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ABSTRACT: Discovery and optimization of new catalysts can be
potentially accelerated by efficient data analysis using machine-
learning (ML). In this paper, we record the process of searching for
additives in the electrochemical deposition of Cu catalysts for CO2
reduction (CO2RR) using ML, which includes three iterative cycles:
“experimental test; ML analysis; prediction and redesign”. Cu
catalysts are known for CO2RR to obtain a range of products
including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6,
C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation
can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+
products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting
information from a limited number of experimental data.

■ INTRODUCTION

Catalysts are essential for several chemical transformations.
However, finding a new catalyst for a target reaction is still
challenging due to the complicated catalytical process.1−5

Machine-learning (ML) has the potential to accelerate catalyst
development by efficient data analysis. Recently, ML has been
coupled with quantum chemistry calculations for in silico
material screening;6−12 however, examples using ML analysis
of experimental data to find new catalysts are still
limited.1,13−16 Here we report the process of using ML to
discover and optimize additives in preparing Cu catalysts for
electrochemical CO2 reduction (CO2RR). Cu catalysts are
known for CO2RR to obtain a range of products including
carbon monoxide (CO), formic acid (HCOOH), methane
(CH4), methanol (CH3OH), ethylene (C2H4), ethane (C2H6),
ethanol (C2H5OH), propanol (C3H7OH), etc.17−22 Subtle
changes in morphology and surface structure of the catalysts
lead to dramatic shifts in CO2RR selectivity,22−27 which can be
fine-tuned with additives in catalyst preparation.28−30 A clear
structure−property relationship is still lacking.
We chose electrochemical deposition as the method to

prepare Cu catalysts from Cu salts and added different metal
salts and organic molecules as additives. After three iterative
cycles of “experimental test−ML analysis−prediction and
redesign”, this discovery pipeline identified Sn salt as an
important additive to obtain CO and HCOOH, and aliphatic
alcohols as important additives to promote C2+ production.
Further characterization of the catalysts prepared with

different additives showed that the aliphatic alcohols possibly
promote formation of cubes of Cu2O in the electrodeposition

step. The Cu2O cubes were then reduced to metallic Cu under
experimental conditions with high selectivity toward C2+
products, which is consistent with reported performance of
oxide-derived copper (OD-Cu).31−35

■ RESULTS AND DISCUSSION
Initial Data Collection. In the beginning, we prepared an

additive library including 12 metal salts and 200 water-soluble
organic molecules (Tables S1 and S2). The combinations of
one metal salt plus one organic additive can give more than
2000 potential recipes (Figure 1), but we used a uniform
design algorithm36 to choose only 112 combinations from 12
metal additives and 50 organic additives to perform the
experiments in the first round of learning. The uniform design
can ensure a most efficient search of a high-dimensional
variable space. We present more details about the algorithm in
the Supporting Information.
The CO2RR performance was evaluated by measuring

faradaic efficiency and current density (in units of mA cm−2).
Carbon cloth was used as the support. The potential for
electrochemical deposition was set to −1.0 V versus Ag/AgCl,
while the CO2RR electrolysis potential was set to −1.6 V
versus Ag/AgCl. The electrodeposition was performed in 0.1
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M KCl aqueous solution, after which the working electrode
was washed by water and put in a KHCO3 (0.1 M)/CO2 (1
bar, sat.) buffer in an H-type electrolyzer for CO2RR test.
At the beginning of the first round of the search, we tested

several sets of experimental operational conditions together
with the catalyst preparation condition, including the metal salt
concentration, ligand concentration, electrolyte concentration,
electrodeposition potential, and electrolysis potential. How-
ever, in a later search, to save experimental resources, we limit
our search under a reasonable fixed operational condition.
First Round of Learning. In the first round of learning,

the additives were used as inputs and faradaic efficiencies of H2
(FE-H2), CO (FE-CO), HCOOH (FE-HCOOH), the sum of
C2H4, C2H5OH, and C3H7OH (FE-C2+), and current densities
of H2 (jH2), CO (jCO), HCOOH (jHCOOH), the sum of C2H4,
C2H5OH, and C3H7OH (jC2+) were the outputs. To analyze
this data set, we need to convert chemical structure to variables
that can be used in ML, a process known as feature engineering
in the ML community.
Here we used functional groups on the molecule as the

