Synthesis and Neuropeptide Y Y₁ Receptor Antagonistic Activity of N,N-Disubstituted ω -Guanidino- and ω -Aminoalkanoic Acid Amides^{*}

Manfred Müller, Sebastian Knieps, Karin Geßele, Stefan Dove, Günther Bernhardt, and Armin Buschauer*

Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

Key Words: Neuropeptide Y; Y1 receptor; NPY antagonists; HEL cells; calcium assay

Summary

Potent arpromidine-type histamine H₂ receptor agonists such as BU-E-76 (He 90481) were among the first non-peptides reported to display weak neuropeptide Y (NPY) Y1 receptor antagonist activity. In search of new chemical leads for the development of more potent NPY antagonists, a series of N,N-disubstituted wguanidino and ω -aminoalkanoic acid amides were synthesized on the basis of structure-activity relationships and molecular modeling studies of arpromidine and related imidazolylpropylguanidines. In one group of compounds the imidazole ring was retained whereas in the second group it was replaced with a phenol group representing a putative mimic of Tyr^{36} in NPY. Although the substitution patterns have not yet been optimized, the title compounds are NPY Y₁ antagonists in human erythroleukemia (HEL) cells (Ca^{2+} assay) achieving pK_B values in the range of 6.3–6.6. For representative new substances tested in the isolated guinea pig right atrium histamine H2 receptor agonism could not be found. In the N-(diphenylalkyl) amide series, compounds with a trimethylene chain were more active Y1 antagonists than the ethylene homologs. Concerning the spacer in the ω -amino or ω -guanidinoalkanovl portion, the best activity was found in compounds with a four- or five-membered alkyl chain or a 1,4-cyclohexylene group. Surprisingly, in contrast to the phenol series, in the imidazole series the compounds with a side chain amino group turned out to be considerably more potent than the corresponding strongly basic guanidines. Thus, the structure-activity relationships appear to be different for the diphenylalkylamide NPY antagonists with one or two basic groups.

Introduction

The 36 amino acid peptide neuropeptide Y $(NPY)^{[1]}$ is found in the central and peripheral nervous system and is involved in numerous biological processes [2-5]. In the periphery, NPY is a cotransmitter in the sympathetic nervous system and acts, for instance, as a potent vasoconstrictor via postsynaptic Y₁ receptor stimulation or as an inhibitor of neurotransmitter release owing to presynaptic Y2 receptor stimulation^[4]. Y_1 and Y_2 were the first pharmacologically characterized and cloned NPY receptors. Very recently, additional NPY receptor subtypes have been cloned (Y4, Y5, Y₆) (NPY receptor nomenclature cf. ref. ^[6]). For pharmacological discrimination of the receptors mainly NPY, PYY, analogs and peptide fragments of NPY were used^[5]. Apart from numerous peptide ligands, only a few non-peptide antagonists have been described in the literature. Recently, the peptide-like compounds BIBP 3226^[7] and SR 120819A^[8] were reported to have high Y1 receptor affinity and selectivity, and quinoline derivatives such as PD 160710^[9] were described as novel NPY antagonists (Fig. 1) (for recent reviews ref. [10]).

Previously, the potent histamine H₂ receptor agonist BU-E-76 (He 90481), an analog of arpromidine^[11], had been described as one of the first non-peptide NPY Y₁ receptor ligands^[12]. The compound is a weakly active but competitive antagonist at Y₁ receptors (pA₂ 4.43 in HEL cells)^[12]. Structural modifications such as increasing hydrophobicity (e.g.

3,4-dichloro substitution at the phenyl ring) and/or replacement of the pheniramine-like phenyl(pyridyl)alkyl portion by a mepyramine-like halogenated benzyl(pyridyl)aminoalkyl partial structure, resulted in an up to 100-fold increase in Y₁ antagonistic activity^[13]. The imidazole ring, which is a characteristic of guanidine-type histamine H_2 receptor agonists, is not essential for Y_1 antagonism^[14]. However, structure-activity relationships of the arpromidine series and modeling studies indicate the importance of two basic centers, which are supposed to mimic the guanidino groups of Arg³³ and Arg³⁵ of NPY (cf. Fig. 1) in its putatively active conformation^[13,15,16]. Based on this hypothesis, we have transferred the guanidino group from the chain into a terminal position resulting in alkanamides with a more arginine-like arrangement of the strongly basic center. In addition, the ring substituents as well as the chain lengths and the nature of the basic group were varied.

As an alternative to the imitation of an Arg residue, it is conceivable that the imidazole ring in arpromidine-like compounds and in corresponding new NPY antagonists mimics a tyrosine residue such as Tyr^{36} in NPY. Therefore, structural analogs bearing a phenol group instead of the imidazole ring were also synthesized in order to test this hypothesis and to compare the structure-activity relationships of both series of compounds.

Chemistry

The secondary amines 15-22 were prepared from diarylalkanoic acids 1-6, which were first activated with carbonyldiimidazole (CDI) or with ethyl chloroformate and converted to the corresponding *N*-imidazolylalkyl- and *N*-(arylalkyl)amides 7-14. Subsequently, the amides 7-14 were reduced with either lithium aluminum hydride or sodium borohydride/phosphorus oxychloride (Scheme 1, Table 1).

N-Acylation of the amines **15–22** with different ω phthalimidoalkanoyl chlorides, prepared from the carboxylic acids **23–30**, and subsequent deprotection of compounds **31–57** by hydrazinolysis gave the *N*,*N*-disubstituted ω -aminoalkanoic acid amides **58–84** (Scheme 2, Table 2). The ether cleavage of the compounds with a *p*-methoxyphenyl substi-

Scheme 1

 Table 1. Analytical data of diarylalkanoic acid amides 7–14, diarylalkanamines 15–22 and characterized phthalimides 31–42.

_				
No.	Yield %	mp, °C	Analysis C. H. N ^a	⁺ FAB-MS/[EI-MS] m/z^{b} (%)
7	69	oil	$C_{20}H_{21}FN_4O$	352 (43), 242 (100)
8	63	oil	$C_{20}H_{21}BrN_4O$	413 (45), 302 (100)
9	68	oil	C ₂₁ H ₂₃ FN ₄ O	366 (30), 242 (100)
10	91	215	C19H19N3O	[305 (19), 82 (100)]
11	85	167	C ₂₀ H ₂₁ N ₃ O	[319 (76), 82 (100)]
12	71	oil	$C_{20}H_{21}N_{3}O$	[319 (25), 82 (100)]
13	63	110	C23H23NO2	[345 (9), 134 (100)]
14	68	100	C24H25NO2	[359 (12), 134 (100)]
15	82	oil	C20H23FN4	339 (9), 228 (100)
16	72	oil	C ₂₀ H ₂₃ BrN ₄	[398 (2), 210 (100)]
17	84	oil	C21H25FN4	353 (13), 105 (100)
18	65	oil	C19H21N3	[291 (12), 67 (100)]
19	80	oil	C20H23N3	[305 (21), 95 (100)]
20	95	oil	C20H23N3	[305 (17), 81 (100)]
21	89	oil	C ₂₃ H ₂₅ NO	[331 (1), 164 (100)]
22	97	oil	C24H27NO	[345 (4), 44 (100)]
31	67	amorphous	C31H30FN5O3	[540 (15), 160 (100)]
33	63	amorphous	C33H34FN5O3	[568 (20), 228 (100)]
34	59	amorphous	C34H36FN5O3	[582 (15), 228 (100)]
35	67	amorphous	C31H30BrN5O3	[600 (7), 160 (100)]
37	62	amorphous	C ₃₂ H ₃₂ BrN ₅ O ₃	[614 (4), 210 (100)]
38	70	amorphous	C32H32FN5O3	[554 (16), 160 (100)]
39	61	amorphous	C33H34FN5O3	[568 (31), 95 (100)]
40	70	amorphous	C35H38FN5O3	[596 (61), 160 (100)]
41	51	amorphous	C37H42FN5O3	[624 (15), 95 (100)]
42	45	amorphous	C36H32FN5O3	[602 (2), 93 (100)]
		anorphous	0,011,02111,005	

^aAnalysis C, H, N within $\pm 0.4\%$. ^b ⁺FAB- or EI-MS (EI in square brackets); molecular ion, $[M + H]^+$ (FAB) or $[M^{+\bullet}]$ (EI) and base peak (100%).

