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ABSTRACT: Cu(II)-catalyzed [4+2]-cycloadditions occur between Cu-benzopyryliums and substituted isoxazoles with the 
regioselectivity on the C(3,4)-carbons of isoxazoles. We postulate that a prior coordination of isoxazoles with Cu(OAc)2 

increases the -bond character of the C(3,4) carbons to become an effective 2 donor. In this reaction sequence, 3,5-

disubstituted isoxazoles yield -dicarbonylnaphthalenes whereas, 5-substituted isoxazoles deliver -dicarbonyl--
aminonaphthalenes. For unsubstituted isoxazole, its cycloaddition chemoselectivity is switched to the C(4,5)-addition 

regioselectivity to yield -carbonyl--cyanonaphthalene derivatives. 

   Metal-catalyzed cycloadditions emerge as powerful 
tools to construct complicated carbocyclic and heterocy-
clic frameworks.1 Aromatic heterocycles such as furans are 
well documented to serve as 4π-2 or 2π-donors3 to under-

go catalytic cycloadditions with -bond motifs or 1,n-
dipoles. Apart from furans, isoxazoles are appealing 4π- or 
2π-donors in catalytic cycloadditions,4,5 which are acces-
sible to valuable nitroxy (N-O)-containing heterocycles.6 
In the context of 2π-systems, the C(4,5)-carbons of furans 
and isoxazoles are the exclusive sites for the cycloaddi-
tions without no exception (eq 1).3,5a-d The large C(3,4) 
distances7 in furan (1.431 Å ) and isoxazole (1.425 Å ) show 

small -bond character that renders difficult their C(3,4)-
cycloadditions. Eq 2 shows one example between a [4+2]-
cycloaddition of furan and gold-containing benzopy-
rylium, in which the furanyl C(2,3) carbons are the reac-
tion sites.3h  Herein, we sought to develop novel cycload-
ditions at the C(3,4)-carbons of furans or isoxazoles, gen-
erating carbonyl ylide intermediates (I, eq 1).8 In chemical 
reactivity, we envisage that isoxazoles are typically repre-
sented by the structure (VI, eq 5) whereas the other reso-
nance form VI’ is generally less significant. This reactivity 
pattern can be altered when isoxazole is complexes with 
an electrophilic catalyst to form M-VI’. To realize this 
hypothesis, this work discloses Cu-catalyzed [4+2]-
cycloadditions of substituted isoxazoles with benzopy-
ryliums (III),9 in which the C(3,4) carbons of isoxazoles 

are activated by Cu(II) to serve effectively as 2-donors, 

further  delivering -dicarbonylnaphthalenes 3 and -

dicarbonyl--aminonaphthalenes 5 respectively (eq 3). In 
the case of unsubstituted isoxazole, the chemoselectivity 

is switched to C(4,5)-carbons to deliver -carbonyl--
cyanonaphthalene products 8 (eq 4). Importantly, this 
catalytic system is accessible to three distinct  

 
   
naphthalene derivatives bearing useful amine, cyano and 
carbonyl functionalities, further manifesting the synthetic 
utility. 
   The importance of this new catalysis is the one-pot syn-
thesis of 2-carbonyl-3-aminonaphthalene derivatives 5 
that are structural cores for several bioactive molecules 
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(Figure 1, I-IV).10 Rifampicin is used as an antitubercular 
agent10a while PI-083(NSC45382)10b and (-)-N-
methylguattescidine10c serve as anticancer agents. Com-
pound IV is in phase-1 clinical trial under code name 
S23906-1 for its potent cytotoxic effects.10d Notably, chem-
ical derivations of compounds 5 afford new polyaromatic 
molecules that have the same structural cores as several 
bioactive molecules (vide infra). 

 

Figure 1. Representative bioactive molecules.   

   Table 1 summarizes the optimized conditions for cata-
lytic cycloadditions of 2-(phenylethynyl)benzaldehyde 1a 
with 3,5-dimethylisoxazole 2a and with varied copper 
catalysts.  Heating this mixture (1a/2a = 1:2) in hot  

Table 1. [4+2]-Cycloadditions Over Various Copper 
salts 

 

entry 
catalyst 
(mol%)a 

solvent 
T[°C] 
/t[h] 

yieldb (%) 