features, representing each additive by a one-hot vector that
gives information about the presence/absence of a certain
metal and whether the molecular additive contains a certain
functional group or not (Table S4).
We first assigned the FEs to be in the high or low region by

comparing to a predefined threshold value (Table S4) and
used five classification algorithms, “decision tree” (DT),
“random forest” (RF), gradient boosting classification tree
(GBCT), logistic regression (LR), and XGboost, to analyze the
data (Figures S3−S6, Table S5).37−41 Different models have
different strengths, which are listed in the Supporting
Information. Although the regression model seems to be
more attractive for the task, considering significant errors in the
experimental measurements, the classification model can give a
much higher signal-to-noise ratio than the regression model, as
it effectively integrates samples within a range of different FEs.
The accuracy for FE-CO prediction was up to 96% (XGboost)
(Table S5), and the accuracy for predicting the FE-C2+ was up
to 76% (LR) (Table S5).

For FE-CO, feature importance analysis from RF and GBCT
showed the metal additive Sn to be the most significant
variable (Figures S3 and S4). This is not surprising, as Sn itself
is known as an active metal for reducing CO2 to CO. However,
the CO current density of a codeposition of Cu and Sn (2.5
mA cm−2) is much higher than a deposition of Sn (0.5 mA
cm−2) alone. For FE-C2+, feature importance analysis from RF
and GBCT showed that the aliphatic OH group on the organic
additive is most important (Figures S5 and S6).
We also quantitatively analyzed the FE and j using regression

models including linear regression, least absolute shrinkage and
selection operator (LASSO), gradient boost decision tree
regressor (GBDTR), and multilayer perceptron (MLP).42−44

Each regression model has its own strength. We thus tested all
of them to find the best performing one. All the models are just
mathematical fittings without any preset physical assumptions.
In this step, we try to find a reliable mathematical correlation,
which may lead to chemical findings in further analysis of
variables in the mathematical expression. These regression
models confirmed the significant and positive roles of Sn for
FE-CO (Figure 2a, Figure S7) and the aliphatic OH group for
FE-C2+ (Figure 2b, Figure S8) and also suggested Ag additive
as a promoter for jCO and jC2+ (Figure S9, Figure S10).

Second Round of Learning. To construct the second
round of the data set, we zoom-in the regions of high FE-CO,
FE-HCOOH, and FE-C2+ to add more data points. We
prepared another 28 samples with Sn additives and different
organic additives. We also added another 47 samples using
different organic additives with aliphatic OH groups.
Combining the first round and the second round experiments,
we obtained the second data set including 187 data points,
among which 94 catalysts contained Cu as the only metal and
42 catalysts contained Sn/Cu.
To better represent local structure of the organic additives in

the second round, besides the functional group-based
featurization, we used molecular fragment featurization
(MFF) modified from the extended-connectivity fingerprint
(ECFP) method45 to extract fragments of a molecule (Figure
3a, Table S6). We obtained 137 fragments from 94 molecules
as input variables for Cu catalysts and 70 fragments from 42

Figure 1. (a) Preparation of Cu electrocatalysts via electrochemical
deposition followed by evaluation of catalytic performance. (b) The
learning loop for accelerated discovery based on three iterative cycles
of “experimental test−ML analysis−prediction and redesign” to guide
the search for high-performance CO2RR catalysts.

Figure 2. Feature importance of (a) FE-CO and (b) FE-C2+ obtained
by gradient boost decision tree regressor analysis for the first round
machine-learning. (c) High-performance catalysts selected after the
second round of machine learning and (d) corresponding additives
for catalysts in c.
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molecules as input variables for Sn/Cu catalysts. These MFF
features were used for classification, but one-hot functional
group features were still used in regression due to their
simplicity.
We first analyzed the sum of partial current densities for

generating HCOOH and CO (jHCOOH+CO). Regression
analyses suggested that besides Sn additive, the carboxyl
group on the molecular additive has a positive effect (Figures
S16).
We then proceeded to analyze the ratio of FEs between