Scheme 2

Table 2. Analytical data and Y1 receptor antagonistic activity of ω-aminoalkanoic acid amides.

No.	R ¹	Q	n	А	Mp °C	Yield %	Analysis C, H, N ^a	⁺ FAB-MS <i>m</i> /z ^b (%)	Y ₁ antagonism ^c IC ₅₀ [µM]
59	F	2-Py	3	(CH ₂) ₃	_d	66	C ₂₄ H ₃₀ FN ₅ O	424 (71), 277 (100)	> 10000
60	F	2-Py	3	$(CH_2)_4$	_d	54	C ₂₅ H ₃₂ FN ₅ O	438 (20), 228 (100)	n. d.
61	F	2-Py	3	(CH ₂) ₅	_d	49	C ₂₆ H ₃₄ FN ₅ O	452 (12), 228 (100)	n. d.
63	Br	2-Py	3	$(CH_2)_3$	_d	72	C ₂₄ H ₃₀ BrN ₅ O	484 (4), 210 (100)	6109
64	F	2-Py	4	CH_2	_d	88	C ₂₃ H ₂₈ FN ₅ O	410 (12), 95 (100)	n. d.
65	F	2-Py	4	$(CH_2)_2$	_d	58	C ₂₄ H ₃₀ FN ₅ O	424 (16), 95 (100)	n. d.
66	F	2-Py	4	$(CH_2)_3$	_d	84	C25H32FN5O	438 (10), 95 (100)	n. d.
70	Н	Ph	1	$(CH_2)_4$	_ ^d	40	$C_{24}H_{30}N_4O$	391 (100)	20
71	Н	Ph	1	(CH ₂) ₅	_d	50	$C_{25}H_{32}N_4O$	405 (60), 292 (100)	4
72	Н	Bn	1	$(CH_2)_4$	_d	57	C ₂₅ H ₃₂ N ₄ O	405 (51), 305 (100)	1.7
73 ^f	Н	Bn	1	$(CH_2)_5$	_d	44	C ₂₆ H ₃₄ N ₄ O	419 (100)	0.9
74	н	Bn	1	4-Me-cHex ^e	_d	45	C ₂₈ H ₃₆ N ₄ O	445 (100)	>10000
75	Н	Ph	2	$(CH_2)_5$	_d	49	C ₂₆ H ₃₄ N ₄ O	419 (70), 185 (100)	9
76	Н	Ph	2	4-Me-cHex ^e	_d	51	C ₂₈ H ₃₆ N ₄ O	445 (80), 277 (100)	5
78	Н	Ph	1	$(CH_2)_4$	oil	42	$C_{28}H_{34}N_2O_2$	431 (100)	n. d.
82	Н	Ph	2	$(CH_2)_4$	oil	62	$C_{29}H_{36}N_2O_2$	445 (100)	n. d.
85	Н	Ph	1	$(CH_2)_3$	45	75	$C_{26}H_{30}N_2O_2$	403 (100)	116
86	Н	Ph	1	$(CH_2)_4$	_d	75	$C_{27}H_{32}N_2O_2$	417 (100)	367
87	Н	Ph	1	$(CH_2)_5$	47	66	$C_{28}H_{34}N_2O_2$	431 (100)	860
88	Н	Ph	1	4-Me-cHex ^e	50	69	$C_{30}H_{36}N_2O_2$	457 (100)	247
89	н	Ph	2	$(CH_2)_3$	_d	70	$C_{27}H_{32}N_2O_2$	417 (100)	80
90	н	Ph	2	$(CH_2)_4$	_d	78	$C_{28}H_{34}N_2O_2$	431 (100)	61
91	Н	Ph	2	$(CH_2)_5$	^d	69	$C_{29}H_{36}N_2O_2$	445 (100)	132
92	Н	Ph	2	4-Me-cHex ^e	50	69	C31H38N2O2	471 (100)	576

^a Analysis C, H, N within $\pm 0.4\%$. ^b[M + H]⁺ and base peak. ^c Inhibition of NPY (10 nM) induced increase in [Ca²⁺]_i, antagonist concentrations used: 100, 50, 10 and 1 μ M; mean of at least 3–5 independent experiments. ^dHygroscopic amorphous solids. ^e4-Me-cHex = 4-methylcyclohexane-1, α -diyl. ^f Exemplarily tested for histamine H₁ receptor antagonism (guinea pig ileum) and for H₂ agonism (guinea pig atrium): inactive at both test systems at concentrations ≤10 μ M.

Arch. Pharm. Pharm. Med. Chem. 330, 333-342 (1997)

tuent (77–84) was carried out with hydrobromic acid leading to the p-hydroxyphenylethylamides 85–92.

The ω -aminoalkanamides **58–76**, **78**, **82** and **85–92** were treated with 2-(methylthio)-2-imidazolinium iodide (**93** • HI) or *S*-methyl isothiuronium iodide (**94** • HI) (Scheme 3). As the resulting guanidines **95–126** (Tables 3, 4) could not be purified by crystallization, isolation and purification were carried out either on a rotatory chromatographic system (ChromatotronTM) or, more efficiently, using a reversed phase HPLC and MPLC method developed for the separation of the guanidinium salts (hydroiodides or trifluoroacetates).

Pharmacology

The screening for Y_1 antagonistic activity was performed by measuring the inhibition of NPY-stimulated increase in intracellular [Ca²⁺] in HEL cells^[17]. Some of the compounds were investigated for their activity at histamine H₂ receptors (isolated spontaneously beating guinea pig right atrium)^[18] and for histamine H₁ receptor antagonism at the isolated guinea pig ileum^[19]. Table 3. Analytical data and Y1 receptor antagonistic activity of imidazolylethyl substituted w-guanidinoalkanoic acid amides 95-111

No.	R ¹	Q	n	A	Mp °C	Yield %	Analysis C, H, N ^a	⁺ FAB-MS <i>m</i> /z ^b (%)	Y ₁ antagonism ^c IC ₅₀ [μM]
95 ^d	F	2-Py	3	(CH ₂) ₂	_e	22	$C_{26}H_{32}FN_7O \bullet HI \bullet H_2O$	478 (13)	74
96	F	2-Py	3	(CH ₂) ₄	e	32	$C_{28}H_{36}FN_7O \bullet HI \bullet H_2O$	506 (100)	247
97	F	2-Py	3	(CH ₂) ₅	_e	29	$C_{29}H_{38}FN_7O \bullet HI \bullet H_2O$	520 (100)	89
98 ^d	Br	2-Py	3	$(CH_2)_2$	_e	20	$C_{26}H_{32}BrN_7O \bullet HI \bullet H_2O$	538 (7)	53
99	Br	2-Py	3	(CH ₂) ₃	_e	20	$C_{27}H_{34}BrN_7O \bullet HI \bullet H_2O$	552 (4), 154 (100)	110
100	F	2-Py	4	CH ₂	_"	11	$C_{26}H_{32}FN_7O \bullet HI \bullet H_2O$	478 (17), 98 (100)	64
101	F	2-Py	4	$(CH_{2})_{2}$	_ ^e	16	$C_{27}H_{34}FN_7O \bullet HI \bullet H_2O$	492 (11), 55 (100)	17
102 ^d	F	2-Py	4	(CH ₂) ₃	_e	20	$C_{28}H_{36}FN_7O \bullet HI \bullet H_2O$	506 (19), 95 (100)	21
103	F	2-Py	4	$(CH_2)_5$	_e	16	$C_{30}H_{40}FN_7O \bullet HI \bullet H_2O$	534 (15), 95 (100)	8
104	F	2-Py	4	(CH ₂) ₇	_ ^e	25	$C_{32}H_{44}FN_7O \bullet HI \bullet H_2O$	562 (55), 55 (100)	40
105	F	2-Py	4	<i>p</i> -phenylene	_ ^e	31	$C_{31}H_{34}FN_7O \bullet H_2O$	540 (<1), 120 (100)	207
106	Н	Ph	1	(CH ₂) ₄	40	50	$C_{27}H_{34}N_6O \bullet HI \bullet CF_3COOH$	459 (100)	236
107	F	2-Py	3	(CH ₂) ₃	_ ^e	22	$C_{25}H_{32}FN_7O \bullet HI$	466 (18), 228 (100)	519
108	н	Ph	1	(CH ₂) ₄	40	50	$C_{25}H_{32}N_6O \bullet HI \bullet CF_3COOH$	433 (100)	207
109	Н	Ph	1	(CH ₂) ₅	43	55	$C_{26}H_{34}N_6O \bullet HI \bullet CF_3COOH$	447 (100)	93
110	Н	Bn	1	(CH ₂) ₄	56	48	$C_{26}H_{34}N_6O \bullet HI \bullet CF_3COOH$	447 (100)	144
111	Н	Bn	1	(CH ₂) ₅	54	55	$C_{27}H_{36}N_6O \bullet HI \bullet CF_3COOH$	461 (100)	65

^a Analysis C, H, N within $\pm 0.4\%$. ^b [M + H]⁺ and base peak. ^c Inhibition of NPY (10 nM) induced increase in [Ca²⁺], antagonist concentrations used: 100, 50, 10 and 1 μ M; mean of at least 3–5 independent experiments. ^d Exemplarily tested for histamine H₂ receptor agonism (guinea pig atrium): inactive at concentrations $\leq 100 \mu$ M. ^e Hygroscopic amorphous solids.