1a 
3a-
H 

3a’ 3a 

1 CuCl2(10) toluene 110/ 24 20 -- 13 55 

2 Cu(OTf)2(10) toluene 110/ 20 -- -- -- 21 

3 Cu(acac)2(10) toluene 110/ 24 38 8 -- 14 

4 CuI(10) toluene 110/ 24 96 -- -- -- 

5 Cu(OAc)2(10) toluene 110/ 16 -- -- 14 63 

6 Cu(OAc)2(10) PhCl 120/ 16 -- 15 7 46 

7 Cu(OAc)2(10) DCE 80/ 24 55 20 -- 12 

8 Cu(OAc)2(10) ACN 80/ 24 52 27 -- 8 

9 Cu(OAc)2(10) THF 70/ 24 95 -- -- -- 

10 Cu(OAc)2(15) toluene 110/ 7 -- 8 9 72 

11 
IPrAuCl/ 
AgNTf2(10) 

DCE 80/15 -- 9 -- -- 

12 Zn(OTf)2(20) DCE 80/20 66 13 -- -- 

13 PtCl2(10) DCE 80/15 36 15 -- -- 

a
 1a = 0.3 M. 

b
 Product yields are reported after separation 

from silica column. DCE = 1,2-dichloroethane; ACN = ace-
tonitrile; IPr = 1,3-bis(diisopropylphenyl)-imidazol-2-ylidene. 

toluene (110 °C) with CuCl2 (10 mol %) afforded 1-(4-
benzoyl-3-methylnaphthalen-2-yl) ethan-1-one 3a in 55% 
yield (entry 1). A switch to Cu(OTf)2 and Cu(acac)2 deliv-
ered desired 3a in only 14-21% yields. For acidic Cu(OTf)2 

one byproducts 3a” was obtained in 30% yield (see 
Scheme s1, SI) whereas less acidic Cu(acac)2 gave unreact-
ed 1a and an alkyne hydration 3a-H in  38% and 8% yields 
respectively. CuI was entirely catalytically inactive (en-
tries 2-4). With Cu(OAc)2 (10 mol %) in toluene and chlo-
robenzene, the yields of the desired product 3a were 63% 
and 46% respectively (entry 5-6). Other solvents such as 
DCE, acetonitrile and THF were inappropriate for this 
new reaction (entries 7-9). With a 15 mol % loading of 
Cu(OAc)2, our target 3a was isolated in 72% yield (entry 
10). We also tested other catalysts such as 
IPrAuCl/AgNTf2, Zn(OTf)2 and PtCl2, each at 10-20 mol % 
loading, but our target 3a was not produced at all (entries 
11-13). In the case of gold catalyst, one hydrative dimeriza-
tion of compound 1a occurred to give 3b”/3c” was isolated 
in 15% and 20% as depicted in SI (Scheme s1). The molec-
ular structure of compound 3a was inferred from its rela-
tive 3n11 and the 1H NOE spectra matched well with this 
proposed structure. 
   We assessed the generality of these new reactions be-
tween 2-alkynyl benzaldehydes 1 and 3,5-disubstituted 
isoxazoles 2; the results are summarized in Table 2. For 2-
alkynyl benzaldehydes 1b-1c bearing various 4-
phenylalkynyl groups (R1 = 4-XC6H4, X = OMe and Cl), 
their reactions with 3,5-dimethyl isoxazole 2a afforded 

Table 2. Catalytic Synthesis of α,γ-Dicarbonyl Naph-
thalenes 

 

 
a
 1 = 0.3 M. 

b
 Product yields are reported after separation 

from silica column. 

desired 3b-3c in 67% and 55% yields respectively (entries 
1-2, Table 2). 2-Thienylalkynyl derivative 1d was also an 
applicable substrate to yield compound 3d in 78% yield 
(entry 3). Alkylalkynyl derivatives 1e and 1f (R1 = n-butyl 
and cyclopropyl) reacted well with 3,5-dimethylisoxazole 
2a to deliver the corresponding products 3e-3f in 55-57% 
yields (entries 4-5). For 2-alkynyl benzaldehydes 1g-1i 
bearing 4-phenyl substituents (X = OMe, Me and Cl), 
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their resulting products 3g-3i were obtained in 54-76% 
yields (entries 6-8). We also tested the reactions on 5- 
phenyl derivatives 1j and 1k (Y = Me and Cl), affording 
expected products 3j-3k in moderate yields (48-74%, en-
tries 9-10). In the case of benzodioxole-derived species 1l, 
its reaction with 3,5-dimethylisoxazole 2a gave compound 
3l in 69% yield (entry 11). We varied the 3,5-disubstituents 
of isoxazoles 2b, 2c and 2d with large alkyl groups, (R3, R2 

