in a de-
localized state. Upon photo-excitation (λex = 387 nm, Fig. 3S), as

Table 1
Photo-physical and electrochemical properties of complexes 1–2 in solution at room temperature.

Complex Absorption Emission Energy level

λabs
a λem

a τa Φem
a kr

a knr
a HOMOb LUMOb

(nm) (nm) (μs) (×105 s−1) (×105 s−1) (eV) (eV)

[Ir(iqbt)2(8-q)] (1) 229, 284, 367, 443, 500, 654 687, 756(sh) 0.73 0.16 2.19 1.15 −5.172 −2.662
[Ir(dbpq)2(8-q) (2)] (2) 238, 285, 325, 411, 541, 689 786 0.47 0.05 1.06 2.02 −5.148 −3.140

Rate constant kr and knr are calculated using the equations kr= Φem/τ and knr = (1-Φem)/τ on the assumption that ΦISC = 1 (ISC= intersystem crossing).
a In degassed CH2Cl2 solution.
b HOMO and LUMO levels are obtained from electrochemical determination, respectively.

Fig. 1. Normalized UV–Visible-NIR absorption for the Ir(III)-complexes 1–2 in
contrast to those of the three ligands Hiqbt, Hdpbq, 8-Hq in degassed CH2Cl2
solution at RT.

Fig. 2. Normalized NIR photo-luminescence spectra for complexes 1–2 in de-
gassed CH2Cl2 solution at RT.
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shown in Fig. 2, the strong emission peak (687 nm) of complex 1 lies at
the edge of the NIR region besides a shoulder peak at 756 nm. By
contrast, complex 2 exhibits a typical NIR luminescence with the
emissive wavelength up to 786 nm. Due to the non-emissive character
(Fig. 4S) of both the C^N main ligand Hiqbt or Hdpbq and the N^O
ancillary ligand 8-Hq in that NIR region, the NIR emissions of com-
plexes 1–2 should originate from the ligands-perturbed 3LC/1,3MLCT-
excited state. Moreover, the NIR emissive nature of the two complexes
is characteristic of typical phosphorescence (Fig. 5S), confirming from
the substantial τ =0.73 μs for complex 1 and τ =0.47 μs for complex 2,
respectively. Worthy of notice, although the desirable bathochromatic
shifts of complex 1 at 687 nm relative to those (682–683 nm) [18] of
complexes [Ir(iqbt)2(N^N)]+ while the slight blue-shifts relative to
those of complexes fac-[Ir(iqbt)3] (690 nm) [19], pic-derived [Ir
(iqbt)2(N^O)] (692–700 nm) [18,20] and [Ir(iqbt)2(O^O)]
(707–710 nm) [23] are observed, its attractive quantum yield of
Φem =0.16 endowed by strong ligands-perturbed effect, can be further
validated from the considerably high radiative rate constant
(kr = 2.19×105 s−1) and the relatively low non-radiative rate con-
stant (knr = 1.15×105 s−1). For comparison, the distinctively low
quantum efficiency (Φem = 0.05) for complex 2 advantageous of a ty-
pical NIR (786 nm) phosphorescence, should be regulated from the
energy-gap law [11] and also confirmed by its two times smaller kr of
1.06×105 s−1 while two times larger knr of 2.02×105 s−1 as com-
pared to complex 1.

For insight into the electronic structures of the two NIR-emissive
complexes 1–2, their electrochemical properties in anhydride MeCN
solution were investigated, and the results were summarized in Table 1
and Fig. 3. During the anodic scan shown in Fig. 3, a reversible oxi-
dation process is detected at half-wave potentials of +0.372
and+0.348 V versus Fc+/Fc for complexes 1–2, respectively, which
should originate from the one-electron oxidation [12] of the Ir(III)-
center and the cyclometalated benzo[b]thiophene or benzo[g]quinoxa-
line moieties. As compared with complex 1, the Hdpbq-based complex
2 starts to be oxidized at the more positive potential with the shift of
0.024 V, which should reasonably ascribed to its more difficult oxida-
tion due to the stronger π-back-bonding effect from the Ir(III)-center to
the C^N main ligands. Considering no distinctive reduction waving for
each of the two Ir(III)-complexes and basing on the reasonable Eg

OPT

value of 2.07 eV for complex 1 or 1.90 eV for complex 2 estimated from
the low-energy absorbance edge (599 nm for complex 1 versus 653 nm
for complex 2), the determined HOMO and LUMO levels of −5.172
and−2.662 eV for complex 1 or− 5.148 and−3.140 eV for complex
2 are obtained, respectively. In agreement with the Eg

OPT-sized trend
[20] and the actual bathochromatic shift of complex 2 in comparison

with complex 1, complex 2 exhibits a slightly narrower HOMO-LUMO
gap of 2.008 eV than that (2.662 eV) of complex 1.

In summary, through Hiqbt or Hdpbq as the C^N main ligand and 8-
Hq as the N^O ancillary ligand, two new soluble Ir(III)-complexes [Ir
(iqbt)2(8-q)] (1) and [Ir(dbpq)2(8-q)] (2) characteristic of a similar [Ir
(C^N)2(N^O)]-heteroleptic configuration are obtained, respectively. In
comparison with the photo-physical property (λem =687 nm with a
shoulder at 756 nm, lifetime τ =0.73 μs and quantum efficiency
Φem = 0.16) for complex 1, complex 2 with large-molecule-conjugation
exhibits the distinctive bathochromatic shift into a typical NIR region
(λem =786 nm), endowing a particular opportunity to future NIR-
OLED.
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Appendix A. Supplementary data

The information of raw materials and methods, and the synthesis
and characterization of the two C^N ligands Hiqbt and Hdpbq, the two
μ-chloro-bridged dimmer intermediates [Ir(iqbt)2(μ-Cl)]2 and [Ir
(dpbq)2(μ-Cl)]2 and their two Ir(III)-complexes [Ir(iqbt)2(8-q)] (1) and
[Ir(dpbq)2(8-q)] (2) depicted in the Supporting information. The 1H
NMR spectra, the TG curves, the solution visible emission and/or ex-
citation spectra of the ligands Hiqbt, Hdpbq and 8-Hq and the two Ir
(III)-complexes 1–2 and the time-decayed curves deposited in
Figs. 1–4S, respectively. Supplementary data to this article can be found
online at https://doi.org/10.1016/j.inoche.2019.01.019.
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