Table 4. Analytical data and Y_1 receptor antagonistic activity of *p*-hydroxy- and *p*-methoxyphenylethyl substituted ω -guanidinoalkanoic acid amides **112–126**

(CH ₂) _n	$\sim \bigcirc$	^O `R	R = H, excep 113, 118, 122	t 2, 125: R = Me
	A I NNH	 +		
112-121	Т NH2	122-126	HN	

No.	n	A	Mp °C	Yield	Analysis	FAB-MS	Y ₁ antagonism ^c
				%	C, H, N ^a	m/z^0 (%)	IC50 [µM]
112	1	(CH ₂) ₃	43	42	C27H32N4O2 • HI	445 (100)	59
113	1	(CH ₂) ₄	56	48	C29H36N4O2 • HI	473 (100)	490
114	1	(CH ₂) ₄	46	58	C ₂₈ H ₃₄ N ₄ O ₂ • HI	459 (100)	59
115	1	(CH ₂)5	49	43	C29H36N4O2 • HI	473 (100)	37
116	1	4-Me-cHex ^d	89	65	C31H38N4O2 • HI	499 (100)	30
117	2	(CH ₂) ₃	49	58	C ₂₈ H ₃₄ N ₄ O ₂ • HI	459 (100)	31
118	2	(CH ₂) ₄	56	48	C30H38N4O2 • HI	487 (100)	157
119	2	(CH ₂) ₄	46	30	C29H36N4O2 • HI	473 (100)	25
120	2	(CH ₂)5	_e	50	C30H38N4O2 • HI	487 (100)	47
121 ^f	2	4-Me-cHex ^d	91	55	C32H40N4O2 • HI	513 (100)	11
122	1	(CH ₂) ₄	54	55	C31H38N4O2 • HI	499 (90), 185 (100)	133
123	1	(CH ₂) ₄	62	62	C30H36N4O2 • HI	485 (100)	99
124	1	4-Me-cHex	92	60	C33H40N4O2 • HI	525 (100)	30
125	2	(CH ₂) ₄	54	55	C32H40N4O2 • HI	513 (100)	133
126	2	(CH ₂) ₄	45	40	C31H38N4O2 • HI	499 (100)	20

^a Analysis C, H, N within $\pm 0.4\%$. ^b [M + H]⁺ and base peak. ^c Inhibition of NPY (10 nM) induced increase in [Ca²⁺]_i, antagonist concentrations used: 100, 50, 10 and 1 μ M; mean of at least 3–5 independent experiments. ^d 4-Me-cHex = 4-methylcyclohexane-1, α -diyl. ^e Hygroscopic amorphous solid. ^f Exemplarily tested for histamine H₁ antagonism (guinea pig ileum): inactive at concentrations $\leq 10 \mu$ M.

Results and discussion

Most of the investigated compounds inhibited the NPY-induced Ca²⁺ response in HEL cells (Tables 2-4). For comparison of the substances, Y₁ receptor antagonistic activity is given as IC₅₀ values in the presence of 10 nM porcine NPY. Complete concentration response curves of NPY were only constructed in the presence of selected compounds which showed promising antagonist activity in the screening procedure. A representative concentration response curve for NPY in the presence of compound 73 is shown in Fig. 2. The achieved maximum Y₁ receptor antagonist activities expressed as IC_{50} correspond to pK_B values in the range of 6.3-6.7, which is comparable to the results previously found for some chloro-substituted arpromidine analogs^[13]. However, in contrast to the latter, the new substances are devoid of histamine H₂ receptor agonistic properties in the guinea pig right atrium (proved for representative compounds).

Fig. 2. NPY-induced increase in intracellar [Ca²⁺]. Concentration-response curves of (\Box) NPY alone and (\blacksquare) in presence of compound 73 (5 μ M). pK_B value for compound 73: 6.47

The structure-activity relationships for NPY Y_1 antagonism in HEL cells may be summarized as follows:

N-[Phenyl(pyridyl)alkyl]amides 95-105, 107 (cf. Table 3)

Prolongation of the $(CH_2)_n$ chain from 3 to 4 methylene groups enhances activity. A spacer 'A' = $(CH_2)_5$ in combination with a diarylpentyl substituent results in the most active compound 103 within this group. Increasing hydrophobicity in the diarylbutyl portion by replacing F with Br (cf. 96 and 99) also enhances activity. The guanidines 99 and 107 proved to be more active in the calcium assay than the corresponding amines 59 and 63. For compounds 95, 98, and 102 no H₂ receptor agonistic activity was found.

Diphenylalkylamides 70-76, 106, 108-111, 85-92, 112-126

Unlike the aforementioned compounds 95–105, several substances such as 72, 73, or 125 could only be tested at concentrations $\leq 50 \ \mu$ M since they induced a concentration-dependent lysis of the HEL cells. Hemolysis assays confirmed a correlation of this effect with hydrophobicity (data not shown). In most cases, compounds with N-(diphenyl-propyl)amide partial structure (n = 2, or n = 1 with Q=benzyl) are more active than their diphenylethyl analogs (Tables 2-4). Activity depends on the length of the spacer A, but this

dependence differs between the imidazole and the phenol series. Compounds with N-[2-(4-imidazolyl)ethyl]amide partial structure (Tables 2, 3) show highest activity for A = $(CH_2)_5$. In the phenol series, amines with A = $(CH_2)_3$ or $(CH_2)_4$ are more active than with A = $(CH_2)_5$ (compds. **85–92**, Table 2). For the corresponding guanidines (Table 4) no strong influence of A is observed, but a rigid *trans*-4methylcyclohexane-1, α -diyl spacer is slightly superior to flexible chains.

Imidazole vs. phenol series of diphenylalkylamide NPY antagonists

Although the compounds described in this paper were developed independently from BIBP 3226, there are some obvious structural similarities, in particular considering the phenol series, and possible functional analogies with respect to the putative interaction with the Y₁ receptor. Therefore, the structure-activity-relationships of both series should also be compared to BIBP 3226 and related NPY antagonists. In contrast to analogs of BIBP $3226^{[20]}$, there is no significant difference in Y₁ receptor antagonist activity between compounds with geminal or vicinal arrangement of the aromatic rings.

Concerning the impact of the basic group, there is a major difference in the rank order of potency comparing compounds of both the imidazole and the phenol series (imidazoles 70-73, 75, 76, 106, 108-111 vs. phenols 85-92, 112, 114-117, 119-121, 123, 124, 126). It is known from investigations with receptor mutants that acidic residues in the extracellular loops of the Y₁ receptor are of special importance for NPY binding^[21], indicating a key function of the basic groups in the NPY molecule and (possibly) in antagonists, too. Under the assumption that a guanidino function mimics the basic side chain group of an arginine in NPY, an increase in activity should be achieved by conversion of the primary side chain amino group to the corresponding guanidines. This was confirmed for the N-imidazolylethyl-N-(w-phenyl-w-pyridyl)alkylamides (see above) and was also found for the phenol series of diphenylalkylamides (cf. 85-92 in Table 2 and corresponding guanidines in Table 4). By contrast, surprisingly, in the imidazole series, the ω-aminoalkanoic acid diphenylalkylamides 70-76 (except 74) turned out to be considerably more potent than the corresponding strongly basic guanidines 106, 108-111 and were among the most potent Y_1 antagonists described in this paper. Thus, in the diphenylalkylamide series the structure-activity relationships appear to be different for those NPY antagonists with one and those with two basic groups, indicating that both partial structures, the phenol and the imidazole group, are not bioisosteric.