generating HCOOH and generating CO (FE-HCOOH/FE-
CO). We set FE-HCOOH/FE-CO = 1 as a borderline for 0/1
assignment in the classification. RF and GBCT analyses both
showed that the nitrogen-containing groups on the organic
additives are important (Figures S13 and S14). Regression
analyses confirmed that the aliphatic amino group favors
generating HCOOH while nitrogen heteroaromatic ring favors
generating CO (Figures S15).
On the basis of these analyses, we used ligands containing a

nitrogen heteroaromatic ring and a carboxyl group to achieve
high FE-CO (sample 215: Sn + tryptophan as additives, FE-
CO = 91%, jCO = 10 mA cm−2) and used ligands containing
aliphatic amino and carboxyl groups to obtain high FE-

HCOOH (sample 216: Sn + L-aspartic acid as additives, FE-
HCOOH = 65%, jHCOOH = 20.5 mA cm−2) (Figure 2c,d, Table
S2).
Local pH should be an important parameter to dictate

catalytic selectivity. We added the local pH as an additional
variable in the machine learning of FE-HCOOH/FE-CO. The
local pH can be calculated using current density according to

i

k
jjjjjj

y

{
zzzzzz

j

j
pH pH log 1local bulk

OH

d

= + +
−

(1)

where

j F
D

l
j j j

CO
, 0.5d

CO 3
2

bulk
OH HCOOH

3
2

=
[ ]

= − ×
−

−

−
(2)

which has been detailed in our previous work.46 GBDTR
showed that the most important factor is the local pH (Figure
4a, Figure S17). At a higher local pH, most catalysts exhibit a
higher ratio of FE-HCOOH/FE-CO (Figure 4b). It is
consistent with the notion that a basic environment disfavors
C−O bond cleavage. This finding on local pH is similar to that
of an earlier report of the pH effect of [Ru(bpy)2(CO)2]

2+

Figure 3. (a) Converting molecular structure to MFF representation. (b) The third round machine learning to extract interaction-based feature
combinations using random intersection tree (RIT). (c) Designing new molecular additives based on results from RIT.
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catalyst in CO2RR
47 but is found for the first time in a Sn/Cu

system.
For FE-C2+ and jC2+ of the Cu catalysts, ML of the second

data set confirmed the importance of the aliphatic OH group
(Figures S18−S21, Table S7). Linear regression also showed
that an aliphatic amine had a positive effect while N-containing
aromatic heterocycles and an aromatic amine had negative
effects on FE-C2+ (Figure S20).
These findings can be verified by visualizing distribution of

FE-C2+ of additives with and without these functional groups
(Figure S22), the significance of which was further verified by
testing null-hypothesis using the Wilcoxon rank test method
(Figure S23).
Consistent with these analyses, the catalyst prepared with

sorbitol as the additive gave the highest C2+ selectivity of 53%
and partial current density of 4.0 mA cm−2 in CO2 saturated
0.1 M KHCO3 in H-type electrolyzer for these products
(Figure 2c,d). We then loaded this catalyst to a gas diffusion
electrode and tested its performance in a flow-cell system. A
current density of 250 mA cm−2 with FE-C2+ of 63% was
achieved in 1.0 M KOH at −0.97 VRHE (Table S3).
Third Round of Learning. The above feature importance

analyses focused on a particular feature of the additive.
However, a pair of features may work cooperatively. To search
for such a positive or negative synergistic effect, we used a
“random intersection tree” (RIT)48 in the third round of
learning to examine important variable combinations (Figure
3). The RIT algorithm can quickly extract interaction-based
feature combinations even when the number of all possible
combinations is large. Key to this algorithm is to find common
features of positive samples through an intersection operation
to construct tree structures with feature subsets as the nodes. A
total of 1495 such subsets was obtained from 1000 trees. An “I-
score” was used to evaluate their importance, and 23 subsets
with the highest I-scores were selected, each of which
contained 2 to 7 features. We then predicted FE-C2+ of
these 23 sets using classification models obtained from the
second round ML using LR, RF, GBCT, and XGBoost. Only
11 out of the 23 feature subsets have consistent predictions
from the four models. These 11 subsets showed that
combinations of the aliphatic hydroxyl group with aliphatic
carboxylic acids, an aliphatic amine, or aliphatic ammonium
salts tend to enhance FE-C2+, while combinations of aromatic
rings, aromatic carboxylic acids and nitrogen-containing
heterocycles tend to reduce FE-C2+.
We designed 24 molecules following feature combinations in