= Me, n-Bu; Et, Et and n-Bu, cyclopropyl); their corre-
sponding products 3m-3o were obtained in 58-80% yields 
(entries 12-14). The molecular structure of compound 3n 
was characterized with X-ray diffraction.11 For 3-
methylisoxazole 2e, its Cu-catalyzed reaction with alde-
hyde 1a afforded compound 3p in 25% yield (entry 15); 
this small yield indicates the importance of a C(5)-alkyl 
substituent (R2) to stabilize a carbonyl ylide I in eq 1. No-
tably, 5-phenyllisoxazole was inapplicable substrate be-
cause the phenyl is an electron-withdrawing group.  
   The lack of a C(3)-substituent of isoxazoles greatly af-
fects the reaction chemoselectivity. As shown in Table 3, 
we performed Cu-catalyzed reactions with 5-substituted 
isoxazoles 4; notably, the chemoselectivity was altered to 
deliver distinct β-amino α,γ-dicarbonyl naphthalene 
compounds 5 (Table 3). The Cu-catalyzed reaction of 2-
(phenylethynyl)benzaldehyde 1a with 5- methylisoxazole 
4a afforded compound 5a in 76% yield whereas its tol-
ylalkynyl analogue 1m gave similar compound  5b in 71% 
yield (entries 1-2). 

Table 3. Catalytic Synthesis of β-Amino α,γ-
Dicarbonyl Naphthalenes 

 

 
a
 1 = 0.3 M. 

b
 Product yields are reported after separation 

from a silica column. 

Alkylalkynyl derivatives 1e-1f (R1 = n-butyl and cyclopro-
pyl) afforded desired 5c-5d in reasonable yields (36-68%, 
entries 3-4).  Similarly, the presence of 4-substituents at 
the bridging benzene (X = OMe, Cl; Y = H)  in substrates 
1g and 1i  were compatible with the reactions to afford the 
desired products 5e-5f in 69% and 51% yields (entries 5-
6). 5-Phenyl substrates 1j and 1k (Y = Me and Cl) were 
also catalytically active to produce compounds 5g and 5h 
in 81% and 48% yields (entries 7-8). We tested the reac-
tions on various 5-substituted isoxazoles 4b-4d (R2 = 
styryl, n-butyl and benzyl), producing compounds 5i-5k 
in moderate yields (32-51%, entries 9-11). The molecular 
structure of compound 5k was characterized by X-ray 
diffraction.11  
The reaction chemoselectivity is completely altered when 
unsubstituted isoxazole 2f is used to react with model 
molecule 1a to afford compounds 8a and 9a in 85% and 
8% yields respectively (eq 6); the former arises from a  

 
typical C(4,5)-cycloaddition whereas the latter follows a 
novel C(3,4)-cycloaddition. The molecular structure of 
compound 8a was confirmed with X-ray diffraction.11 Ac-
cordingly, the C(3,4)-cycloaddition of isoxazoles relies on 
the presence of an alkyl group, especially on the C(5)-
carbon to stabilize a carbonyl ylide I (eq 1).  

Table 4. Cu-Catalyzed Synthesis of -Carbonyl--
cyanonaphthalenes 

 

 
a
 1 = 0.3 M. 

b
 Product yields are reported after separation 

from a silica column. 

   The value of this copper-catalyzed reaction is to provide 
distinct naphthalene compounds 8 that are difficult to 
prepare from other methods. For all cases, additional by-
products 9, resulting from the C(3,4)-addition in Table 4, 
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were obtained in minor proportions. We tested the reac-
tions of isoxazole 2f with 2-alkynylbenzaldehydes 1b-1d 
bearing various arylalkynes (R1 = p-OMeC6H4, p-ClC6H4 
and 2-thienyl), affording the desired compounds 8b-8d in 
satisfactory yields (72-85%, entries 1-3). For alkylalkynyl 
derivatives 1e-1f (R1 = n-butyl and cyclopropyl), their re-
sulting products 8e and 8f were in 75% and 48% yields 
respectively (entries 4-5). For benzodioxole-derived spe-
cies 1l and 4-substituted phenyl benzaldehydes 1g-1i (X = 
OMe, Me and Cl), their resulting cycloaddition products 
8g-8j were obtained in 65-87% yields (entries 6-9). We 
also prepared 2-(phenylethynyl)acetophenone 1n that 
afforded the desired product 8k in 78% yield (entry 10). 
The molecular structure of compound 8k was confirmed 
with x-ray diffraction.11  
   The amine and two ketones of compound 5a enable 
various chemical functionalizations. Treatment of this 
compound with neat CH(OEt)3 and NH4(OAc)12  pro-
duced 1-phenyl-5-(pyrimidin-4-yl)benzo[f]quinazoline 10a 
in 76% yield. The molecular  structure of compound 10a 
was characterized with X-ray diffraction.11 The oxidation 
of compound 5a with oxone13 gave 1-phenylnaphtho[2,1-
c]isoxazol 10b in 66% yield whereas the m-CPBA oxida-
tion delivered β-nitro-α,γ-dicarbonyl naphthalene 10d in 
56% yields respectively. NaBH4-reduction of species 10b 
produced an ethan-1-ol derivative 10c in 91% yield. Em-
ploying a Sandmeyer reaction14 at -10 °C, compound 5a 
was convertible to β-iodo-α,γ-dicarbonyl naphthalene 10e 
in 91% yield. Finally, diazotization of 5a induced an in-
tramolecular cyclization to give 6-acetyl-11H-
benzo[a]fluoren-11-one 10f in 73% yield.    