Molecular modeling

Molecular modeling studies^[13] comparing conformations of arpromidine derivatives with possible spatial arrangements of NPY residues relevant for Y_1 agonistic activity^[22] have suggested that the guanidino group and the imidazole ring might mimic the guanidino groups of Arg³³ and/or Arg³⁵ in the NPY molecule. One possible explanation for the remarkable Y_1 receptor affinity of compounds **70–76** (except **74**) is that the imidazole ring and the amino group also imitate the guanidino groups of these residues. Superpositions of 73 with the putative 3D structure of NPY^[22,23] (for example, see Figure 3), derived from the X-ray structure of the highly homologous avian pancreatic polypeptide (APP)^[24], indicate that one phenyl group may point to the N-terminus of NPY and, by that way, possibly mimic the aromatic ring of Tyr¹. In this conformation, the spatial position of the second phenyl ring corresponds to the lipophilic residue Ile^{31} and to Tyr^{27} . Activity at the Y₁ receptor might depend on the occupation of the Tyr^1 binding site. Owing to the high flexibility of 73, a lot of conformations within 5 kcal/mole above the absolute energy minimum can be generated which fulfill the distance constraints between Arg^{33} , Arg^{35} , and Tyr^1 . Different super-positions of both stereoisomers of **73** with NPY are possible, e. g. the amino group with Arg^{33} and the imidazole ring with Arg^{35} , or the benzyl instead of the phenyl moiety with Tyr¹. The given example, however, is one of the best fits where, additionally, the volume of 73 falls within the volume of NPY. Compounds 70-72 and 74-76 enable similar arrangements of their basic groups and aromatic rings. Interestingly, with a rigid cyclohexyl chain A, the diphenylpropyl derivative 76 shows Y₁ antagonistic activity, whereas its structural isomer 74, with a benzylphenylethyl moiety like 73, is completely inactive. This indicates that indeed some degree of folding is necessary for the fit of the amino group to Arg³³ or Arg³⁵ as suggested by Fig. 3. In the present state of our research, it seems not appropriate to derive a definite model explaining all of these structure-activity relationships. Since the given probable conformation of NPY has not been proven up to now, the present conclusions from molecular modeling

are only hypotheses suggesting the design of new derivatives with, e.g., hydroxy-substituted phenyl rings. Molecular modeling also cannot explain the higher activity of the amines **70–73** compared to their analogous guanidines **106, 108–111**. The only difference is additional branching of the guanidino group, which might complicate the folding necessary for binding.

By analogy with BIBP 3226 (IC₅₀ = 17 nM in the Ca²⁺ assay), the guanidines of the phenol series 112-126 seem to mimic the C-terminal part of the NPY molecule, i.e. the amino acids Arg^{35} and Tyr^{36} , which are essential for the binding of NPY to the Y₁ receptor^[22,25]. Recently, two studies of BIBP 3226 binding at the Y_1 receptor were published^[25,26]. In one study^[25], Asp²⁸⁷ in extracellular loop 3 close to transmembrane domain 6 (TM6) was proposed to interact with the guanidino group of the ligand. Other key residues, including Phe¹⁷³, Tyr²¹¹, Gln²¹⁹, Asn²⁸³, and Phe²⁸⁶ were also found to be important for antagonist binding. A superposition of 119 with the putative binding conformation of BIBP 3226^[25] (Fig. 4) indicates that the guanidines of the phenol series may interact in a similar way involving several interaction sites with both hydrophobic and polar residues. But Figure 4 also shows that the backbone hetero atoms of BIBP 3226 and 119 are not in the same spatial position. Therefore, the only moderate activity of compounds like 119 should be due to their non-optimal backbones. As suggested by the model in ref.^[25], the peptide-like backbone structure of BIBP 3226 appears to be essential for high-affinity binding. Of course, a mode of interaction of compounds 112-126 with the Y₁ receptor completely different from that of BIBP 3226 may not be precluded.

Fig. 3. Exemplary superposition of compound **73** with the putative Y_1 -receptor binding conformation of NPY^[23,24], comprising fits of the amino group with Arg³⁵, of the imidazole ring with Arg³³, and of the phenyl ring with Tyr^1 . The folded conformation of **73** represents a local energy minimum about 2 kcal/mole above the energy of a completely extended structure. (a). General view. Colors: NPY – light blue, **73** – white. The secondary structure of NPY is shown by a shadowed ribbon (red). (b). Zoom of the frame in (a). Colors: NPY backbone – green, NPY side chains – light blue, **73** – white, N atoms – violet.

Fig. 4. Superposition of compound 119 with the putative Y_1 -receptor binding conformation of BIBP 3226^[26], comprising fits of the three phenyl rings and of the guanidino groups. The given conformation of 119 is a local energy minimum 0.5 kcal/mole above the energy of a completely extended structure and about 4 kcal/mole above the absolute minimum (containing some intramolecular van der Waals interactions). Colors of 119: C – white, N – violet, O – red. Colors of BIBP 3226: C – orange, N – light blue, O – magenta.

Conclusion

In summary, the title compounds may be considered as novel model structures for the development of NPY Y_1 receptor antagonists. Further modifications of the simple parent molecules are required to improve antagonist activity. Analogous structural variations of BIBP 3226, e.g. replacement of phenol by imidazole or guanidine by amine, will be useful to elucidate differences or similarities in the structureactivity relationships of both types of NPY antagonists. The imidazolylethylamides with a side chain amino group are less basic than corresponding guanidines and may be useful with respect to the development of centrally active non-peptide NPY receptor ligands.

Acknowledgement

The authors are grateful to Mrs. E. Schreiber and Mrs. L. Schneider for technical support and to the Fonds der Chemischen Industrie for a grant.

Experimental Part

Chemistry

Melting points (uncorrected) were determined on a Büchi 530 apparatus. Elemental analyses, indicated by elemental symbols, were within $\pm 0.4\%$ of the theoretical values and were performed at the analytical department of the faculty of chemistry and pharmacy, University of Regensburg. The structures were confirmed by 'H NMR (Bruker WM 250 (250 MHz), TMS as internal standard) and by mass spectroscopy (EI-MS: Varian MAT 112S, FAB: Varian MAT 95 (⁺FAB-MS, xenon, MeOH/glycerol)). ¹H NMR data are given only exemplarily in the experimental section because of the structural resemblance within the groups of compounds synthetized according to general procedures. Chromatographic separations on a preparative scale were carried out on a Chromatotron 8924 (Harrison Research) using glass rotors with 4 mm layers of silica gel 60 PF254 containing gypsum (Merck) or on a MPLC apparatus (Kronlab) consisting of a Controller Labomat VS 200, UV-Detector Labomatic, a pump MD 80/100, a sampler Roto-Ultra/120, a 2210-2 Channel-Recorder (LKB), a main-column (539 mm × 37 mm) and a pre-column (313 mm × 37 mm), both packed with 20-40 µM LiChrosorb RP 18 (18-30-60). The diarylalkanoic acids 1-3, required for the preparation of diarylalkanamides 10-14, were commercially available.

General procedure for the preparation of the diarylalkanoic acids 4-6

The diarylalkanoic acids **4–6** were prepared by analogy with a procedure described in ref.^[27]. In brief, for the synthesis of the intermediates, ω -cyano- ω -phenyl- ω -(2-pyridyl)alkanoic acid esters, the requisite phenyl(pyridyl)-acetonitriles were either treated with acrylic acid ethyl ester and Triton B (40% in MeOH) in dioxane (method A) or were converted to the sodium salt with sodium hydride in DMF, followed by C-alkylation with an appropriate ω -bromoalkanoic acid ethyl ester (method B). The crude intermediates were isolated by extraction with Et₂O or EtOAc. After evaporation of the solvent the ethyl ω -cyanoalkanoates were stirred at 120 °C in 70% sulfuric acid for 5 h. The chilled mixture was rendered alkaline with sodium carbonate and was extracted with Et₂O to remove impurities. The residue was adjusted to pH 6 with acetic acid after evaporation of the solvent, were sufficiently pure for further reaction. Compound **5** was crystallized from EtOAc.

