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ABSTRACT: A photoinduced, copper-catalyzed, highly enantioselective dual alkylation/arylation and alkynylation of alkene is
reported. A single chiral copper(I) complex serves to enable photoredox catalysis and induce enantioselectivity during the reaction.
This reaction couples three different components under mild reaction conditions, exhibits a broad substrate scope, and provides
facile access to chiral propargylic systems, including those featuring valuable fluorinated substituents.

Visible-light photoredox catalysis has enabled novel
approaches for the construction of carbon−carbon and

carbon−heteroatom bonds under mild reaction conditions
through high-energy intermediates such as carbon- or
heteroatom-centered radicals that cannot be easily accessed
under thermal conditions.1 Enantioselective photoredox
reactions have emerged as an attractive synthetic strategy for
the preparation of valuable chiral molecules.2 Significant
advances have been achieved in this field by employing a
ruthenium(II) or an iridium(III) complex as the photocatalyst,
and the asymmetric induction is realized by a separate chiral
catalyst3 or a bifunctional catalyst featuring chirality at the
metal center.4 In contrast, the use of complexes derived from
the first-row transition metal such as nickel and copper as the
photocatalyst in asymmetric synthesis is underdeveloped.
During the past several years, a fast-growing number of

copper(I) complexes have been evaluated as visible-light
photocatalysts. For example, achiral CuI-(phenanthroline)2
complexes are predominantly employed as the photoredox
catalysts.5 However, the lack of photoactive, chiral copper
complexes limits the application in the photoredox asymmetric
transformation. The pioneering photoinduced, copper-cata-
lyzed enantioselective cross-coupling reaction was reported by
Fu and co-workers. In this reaction, C−N bonds were
constructed with a high enantiomeric excess in the presence
of catalytic amounts of CuCl and a chiral phosphine ligand
(Scheme 1, eq a).6 Gong and co-workers recently reported two
enantioselective nucleophilic additions of carbon radicals
generated through photooxidation by chiral Ni and Cu(II)
complexes.7 Despite the progress, a new Cu complex with a
dual-function photo and chiral catalyst would offer unique
opportunities for visible-light-mediated synthetic transforma-

tions. The difunctionalization of olefins is an expedient method
for increasing molecular complexity by virtue of the formation
of two new bonds concurrently.8 Recently, Liu and co-workers
reported a series of studies of copper-catalyzed enantioselective
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Scheme 1. Copper-Catalyzed Coupling Reactions
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radical relay trifluoromethyl dual functionalization of styrene
derivatives featuring CF3 radical generation under thermal
conditions (eq b). The hypervalent iodine fluoroalkylation
reagent, e.g., Togni’s reagent, was employed both as the
stoichiometric external oxidant and as the CF3 radical
precursor.9 Meanwhile, privileged (Box) served as the chiral
ligands.
Photoinduced copper-catalyzed radical difunctionalization of

alkenes with haloalkanes is an active subject. Various
nucleophiles have been utilized as suitable coupling partners
(eq c).10 However, the asymmetric version remains challeng-
ing. Very recently, Xu, Wang, and co-workers reported a
photoinduced fluoroalkylcyanation of alkenes using a well-
established Box−Cu(I) complex, and only fluoroalkyl iodide
served as the radical precursor.10e We were interested in the
radical difunctionalization of alkenes, including 1,3-butadiene
feedstock using alkyl halides as the radical precursor and
Cbzbox as the carbazole-based tridentate monoanionic pincer
ligand. It provided high enantioselectivities with the Cr
catalysis.11 Inspired by Fu’s work on photoinduced copper-
catalyzed C−N bond formation using carbazole as the reactant
and the photocatalyst,12 we proposed that the carbazole-based
Cbzbox ligand could potentially serve as the chiral ligand in
photoredox catalysis.
Hwang and Lalic reported copper could catalyze the

coupling of acetylene with aryl13a and alkyl halide13b under
light irradiation, and copper acetylide served as the photo-
excitable intermediate. Inspired by those pioneering studies, we
hypothesized that the alkyne might be used as a proper
nucleophile to test our ideas about a photoinduced
enantioselective alkyl/arylalkynylation of alkenes. Herein, we
describe the successful implementation of this hypothesis; in
the presence of a single chiral Cu complex, various
monosubstituted alkynes, alkenes, and alkyl and aryl iodides
undergo photoredox couplings leading to valuable enantioen-
riched propargylic compounds, a privileged building block
frequently prevalent in pharmaceutical agents and advanced
intermediates leading to functional materials (eq d).14

A detailed reaction condition study can be found in the
Supporting Information. Notably, although iPr-Cbzbox15

provides the desired product with moderate ee, tBu-BOPA
(bisoxazoline diphenylamine)16 serves as the best chiral ligand.
The optimal reaction conditions are listed in Scheme 2, and
the substrate scope was investigated by varying the alkenes,
alkynes, and haloalkanes. Styrenes with different substitutions
at the para position, including Cl, Br, CH3, t-Bu, and OCH3,
were suitable substrates for this reaction, giving products in
moderate to good yields with excellent ee’s (d2−d7). The Br,
Cl, and F could be allowed at the ortho or meta position
without compromising the ee. However, yields were decreased
for the ortho-substituted components probably due to the
steric hindrance (d10 and d11). 2-Vinylnaphthalene was also a
good substrate (d12). A heterocycle such as thiophene was
also tolerated well (d13). Styrene with an electron-with-
drawing group such as CF3 did react but with a decreased ee
value and yield (d8). We next turned our attention to the
alkynes. Compared with triisopropylsilylacetylene, ethynyltri-
methylsilane and ethynyltriethylsilane gave the products in
moderate yields with a slightly lower ee, indicating that the
enantiomeric induction was sensitive to the steric effect (d14
and d15). Other linear aliphatic alkynes such as 1-hexyne and
but-3-yn-1-yl benzene underwent the reaction smoothly to
provide d16 and d17, respectively, in comparable ee values