the 11 subsets (Table S8). A voting regressor combining MLP,
LASSO, and GBDTR models from the second round of ML
assessed FE-C2+ of these 24 additives (Table S9, Figure S24,
Figure 5a). Scores of synthetic Bayesian accessibility (SYBA)49

were also calculated to predict whether the designed molecules
were easy to synthesize. From the 24 molecules, 3
commercially available ones with quite different FE-C2+
predictions were chosen to be experimentally tested in H-
type electrolyzer (Figure 5b, Table S2). The experimental
result roughly confirmed the prediction (FE-C2+ for 223 meso-
erythritol: 28%; 224 4-methylpyridine-2-carboxylic acid: 7%;
225 4-methylpyridine-2-carboxylic acid: 0%). The meso-
erythritol additive gave a high C2+ selectivity and was then
tested in a flow cell using a gas-diffusion electrode in 1.0 M
KOH to give FE-C2+ of 64% with a current density of 300 mA
cm−2 as shown in Table S3.

Searching for the Function of the Additives. The
organic additives played an important role in Cu catalyst
preparation, but how do they affect the catalytic process? We
first performed an infrared (IR) measurement of several of the
catalysts to see whether the organic molecules adhere to the
metal surface. We did not observe signals of the organic
molecules, although we cannot rule out small amounts of
surface-attached molecules that are below the detection limit of
IR spectroscopy (Figure S25). Furthermore, adding the
promoting organic additives to CO2RR solution does not
lead to enhanced performance (Figure S26). The additive
organic molecules are thus unlikely to directly participate in
the CO2RR process.
We then analyzed powder X-ray diffraction (PXRD)

patterns of the Cu depositions before catalysis (Figures
S27−S32). We found Cu2O phases (peaks at 36.5°, 42.5°,
61.5°, JCPDS no. 65-3288) in several Cu preparations
especially those with aliphatic OH groups on the additives,
while the Cu2O phase was not found in many other
preparations (e.g., with pyridine as the additive). We also
searched for signs of CuO or Cu(OH)2 by PXRD and XPS but
could not find them in the samples.
We thus hypothesized that one function of the organic

additive is to control the phase of the deposits. Figure 6a shows
the relationship between the presence/absence of the Cu2O
phase in the deposits and the FE-CO2RR, revealing that the
FE-CO2RR is correlated with the Cu2O phase in the deposits.
For Sn/Cu catalysts, we found that addition of Sn induces
formation of Cu2O (Figure S34). This finding is consistent
with many literature reports of high activity of oxide-derived
Cu (OD-Cu).31−35 X-ray photoelectron spectroscopy and
Auger electron spectroscopy of Cu showed that the sample
prepared with an organic additive with an aliphatic OH group
had more CuI before catalysis (Figures S35−S37), although Cu
in all samples was reduced into Cu0 after 1 h catalysis (Figure
S33). The amount of Cu deposited does not have a significant
effect on product selectivity (Figure S38).

Figure 4. (a) Feature importance of FE-HCOOH/FE-CO using
GBDTR for Sn/Cu data set. (b) The same catalysts exhibit a higher
ratio of FE-HCOOH/FE-CO when the local pH is increased.

Figure 5. (a) Prediction of FE-C2+ of designed catalysts in the 3rd
round of learning and the corresponding SYBA score. (b)
Experimental FE-C2+ of corresponding predicted catalysts (circled
in part a).
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We also analyzed electron microscopy (EM) images of the
catalysts (Figures S39−S43). We found that catalysts with
higher FE-C2+ showed more regular Cu2O cubes before
catalysis (Figure 6b−d), although shapes of these cubes were
lost after electrolysis of 20 min (Figure S41). Recent literature
reports also showed that Cu2O cubes as a precursor can
enhance the selectivity of C2+ products.50 Besides the Cu2O
cubes, we investigated Cu2O nanoparticles enclosed by
different crystal facets (nos. 170, 150, 131) for C2+ products.
High-resolution transmission electron microscopy (HRTEM)
and selected area electron diffraction (SAED) (Figure S42)
showed that sample 170 has exposed {001} facets, and sample
150 has some {11−2} facets, while sample 131 has some {1-1-
1} facets besides the {001} facets. Although their exposed
crystal faces are different, they all show similarly high FE-C2+
(170:52.9%, 150:46.2%, 131:51.7%).
By contrast, sample 167 (Figure S43) contained fragmented