4-(4-Bromophenyl)-4-(2-pyridyl)butanoic acid, 5: yield 82%, mp 123 °C (EtOAc). Anal. (C₁₅H₁₄BrNO₂) C, H, N.– EI-MS: m/z (%) = 319 (28) [M⁺], 260 (100) [M – COOH]⁺, 247 (29, [BrC₆H₄CH₂Py]⁺).– ¹H NMR (CDCl₃): δ = 2.32–2.56 (m, 4H, CH(CHCH₂CH₂), 4.28 (t, J = 7.4, 1H, PyCH), 7.13–7.26 (m, 4H, aromatic), 7.42 (d, J = 8.3, 2H, aromatic), 7.61–7.66 (m, 1H, Py-4-H), 8.58 (d, J = 4.5, 1H, Py-6-H).

5-(4-Fluorophenyl)-5-(2-pyridyl)pentanoic acid, 6: yield 75% oil. Anal. (C₁₆H₁₆FNO₂) C, H, N.– EI-MS: m/z (%) = 273 (39) [M⁺], 225 (100) [M – COOH]⁺, 212 (44) [FC₆H₄CH₂Py]⁺.–¹H NMR ([D₆]DMSO): δ = 1.48–1.58 (m, 2H, PyCHCH₂CH₂), 2.19–2.24 (t, J = 7.2, 2H, PyCHCH₂), 2.62–2.66 (m, 2H, CH₂CO), 4.12 (m, 1H, PyCH), 7.23–7.29 (dd, J = 8.7 and 8.8, 2H, ortho to F), 7.37–7.41 (m, 1H, Py-5-H), 7.49–7.53 (m, 3H; 2H meta to F and Py-3-H), 7.89 (dd, J = 7.5 and 7.5, Py-4-H), 8.62 (d, J = 4.1, 1H, Py-6-H), 12.13 (s, 1H, COOH).

General procedure for the preparation of the N-[2-(4-imidazolyl)ethyl]- diarylalkanoic acid amides **7–12**

N,N'-Carbonyldiimidazole (3.3 g, 20 mmol) was added to a solution of the pertinent diarylalkanoic acid **1–6** (20 mmol) in 10 ml of anhydrous THF and allowed to react for 30 min. Subsequently 2.32 g (20 mmol) histamine were added, and the mixture was stirred overnight. After evaporation in vacuo, the remaining solid was triturated with water for 4 h and recrystallized from MeOH. Yield 70–90%.

For analytical data of new compounds see Table 1.

¹H NMR ([D₆]DMSO) of 7: $\delta = 1.91-1.96$ (m, 2H, COCH₂), 2.15–2.22 (m, 1H, CHCHH), 2.34–2.41 (m, 1H, CHCHH), 2.59 (t, J = 7.4 Hz, 2H, ImCH₂), 2.88 (t, J = 6.5, 2H, COCHH), 3.22–3.26 (m, 2H, NHCH₂), 3.37 (t, J = 6.6 Hz, 2H, COCHH), 4.04 (t, J = 7.6 Hz, 1H, PyCH), 6.77 (s, 1H, Im-5-H), 7.06–7.37 (m, 6H, FPh-H, Py-3-H, -5-H), 7.51 (s, 1H, Im-2-H), 7.66–7.71 (dd, J = 7.7 Hz, 7.7 Hz, 1H, Py-4-H), 8.52 (d, J = 3.8 Hz, 1H, Py-6-H).

General procedure for the preparation of the N-[2-(4-methoxyphenyl)ethyl]diarylalkanoic acid amides 13 and 14

A solution of the pertinent diphenylalkanoic acid 1 or 2 (10 mmol in 30 ml of anhydrous THF) was stirred and chilled to 0 °C. Triethylamine (1.01 g, 10 mmol) was added, followed by ethyl chloroformate (1.09 g, 10 mmol), and the mixture was stirred for 30 min. Then 1.51 g (10 mmol) 2-(4-methoxyphenyl)ethylamine were added, the ice-bath was removed, and the mixture was allowed to warm to room temperature. Insoluble material was filtered off, the solution was evaporated in vacuo and the remaining solid was stirred in water for about 10 h. The amides 13 and 14 were recrystallized from MeOH. Yield 60-89%, cf. Table 1.

¹H NMR (CDCl₃) of **13**: δ = 2,49 (t, *J* = 6.8, 2H, CH₂CH₂Ar), 2.82 (d, *J* = 7.8, 2H, CHCH₂CO), 3.32 (q, *J* = 6.7, 2H, NHCH₂CH₂), 3.77 (s, 3H, ArOCH₃), 4.56 (t, *J* = 7.7, 1H, CHCH₂CO), 5.34 (br, 1H, NH), 6.7–6.95 (AA'BB', 4H, Ar-H), 7.1–7.35 (m, 10H, Ph-H),

General procedure for the preparation of the [ω-phenyl-ω-(2-pyridyl)alkyl]-[ω-1H-imidazol-4-yl)alkyl]amines 15–17

A solution of the amides **7–9** (15 mmol in 20 ml of anhydrous THF) was chilled to 0 °C and added to a suspension of 0.86 g (24.4 mmol) LiAlH4 in 25 ml of anhydrous THF. The mixture was refluxed for 3 h and then cooled with a water bath. Subsequently, 20 ml of a saturated aqueous seignette salt solution were slowly dropped to the reaction mixture, 2 ml of a 10% aqueous NaOH solution were added and the formed precipitate was filtered off and washed several times with hot THF. The organic solution was dried over Na2SO4 and evaporated in vacuo. The crude oily amines were purified chromatographically (Chromatotron; CH₂Cl₂–MeOH, 90:10, ammonia atmosphere). Yield 72–84%, cf. Table 1.

¹H NMR ([D₆]DMSO) of **15**: δ = 1.23–1.28 (m, 2H, CHCH₂CH₂), 1.98 (m, 1H, CHCHH), 2.14 (m, 1H, CHCHH), 2.56–2.64 (m, 2H, ImCH₂), 3.17–3.38 (m, 4H, NH(CH₂)₂), 4.04–4.09 (t, *J* = 7.8 Hz, 1H, PyCH), 6.70 (s, 1H, Im-5-H), 7.05–7.41 (m, 6H, FPh-H, Py-3-H, -5-H), 7.46 (s, 1H, Im-2-H), 7.65–7.70 (dd. *J* = 6.4 Hz, 6.2 Hz, 1H, Py-4-H), 8.50 (m, 1H, Py-6-H).

General procedure for the preparation of the diphenylalkylamines 18-22

The amides 10–14 (5 mmol) were dissolved in 20 ml of phosphorus oxychloride at room temperature and the solution was stirred for 5 h. Excess POCl₃ was removed in vacuo, the remaining oil was dissolved in 20 ml of glyme, the solution was cooled in an ice-bath and NaBH₄ (0.56 g, 5 mmol) was added with vigorous stirring. The reaction mixture was stirred for 12 h at room temperature. Subsequently, under cooling with ice, 10 ml of 10% hydrochloric acid were added dropwise. Glyme was removed by evaporation in vacuo, water was added to adjust the volume to 30 ml, and the mixture was refluxed for 30 min. After extraction with ether to remove starting material and by-products, the aqueous layer was made alkaline with 3.0 g of sodium hydroxide and extracted with CHCl₃. The extract was dried over Na₂SO₄ and evaporated in vacuo affording the oily amines 18–22. Yield 85–90%, cf. Table 1.

¹H NMR (CDCl₃) of **22**: $\delta = 2.2$ (q, J = 7.5, 2H, CHCH₂CH₂), 2.56 (t, J = 6.9, 2H, CHCH₂CH₂), 2.65–2.85 (m, 4H, NHCH₂CH₂Ar), 3.78 (s, 3H, ArOCH₃), 3.9 (t, J = 7.8, 1H, CHCH₂), 6.75–7.1 (AA'BB', 4H, Ar-H), 7.1–7.3 (m, 10H, Ph-H).