(88% and 90%, respectively). The ee value was increased with
enhanced bulkiness of the substitution (cyclopropyl < isobutyl
< isopropyl < tert-butyl) (d18−d21), proving again the critical
role of the steric effect in the enantiomeric induction. The ee’s
from the reactions with aryl and hetero aryl alkynes were 60−
84%, even though good yields were obtained (d22−d26).
The readily available haloalkanes were also evaluated and

showed that 1,1-difluoro-2-iodoethane, 1-fluoro-2-iodoethane,
1-fluoro-1-iodomethane, 1,1,2,2-tetrafluoro-3-iodopropane,
and 1,1,1,2,2-pentafluoro-3-iodopropane were successfully
engaged in this three-component coupling reaction, giving
enantioenriched propargylic compounds bearing difluoro-
methylene (CF2), monofluoromethane (CF), polyfluoroethane
(CF2CF2H), and 1,1,1,2,2-pentafluoroethane (CF2CF3)
(d27−d31) (Scheme 3). All functionalities were found with
significant pharmaceutical interest.17

Scheme 2. Substrate Scope with Alkyne and Alkenes

Scheme 3. Substrate Scope with Alkyl/Aryl Iodides
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Additionally, this method was not limited to fluorinated
halides; the simple primary and secondary aliphatic iodides
were also good substrates, leading to the desired products with
high efficiency (d32 and d33). To our delight, when the
reaction of iodobenzene was performed at room temperature,
1,2-diaryl-3-butyne d34 was provided in 49% yield with 96%
ee. When the reaction temperature was simply increased to
room temperature, aryl iodides bearing a series of functional
groups and heteroaryl iodides such as 2-iodothiophene and 3-
iodopyridine also worked well with excellent ee’s (d34−d41).
Notably, we also tested the performances of unactivated
alkenes under the catalytic system, which were consistent with
the literature case,10e and the desired product derived from
norbornene did form under BLED, albeit in a low yield with
zero ee. Disubstituted styrenes such as (E)-prop-1-enylbenzene
and prop-1-en-2-ylbenzene were not suitable substrates under
the reaction conditions.
A control experiment probed the radical nature of this

photoinduced three-component coupling reaction. When the
reaction mixture was open to air, the product yield dropped
significantly, suggesting that the active catalytic species was
sensitive to oxygen. The reaction was totally ceased upon
addition of the radical-trapping agent TEMPO, and the
trifluoroethylated TEMPO was formed in 35% yield by 19F
NMR, further proving the generation of the alkyl radical.
The UV−vis spectra of individual reagents or complexes

were recorded at the same concentration in CH3CN. None of
the alkyne, CuI, or ligand absorbed at wavelengths of >400 nm.
However, copper with a ligand, copper acetylide, and LnCuNu
(which should form in situ in the reaction) absorbed in the
range of 400−500 nm, with the last being more significant in
terms of intensity and broadness.18 These results suggest that
an aggregation of BOPA, copper, and a nucleophile accounts
for the photoactive species under BLED irradiation. The cyclic
voltammogram of copper acetylide shows a reversible wave at
−1.50 V versus the saturated calomel electrode (SCE)
corresponding to the Cu(I)/Cu(II) redox couple. The excited
states of copper acetylide have high redox potentials E of
−1.77 V versus SCE.18 The reduction potential of the
trifluoroethyl iodide measured to be −1.61 V suggests that it
can be reduced by electron transfer from excited copper
acetylide.19 In addition, the Stern−Volmer experiment
indicated that the excited state of the in situ-formed ligand
copper acetylide complex could be quenched by haloalkane
(ICH2CF3). Moreover, the quantunm yield (Φ = 0.6%)
suggested that a radical-chain process might not be involved
(see the Supporting Information for details).
On the basis of the literature12,20,21 and these findings, we

proposed the following reaction mechanism (Figure 1). In the
presence of a base, the [LnCu(I)(CCR)]− K+ (A) formed in
situ serves as the photoactive species to undergo photo-
excitation to generate [LnCu(I)(CCR)]* (B). This

intermediate delivers an electron to the alkyl halide leading
to [LnCu(II)(CCR)] (C) and an alkyl radical (R●). The
organic radical was trapped by the styrene to generate a
benzylic radical. The benzylic radical reacts with copper(II) to
deliver a copper(III) complex (D) that undergoes reductive
elimination to furnish the product. Alternatively, a direct SET
process results in the same product. Related examples of this
so-called radical relay strategy have been extensively studied by
Liu,9 Xiao,22a and Liu.22b

Fluorinated propargylic compounds can serve as valuable
building blocks in organic synthesis and pharmaceutical
chemistry.14 We briefly demonstrated the potential utilities
of the products. Scheme 4 shows simple cleavage of the silyl

group using TBAF at −20 °C provides the free alkyne as the
coupling partners. Instead, the same reaction performed at rt
led to allene f1. 1,2-Diaryl-3-butynes are the core structure of
bioactive molecules for estrogen receptor-β potency-selective
ligands.23

In summary, we report a photoinduced, copper-catalyzed,
enantioselective carboalkynlation of styrenes enabled by a
single BOPA−Cu(I) complex. An aggregation of the BOPA−
Cu(I) complex with alkyne serves as the photoreductant and
the source of enantiomeric induction. This novel aggregation-
photoinduced asymmetric coupling reaction will open up new
possibilities for the application of cheap metals and
carbohalides in photoredox chemistry.
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