polycrystalline Cu2O nanoparticles and showed low FE-C2+
(167:0%). We found that catalysts with higher FE-C2+ showed
more regular Cu2O crystals in the precursor before catalysis
while it seems that there is no direct correlation between the
exposed crystal face and FE-C2+. This finding is different from
the reported correlation between the exposed crystal planes of
Cu2O and FE-C2+.

51,52

■ EXPERIMENTAL METHODS
Materials and Apparatus. Reagents were commercially available

and used without further purification unless otherwise noted. Powder
X-ray diffraction (PXRD) was carried out on a Rigaku DMax-γA
rotation anode X-ray diffractometer equipped with graphite
monochromatized Cu Kα radiation (γ = 1.54 Å). IR spectra were
obtained on a Nicolet iS50 FTIR spectrometer. Scanning electron
microscopy images were obtained on a Zeiss sigma. 1H NMR spectra
were recorded on a Bruker NMR 500 DRX spectrometer at 500 MHz.
Transmission electron microscopy (TEM) images were acquired on a
JEOL 2100 high resolution transmission electron microscope. The
XPS measurements were performed using a PHI Quantum 2000
instrument.
Synthetic Procedures. Synthetic Conditions for Cu-Mixed

Precursor. Cu-mixed precursors were made from 0.1 M CuSO4·
5H2O with or without a 10 mM concentration of another metal salt

(SnCl2·2H2O, CoCl2·6H2O, NiCl2·6H2O, ZnCl2, FeSO4·7H2O,
AgNO3, In(NO3)3·xH2O, Pd(NO3)2, Bi(NO3)3, Ce(NO3)3,
HAuCl4) and/or a 10 mM concentration of organic additive in 0.1
M KCl aqueous solution.

Synthetic Conditions for Cu-Mixed Catalyst. Cu-mixed samples
were electrodeposited in a plating bath made from the above Cu-
mixed precursor. Carbon cloth was used as a substrate for
electrodeposition. Cu-mixed catalyst was in situ electrodeposited at
a constant potential −1.0 V vs Ag/AgCl until a final deposition charge
of 1.9 C/cm2 was reached on the carbon cloth. A graphitic sheet was
used as the counter electrode, and a Ag/AgCl electrode was placed
near the working electrode as the reference electrode.

Electrochemistry. Electrochemical measurements were performed
using a three-electrode system and an electrochemical workstation
(CHI660E). Electrolysis was performed at room temperature in a H
type cell with a Ag/AgCl reference electrode and a graphitic sheet
counter electrode. The cathode and anode compartments were
separated by a proton exchange membrane (Nafion 117). The
potentials on the working electrodes were converted to voltages with
respect to the RHE reference electrode by E (vs the RHE) = E (vs the
Ag/AgCl) + 0.20 V + 0.0591 × pH. Catalytic results with a H-type
cell are shown in Tables S1 and S2. Electrolysis was also performed at
room temperature in a flow cell with an Ag/AgCl reference electrode
and a nickel foam counter electrode. Catalytic results with the flow
cell are shown in Table S3.

Product Analysis. Liquid-phase products were analyzed by proton
nuclear magnetic resonance (1H NMR) spectroscopy (Bruker
AVANCE AV III 500), in which 0.5 mL of the electrolysis solution
was mixed with 0.1 mL of deuterated water (D2O) for field locking
and 0.02 μL of dimethyl sulfoxide (DMSO) as an internal standard.
The 1H NMR spectrum was measured with water suppression using a
presaturation sequence. Gas-phase products were detected online by
using a gas chromatograph (GC) connected to the headspace of the
electrolysis cell. A thermal conductivity detector (TCD) was used to
quantify hydrogen, and a flame ionization detector (FID) equipped
with a methanizer was used to quantify carbon monoxide, methane,
ethane, and ethylene.