General procedure for the preparation of the ω -phthalimidoalkanoic acids **23–30**

A mixture of the ω -aminoalkanoic acids (10 mmol) and phthalic anhydride (5.18 g, 35 mmol) in 45 ml of glacial acetic acid was heated to reflux for 16 h. The mixture was diluted with 200 ml of water and extracted with CHCl₃. The combined organic layers were evaporated in vacuo and **23–30** were recrystallized from 50% acetic acid. **23**: yield 95%, mp 189 °C (ref. ^[28] 193 °C). Anal. (C₁₀H₇NO₄) C, H, N. **24**: yield 96%, mp 157 °C (ref. ^[29] 151 °C). Anal. (C₁₁H₉NO₄) C, H, N. **25**: yield 81%, mp 114 (ref. ^[30] 117 °C) analysis (C₁₂H₁₁NO₄) C, H, N. **26**: yield 92%, mp 113 °C (ref. ^[31] 117 °C). Anal. (C₁₃H₁₃NO₄) C, H, N. **27**: yield 89%, mp 98 °C (ref. ^[33] 95 °C). Anal. (C₁₆H₁₉NO₄) C, H, N. **29**: yield 93%, mp 94 °C (ref. ^[34] 290 °C). Anal. (C₁₆H₁₉NO₄) C, H, N. **29**: yield 83%, mp 307 °C (ref. ^[34] 290 °C). Anal. (C₁₅H₉NO₄) C, H, N. **4**-(Phthalimidomethyl)cyclohexanecarboxylic acid, **30**: Yield 80%, mp 188 °C. Anal. (C₁₆H₁₇NO₄) C, H, N; ¹H NMR (CDCl₃): $\delta = 0.95-1.5$ (AA'BB', 4H, cHex-2-H, cHex-6-H), 1.7–2.15 (m, 5H, cHex-3-H, cHex-5-H, CHCH₂), 2.27 (m, 1H CHCO), 3.54 (d, J = 6.8, 2H, NCH₂CH), 7.7–7.9 (AA'BB', 4H), 11.0 (br s, 1H, COOH).

General procedure for the preparation of the ω -phthalimidoalkanoic acid amides 31–57

The ω -phthalimidoalkanoic acids **23–30** (5 mmol) were dissolved in 20 ml of anhydrous CH₂Cl₂ and chilled to 0 °C. Under nitrogen atmosphere, 2.54 g (20 mmol) of oxalyl chloride were added dropwise, the mixture was warmed to room temperature and stirred for 2 h. After removal of the volatiles in vacuo, a portion (5 mmol) of the pertinent acid chloride was dissolved in anhydrous THF, added to a mixture of the secondary amines **15–22** (5 mmol) and triethylamine (0.51 g, 5 mmol) in anhydrous THF and stirred overnight. Precipitated triethylamine hydrochloride was filtered off, and the solution was evaporated in vacuo. The remaining oily or amorphous amides **31–57**

were sufficiently pure for further reactions. Compounds analysed for C, H, N cf. Table 1.

General procedure for the preparation of the ω -aminoalkanoic acid amides 58-84

Hydrazine hydrate (0.5 g, 10 mmol) was added to a solution of the ω -phthalimidocarboxamides **31–57** (5 mmol) in MeOH. The mixture was heated under reflux for 1 h, then 2 ml of 10% HCl were added, and the mixture was heated under reflux for 30 min. Insoluble material was filtered off and washed with water. The filtrate was concentrated, made alkaline and extracted with CHCl₃. The combined organic layers were dried over Na₂SO₄. The crude amines were purified chromatographically (Chromatotron; MeOH, ammonia atmosphere). Yield 40–80%. Data of compounds analysed for C, H, N cf. Table 2.

¹H NMR (CDCl₃) of **73**: δ = 1.05-1.6 (m, 6 H, (CH₂)₃CH₂N), 1.6–2.1 (2m, 1.2 and 0.8H, COCH₂CH₂),), 2.5–2.75 (m, 4H, CHCH₂N, CH₂Im), 2.75–3.6 (m, 6.4 H, PhCH₂CH, CH₂NH₂, CH₂CH₂Im), 3.78 (quint, *J* = 5.7, 0.6 H, CH₂CHCH₂), 4.22 (br, 2H, NH₂), 6.61 (s, 1H, Im-5-H), 7.0–7.3 (m, 10H, Ph-H), 7.45 (s, 0.5 H, Im-2-H), 7.49 (s, 0.5 H, Im-2-H)

General procedure for the preparation of the 4-hydroxyphenylethylamides 85–92

The 4-methoxyphenylethylamides **77–84** (2.5 mmol) were heated under reflux with a 1:1 mixture of 10 ml of glacial acetic acid and 10 ml 48% aqueous HBr. After 1 h the mixture was poured into 50 ml of water, made alkaline with 20% NaOH and extracted with ether. The pH was adjusted to 8–9 by addition of 10% H₂SO₄ and the solution was extracted with CHCl₃. The combined organic solutions were dried over Na₂SO₄. The crude compounds **85–92** were purified chromatographically (Chromatotron; MeOH, ammonia atmosphere). Yield 40–80%. Analytical data cf. Table 2.

¹H NMR (CDCl₃) of **92**: $\delta = 0.6-1.4$ (m, 5H, CHCH₂NH₂, cHex-2-H, -6-H), 1.4–1.95 (m, 5H, CHCO, cHex-3-H, -5-H), 2.2–2.4 (m, 2H, CHCH₂CH₂), 2.47 (d, J = 6.0, 2H, CHCH₂NH₂), 2.61 (t, J = 6.4, 1H, CH₂CH₂Ar), 2.69 (t, J = 6.4, 1H, CH₂CH₂Ar), 3.06 (t, J = 6.4, 1H, CH₂CH₂Ar), 3.22 (t, J = 6.4, 1H, CH₂CH₂Ar), 3.36 (t, J = 6.7, 1H, CHCH₂CH₂Ar), 3.47 (t, J = 6.7, 1H, CHCH₂CH₂), 3.77 (t, J = 7.8, 0.5H, Ph₂CHCH₂), 3.91 (t, J = 7.8, 0.5H, Ph₂CHCH₂), 4.08 (br, 2H, NH₂), 6.7–7.0 (AA'BB', 4H, Ar-H), 7.1–7.35 (m, 10H, Ph-H).

General procedure for the preparation of the ω -[3,4-dihydroimidazol-2-yl)amino]alkanoic acid amides **95–105**

A solution of an amine **58**, **60–69** (0.75 mmol) and 2-(methylthio)-3,4-dihydroimidazole hydroiodide (**93'HI**) (0.19 g, 0.75 mmol) in 5 ml of pyridine–EtOH (4:1) was heated under reflux for 13 h. After evaporation in vacuo, the remaining oil was purified chromatographically (Chromatotron; CH₂Cl₂–MeOH, 95:5 to 80:20, ammonia atmosphere). Yield 10–30% of the corresponding guanidine hydroiodide. Analytical data cf. Table 3.

¹H NMR ([D₆]DMSO) of **103**: δ = 1.15–1.23 (m, 4H, CHCH₂(CH₂)₂), 1.48 (m, 6H, COCH₂(CH₂)₃), 1.99 (m, 1H, CHCHH), 2.20 (m, 3H, COCH₂, CHCHH), 2.77 (m, 2H, ImCH₂), 3.16 (m, 4H, CH(CH₂)₃CH₂, CO(CH₂)₄CH₂), 3.45 (m, 2H, ImCH₂CH₂), 3.58 (s, 4H, N(CH₂)₂N), 4.09 (m, 1H, PyCH), 6.92 (br, 1H, NH), 7.09–7.47 (m, 9H, FPh-H, Py-3-H, -5-H, Im-2-H, -5-H, NH), 7.69 (m, 1H, Py-4-H), 8.15 (s, 1H, =NH⁺), 8.50 (m, 1H, Py-6-H).

General procedure for the preparation of the ω -guanidinoalkanoic acid amides 106--126

A solution of an amine **59**, **70–76**, **78**, **82**, **85–92** (0.75 mmol) and 2-(methylthio)-3,4-dihydroimidazole hydroiodide (**93•H1**) (0.19 g, 0.75 mmol) or S-methylisothiourea hydroiodide^[36] (**94•H1**) (0.16 g, 0.75 mmol) in 5 ml of EtOH was heated under reflux for 3 d. After evaporation in vacuo, the remaining oil was purified chromatographically (MPLC; MeOH–0.1% CF₃COOH, gradient 80:20 to 45:55, 13–14 bar). Yield 30-65% of the corresponding guanidine hydroiodide or trifluoroacetate as an oil or an amorphous solid. Analytical data cf. Table 4.

¹H NMR (CDCl₃) of **121**: $\delta = 0.55-0.95$ (m, 2H, cHex-2-H, -6-H), 1.15-1.8 (m, 6H, cHex-2-H, -6-H, cHex-3-H, -5-H), 1.8-2.0 (m, 1H, CHCO), 2.05-2.3 (m, 2H, CHCH₂CH₂), 2.55-2.7 (m, 2H, CH₂CH₂Ar), 2.85-2.95 (m, 2H, CHCH₂NH), 3.09 (br, 1H, CHCH₂CH₂), 3.23 (br, 1H, CHCH₂CH₂), 3.47 (m, 2H, CH₂CH₂Ar), 3.81 (br, 0.5H, Ph₂CHCH₂), 3.92 (br, 0.5H, Ph₂CHCH₂), 6.55–6.95 (AA'BB', 4H, Ar-H), 7.15–7.3 (m, 13H, Ph-H, NH), 7.44 (s, 1H, NH), 9.20 (s, 1H, NH).

Pharmacology

The title compounds were used as hydrohalides, trifluoroacetates or free bases (cf. Tables 2–4) for all pharmacological experiments.

NPY Y1 receptor antagonist activity in human erythroleukemia (HEL) cells

Cell culture. The human HEL erythroleukemia cell line was kindly provided by Dr. M. C. Michel, Universitätsklinikum Essen. Cell line banking and quality control were performed according to the "seed stock concept" ^[37]. Cells were maintained as suspension cultures in antibiotic-free RPMI 1640 medium (Sigma, Deisenhofen, GER) containing 0.3 g/l L-glutamine, 2 g/l NaHCO₃ and 5% fetal calf serum (Biowhittaker, Vervier, B) using 75-cm²-culture flasks (Falcon Plastics 3023) in a water saturated atmosphere (95% air/5% CO₂) at 37 °C. The cells were passaged weekly by 1:10 dilution with fresh culture medium.

Cells were routinely monitored for, and shown to be free of, *Mycoplasma* contamination with the Mycoplasma Detection Kit provided by Boehringer, Mannheim, GER.

Preparation of the cells. The day before testing, 25 ml of a plateau-phase culture were transferred to a 175-cm² flask (Nunclon, 178883, Nunc, Wiesbaden, GER) containing 125 ml of fresh culture medium. After 24 h, the suspension $(2-4 \times 10^5$ cells per ml), was centrifuged for 10 min at 200 g and room temperature. After resuspension in 10 ml of loading buffer (25 mM HEPES (Sigma, Deisenhofen, GER), 120 mM NaCl, 5 mM KCl, 2 mM MgCl₂, 1.5 mM CaCl₂, 10 mM glucose), pH 7.4, cell number was determined with a hemocytometer (Neubauer, improved), and the cells were adjusted to a density of 1.3×10^6 per ml by addition of an appropriate volume of loading buffer.

Loading cells with Ca^{2+} indicator Fura-2/AM. To three volumes of the prepared cell suspension, one volume of loading dispersion ^[38] was added, before the cells were incubated in the dark at room temperature for 30 min. The loading dispersion was freshly made by mixing 10 ml of loading buffer, containing 2% bovine serum albumin (BSA), with 50 µl of Pluronic-F-127 (Molecular Probes, Eugene, Oregon, USA) (20% in DMSO), and 40 µl of Fura-2/AM (Molecular Probes, Eugene, Oregon, USA) (1 mM in anhydrous DMSO).

Cells were centrifuged (200 g, 7 min), resuspended in fresh loading buffer and allowed to stand for another 30 min at room temperature in the dark. After two washing/centrifugation cycles (loading buffer, 200 g, 7 min) and adjustment of the cell number to a value of 10^6 /ml, cells were incubated for at least 15 min at 20 °C in the dark.

Fluorimetric determination of intracellular $[Ca^{2+}]$. 1 ml-aliquots of loading buffer were filled into disposable acrylic cuvettes (Sarstedt, No. 67.755, Nümbrecht, GER), which were thermostatted at 30 °C in an incubator hood (Infors AG, Bottmingen, CH). Immediately after addition of 1 ml of the Fura-2/AM loaded cell suspension and a magnetic stirrer, the cuvette was placed into the thermostated (25 °C) stirred cell holder of a LS 50 B Luminescence Spectrometer (Perkin Elmer, Überlingen, GER), equipped with a fast filter accessory. Fluorescence signals were registered (instrument settings: excitation 340/380 nm, emission 510 nm, slits 10 nm, resolution 0.1, stirrer low) after addition of 10 μ l of 20 μ M porcine NPY (Bachem Biochemica GmbH, Heidelberg, GER), dissolved in 10 mM HCl, supplemented with 0.1% BSA, for 300 s.

Calculation of Ca^{2+} concentrations. Calcium concentrations were calculated from dual wavelength fluorescence intensities according to the Grynkiewicz equation ^[39]:

$$\left[\operatorname{Ca}^{2+}\right] = K_d \cdot \frac{(R - R_{\min})}{(R_{\max} - R)} \cdot \operatorname{SFB}$$
(1)

where K_d (224 nM ^[38]) is the dissociation constant of the Fura-2-Ca²⁺-complex, *R* is the experimental fluorescence ratio value (F₃₄₀/F₃₈₀), R_{min} and R_{max} are the fluorescence value ratios (F₃₄₀/F₃₈₀) under Ca²⁺-free and Ca²⁺-saturation conditions, respectively, and SFB is the ratio of fluorescence intensities for Ca²⁺-bound/Ca²⁺-free indicator, measured at 380 nm. R_{min} , R_{max} and SFB were determined by calibration experiments, performed in every test series.

To measure R_{max} , 10 µl of an aqueous solution of 2% digitonin (Sigma, Deisenhofen, GER), were pipetted into the cuvette, wheras R_{min} was determined after subsequent addition of 50 µl of a 0.6 M EGTA solution (in 1 M Tris/HCl, pH 8.7).

Screening of compounds for NPY Y₁ receptor antagonist activity. The cells were pre-incubated with 10 μ l of the putative antagonists (dissolved either in 50% ethanol or DMSO) for 1 min, prior to the stimulation with porcine NPY at a final concentration of 10 nM. The Ca²⁺ signal in every fifth cuvette was taken as the non-inhibited reference (100%), i.e. the cells were only exposed to the respective solvent, before NPY stimulation.

Calculation of IC50 values

IC₅₀ values were calculated from at least two antagonist concentrations [B], inhibiting the NPY-stimulated increase in intracellular [Ca²⁺] between 20 and 80%. The mean percentual inhibition values P with SEM < 10%, determined from at least 3 independent experiments, performed on different days, were logit transformed, according to the equation

$$logit (P) = log \frac{P}{100 - P}$$
(2)

and IC₅₀ values (logit P = 0) were determined from the plot logit (P) versus log [B] with the slope n according to

$$\log \frac{P}{100 - P} = n \cdot \log [B] - n \cdot \log \mathrm{IC}_{50} \tag{3}$$

by linear regression with Fig. P (Biosoft, Cambridge, UK).

Calculation of pKB- values

Complete concentration response curves of NPY were only constructed in the presence of selected compounds, which showed promising antagonist activity in the screening procedure. The increase in intracellular [Ca²⁺] after stimulation with 100 nM NPY was taken as 100%. EC₅₀ values were determined from fitted curves (100% and 0% values fixed, slope variable) with Fig. P (Biosoft, Cambridge, UK). The pK_B value was calculated according to the Schild equation^[40] with the slope taken as 1.

$$\log (\text{concentration ratio} - 1) = \log [B] + pK_B$$
(4)

where concentration ratio = EC_{50} in the presence of the antagonist/ EC_{50} in the absence of the antagonist and [B] is the concentration of the antagonist.

Histamine H1 receptor antagonism and histamine H2 receptor agonism

Selected compounds were investigated for histamine H₁ receptor antagonist activity at the isolated guinea pig ileum and for histamine H₂ receptor agonist activity at the isolated spontaneously beating guinea pig right atrium according to the experimental protocols described elsewhere ^[41]. The pD₂ (pEC₅₀) values for agonists and the pK_B values for antagonists (mean of at least three independent experiments) were determined from isometrically (atrium) or isotonically (ileum) recorded cumulative concentration-response curves using histamine as the reference agonist.