Machine Learning Methods. Feature Selection Using a
Random Intersection Tree. A “random intersection tree” (RIT) can
quickly extract interaction-based feature combinations.48 The target
property (denoted y) for the RIT analysis is labeled either ‘1’ (positive
sample) or ‘0’ (negative sample). Here we chose Faradaic efficiency as
the target property. We set a criteria for Faradaic efficiency, above
which y is labeled ‘1’ while below it is labeled ‘0’ to convert the data
into binary combinations that are suitable for RIT analysis. A positive
sample was then randomly chosen as the root node to construct a tree
(RIT). A child node of the root node was constructed by randomly
choosing another positive sample and calculating the common
features of the root sample and the newly chosen one, which is
called an intersection operation. These common features constitute
one child node. Several other children nodes were obtained by
randomly choosing other positive samples to undergo the intersection
operation with the common root node to complete a second layer of
the tree. The third layer of the tree was constructed by repeating the
intersection operation between the second layer and randomly chosen
positive samples. The algorithm will stop if the selected features of a
node do not show up significantly more often in positive samples than
in negative samples. A leaf node thus contains a feature subset that is
important in determining the target property. Negative samples are
also used for the intersection operation but with a modified rule.
Features appearing in a negative sample will be given penalties to
decrease their likelihood to constitute positive subsets.

In building the RITs, the number of branches from each nonleaf
node is set to 3, the maximum depth is set to 9, and the maximum
number of features in a returned subset is set to 15. Positive samples
are randomly collected as “root nodes” to produce 1000 RITs. All
these trees acted like a forest to yield 1495 possible subsets.

An “I-score” is used in the RIT analysis,48 which can be computed
by the formula

Figure 6. (a) Relationship between FE-CO2RR, FE-H2, and the XRD
phase of the samples. Samples in the red area contain the Cu2O phase
while samples in the blue area do not. (b) Relationship between FE-
C2+ and the morphology of the samples. Samples in the red area
contain the Cu2O cube while samples in the blue area do not. (c)
SEM images of sample 167 without the Cu2O cube. (d) SEM images
of sample 170 with the Cu2O cube.
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where Pk is a partition consisting of k features (a feature subset or the
leaf node of the size of k), j is a partition element among 2k

possibilities, n j( )1̅ is the number of positive samples whose feature
values are corresponding to j, and n j( )1̅ is the expected number of
positive samples according to the occurrence frequency of j and
positive ratio observed from the whole data set. The I-score can be
normalized by dividing nσ2, where n is the number of samples and σ2

is the variance of label values y of all samples. The higher the I-score,
the more significant the selected features. A greedy algorithm named
“backward dropping algorithm” is thus implemented to drop features
until all the subsets generated by RIT reach their highest I-score. The
final return sets after the entire process can be considered as the most
important subsets extracted from the original data set. Further tests
are needed to tell whether they are positively or negatively related to
the target label. The I-scores of all 1495 sets were calculated, and the
23 highest were put into the backward dropping algorithm for further
refinement to obtain I-scores between 1.5675 and 3.8937. Only 2 to 7
features were contained in each one of these 23 sets. For example, one
such set with an I-score of 2.5406 contains ‘With_2_CO’,
‘With_1_CC’, ‘With_2_CCO’, and ‘With_1_CC(C)(C)C’, suggest-
ing that these feature combinations might be influential for the label
values.

■ CONCLUSIONS
In summary, we accelerate the discovery of electrodeposition
additives to prepare Cu catalysts for CO2RR using machine-
learning. We found that molecules with an aliphatic OH group
as the additive promotes faradaic efficiency in generating C2+
products, possibly via controlling formation of Cu2O cubes in
the catalyst precursor. This Cu2O phase is also important in
the Sn/Cu bimetallic system to generate CO/HCOOH in
CO2RR. Currently, ML-assisted catalyst development is still
limited by the number of experimental data. High throughput
screening methods may combine with ML strategy to open
new horizons in catalyst discovery.
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