Molecular modeling

Superpositions of compound **73** with NPY and of compound **119** with BIBP 3226 were performed with the modeling software SYBYL 6.3 (Tripos Ass.) on a Silicon Graphics Indigo². The putative 3D structure of NPY was produced by homology modeling, starting from the crystal structure of the avian pancreatic polypeptide, $APP^{[25]}$. The conformation obtained after minimization (Kollman force field) corresponds to that independently derived by Allen et al.^[23] and by Beck-Sickinger et al.^[22]. Compound **73** was first investigated by conformational analysis (rigid rotor principle), including all rotatable bonds except those adjacent to the rings. Only conformations were accepted where the distances between the basic centers as well as between each basic group and one of the phenyl rings were within the constraints of the corresponding distances in NPY (Arg³³, Arg³⁵, Tyr¹).

About 5000 resulting conformations and their antipodes were superimposed with NPY according to this model. Well-fitting candidates were freely energy-minimized (TRIPOS force field without electrostatics) and again fitted to NPY.

The putative binding conformation of BIBP 3226 originates from the paper of Sautel et al.^[25]. More than 1000 local energy minima (TRIPOS force field without electrostatics) of compound **119** were generated by the SYBYL randomsearch routine (Monte-Carlo method). The three phenyl rings and the guanidino group of each conformation were superimposed to the corresponding groups of BIBP 3226.

References

- Dedicated to Prof. Dr. W. Wiegrebe on the occasion of his 65th birthday
- [1] K. Tatemoto, Proc. Natl. Acad. Sci. USA 1982, 79, 5485-5489.
- [2] C. Wahlestedt, D.J. Reis, Annu. Rev. Pharmacol. Toxicol. 1993, 32, 309–352.
- [3] W.F. Colmers, C. Wahlestedt (Eds.), *The Biology of Neuropeptide Y and Related Peptides*, Humana Press, Totowa, **1993**.
- [4] M.C. Michel, W. Rascher, J. Hypertens. 1995, 13, 385-395.
- [5] R.J. Playford, H.M. Cox, Trends Pharmacol. Sci. 1996, 17, 436-438.
- [6] S.P.H. Alexander, J.A. Peters, Receptor and Ion Channel Nomenclature, 8th ed., Trends Pharmacol. Sci. Suppl. 1997.
- [7] K. Rudolf, W. Eberlein, W. Engel, H.A. Wieland, K.D. Willim, M. Entzeroth, W. Wienen, A.G. Beck-Sickinger, H.N. Doods, *Eur. J. Pharmacol.* 1994, 271, R11–R13.
- [8] C. Serradeil-Le Gal, G. Valette, P.-E. Rouby, A. Pellet, F. Oury-Donat, G. Brossard, L. Lespy, E. Marty, G. Neliat, P. De Cointet, J.-P. Maffrand, G. Le Fur, *FEBS Lett.* **1995**, *362*, 192–196.
- [9] J. Wright, G. Bolton, M. Creswell, D. Downing, L. Georgic, T. Heffner, J. Hodges, R. MacKenzie, L. Wise, *Bioorg. Med. Chem. Lett.* 1996, 6, 1809–1814.
- [10] L. Grundemar, S.R. Bloom (Eds.), Neuropeptide Y and Drug Development, Academic Press, San Diego, 1997.
- [11] A. Buschauer, J. Med. Chem. 1989, 32, 1963-1970.
- [12] M.C. Michel, H.J. Motulsky, Ann. N. Y. Acad. Sci. 1990, 611, 392-394.
- [13] M.C. Michel, S. Dove, A. Buschauer, Arch. Pharm. (Weinheim) 1993, 326, 664.
- [14] A. Uffrecht, W. Wernet, L. Unger, S. Dove, A. Buschauer, Eur. J. Pharm. Sci. 1994, 2, 137.
- [15] S. Knieps, M.C. Michel, S. Dove, A. Buschauer, Bioorg. Med. Chem. Lett. 1995, 5, 2065–2070.
- [16] S. Knieps, S. Dove, M.C. Michel, K. Rottmeier, W. Wernet, G. Bernhardt, A. Buschauer, *Pharm. Pharmacol. Lett.* 1996, 6, 27–30.
- [17] H.J. Motulsky, M.C. Michel, Am. J. Physiol. 1988, 255, E880-E885.
- [18] V. Zingel, S. Elz, W. Schunack, Eur. J. Med. Chem. 1990, 25, 673-680.

- [19] W. Black, W.A. Duncan, G.J. Durant, C.R. Ganellin, E.M. Parsons, *Nature (London)* **1972**, 236, 385–390.
- [20] I. Aiglstorfer, A. Uffrecht, K. Rottmeier, A. Meister, B. Malawska, M. Müller, S. Dove, G. Bernhardt, A. Buschauer Abstracts of Papers, XIVth International Symposium on Medicinal Chemistry, Maastricht, The Netherlands, 1996, Abstract P-7.21.
- [21] P. Walker, M. Munoz, R. Martinez, M. Peitsch, J. Biol. Chem. 1994, 269, 2863–2869.
- [22] A.G. Beck-Sickinger, H.A. Wieland, H. Wittneben, K.-D. Willim, K. Rudolf, G. Jung, *Eur. J. Biochem.* **1994**, 225, 947–958.
- [23] J. Allen, J. Novotny, J. Martin, G. Heinrich, Proc. Natl. Acad. Sci. USA 1987, 84: 2532–2536.
- [24] I. Glover, D.J. Barlow, J.E. Pitts, S.P. Wood, I.J. Tickle, T.L. Blundell, K. Tatemoto, J.R. Kimmerl, A. Wollmer, W. Strassburger, Y.S. Zhang, *Eur. J. Biochem.* 1985, 142, 379–385.
- [25] M. Sautel, K. Rudolf, H. Wittneben, H. Herzog, R. Martinez, M. Munoz, W. Eberlein, W. Engel, P. Walker, A.G. Beck-Sickinger, *Mol. Pharmacol.* 1996, 50, 285–292.
- [26] P. Du, J.A. Salon, J.A. Tamm, C. Hou, W. Cui, M.W. Walker, N. Adham, D.S. Dhanoa, I. Islam, P.J.-J. Vaysse, B. Dowling, Y. Shifman, N. Boyle, H. Rueger, T. Schmidlin, Y. Yamaguchi, T.A. Branchek, R.L. Weinshank, C. Gluchowski, *Prot. Eng.* **1997**, *10*, 109–117.
- [27] A. Buschauer, Arch Pharm (Weinheim) 1989, 322, 165-171.
- [28] T.B. Johnson, W.M. Scott, J. Am. Chem. Soc. 1913, 35, 1130-1136.
- [29] S. Chodroff, R. Kapp, C.O. Beckmann, J. Am. Chem. Soc. 1947, 69, 256–258.
- [30] K. Balenovic, I. Jambresic, B. Urbas, J. Org. Chem. 1954, 19, 1589– 1590.
- [31] W.F. Fones, R.S. Stander, J. White, J. Org. Chem. 1951, 16, 708-710.
- [32] B. Taub, H.A. Leipold, J.B. Hino, J. Org. Chem. 1959, 24, 2062-2063.
- [33] K. Itoh, M. Kori, Y. Inada, K. Nischikawa, Y Kawamatsu, H. Sugihara, Chem. Pharm. Bull. 1986, 34, 5: 2078-2089.
- [34] J. Engels, M. Lamchen, A.J. Wicken, J. Chem. Soc. 1959, 2694-2699.
- [35] R. Ing, R.H.F. Manske, J. Chem. Soc. 1926, 2348-2351.
- [36] C.E. Braun, J. Biol. Chem. 1930, 89, 97-108.
- [37] R.J. Hay in Animal Cell Culture: A Practical Approach (Ed.: R.I. Freshney), 2nd edn., IRL Press, Oxford, 1992, pp 95–148.
- [38] A.P. Thomas, F. Delaville in *Cellular Calcium: A Practical Approach* (Eds.: J. G. McCormack, P. H. Cobbold), IRL Press, Oxford, **1991**, pp. 1–54.
- [39] G. Grynkiewicz, M. Poenie, R.Y. Tsien, J. Biol. Chem. 1985, 260, 3440–3450.
- [40] O. Arunlakshana, H.O. Schild, Br. J. Pharmacol., 1959, 14, 48-58.
- [41] A. Buschauer, A. Friese-Kimmel, G. Baumann, W. Schunack, Eur. J. Med. Chem. 1992, 27, 321–330.

Received: June 16, 1997 [FP229]