Scheme 1. Functionalization of One Representative 
Compound 5a 

 
The value of these derivation reactions provides highly 
matchable cores of selected bioactive molecules such as 
benzo[f]quinazolines (V), 15a fluostatins A(VI) and isopre-

kinamycin (VII)15b. Benzo[f]quinazolines derivatives have 
shown antiproliferative effect on human tumor cell lines, 
whereas, fluostatins A is a selective inhibitor of the en-
zyme dipeptidyl peptidase III. Isoprekinamycin is a me-
tabolite isolated from Streptomyces murayaensis. 
   We conducted an O18 labeling experiment on a mixture 
of reactants 1a and 2a, yielding compound O18-3a bearing 
only one O18 atom in ratio O16/O18 = 1.8:1 (eq 7). A loss of 
18O content is due to the presence of residual water in this 
system. From an analysis of the EI-MS fragmentation (see 
SI), two fragments, 245.0962 (O16) and 247.1009 (O18), in 
intensity ratio 2.1:1, were detected and assigned to be [M–
MeCO]+. These two fragments indicate that the 18O-atom 
was labeled on the phenylketone oxygen of species O18-3a. 
For initial 13C-1a bearing 10 % 13c-content at the aldehyde, 
it resulting product 13C-3a comprised 13C-content only at 
the C(4)-carbon, indicating no carbonyl migration (eq 8).  
We also tested the reaction on 18O-1a bearing 25% 18O 
content at its aldehyde, but its corresponding product 3a 
contained no 18O-oxygen (eq 9). 

 

   Structural analysis of major products 3 or 5 indicates 
that the C(3,4)-cycloadditions of isoxazoles 2 are viable 
routes. A plausible mechanism is provided in Scheme 2. 
Only unsubstituted isoxazole 2f (R1 = R2 = H) undergoes a 
typical C(4,5)-cycloaddition (eq 6). We postulate that 
Cu(OAc)2 first reacts with an isoxazole to form a complex 

pair Cu-2, in which the C(3,4) bond has significant -
bond character, as shown the resonance structure Cu-2’. 
An initial [4+2]-cycloaddition9 between Cu-containing 
benzopyrylium A and species Cu-2 generates species B, of 
which the oxonium group is attacked by water according 
to an 18O-labeling experiment (eqs 7 and 9). This hydroly-
sis reaction is expected to yield species C that undergoes 
dehydration to give unsaturated oxonium species D. We 
postulate that the positive charge of species E locates 
mainly at the benzylic carbon so that cleavage of the N-O 
bond is initiated by an attack of water at the amino N-H 
moiety, yielding species E for those isoxazoles 2  bearing 
R2 = alkyl. An elimination of NH2OH from species E is 
expected to form products 3. For C(5)-substituted isoxa-
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zole 4 (R2 = H), the corresponding C(3,4)-isoxazole cy-
cloaddition affords intermediate D’ that can induce cleav-
age of a N-O bond to produce the observed products 5 
through a loss of Cu(OAc)2 and a proton transfer. The 
proposed complex pair Cu-2 also rationalizes the distinct 
behavior of unsubstituted isoxazole 2f (eq 6), for which 
formation of a complex with Cu(OAc)2 is difficult because 
an alkyl group to enhance the nitrogen basicity is lacking. 

Scheme 2. A Plausible Reaction Mechanism 

 

   Formation of -ketonyl--cyanonaphthalene 8 from 
unsubstituted isoxazole 2f arises from the C(4,5)-
cycloadditions. Following a similar path, an initial [4+2]-
cycloaddition between Cu-benzopyrylium A and isoxazole 
generates species G that subsequently undergoes a Cu-
assisted deprotonation through intermediate H, yielding 
species I and ultimately the observed product through an 
aromatization. 
   In summary, this work reports the first success for Cu-
catalyzed [4+2]-cycloadditions16 of benzopyryliums with 
substituted isoxazoles, in which the regioselectivity of 
isoxazoles occurs on the C(3,4)-carbons. This chemoselec-
tivity is astonishing because the C(3,4) bond of isoxazoles 

has little -bond character. We postulate that a prior 
bonding of isoxazoles with Cu(OAc)2 activates the C(3,4) 

bond via an increased -bond character. In this reaction 

sequence, 2,5-disubstituted isoxazoles afford -
dicarbonylnaphthalenes whereas 5-substituted isoxazoles 

afford -dicarbonyl--aminonaphthalenes. In the case 
of unsubstituted isoxazole, a typical C(4,5)-addition regi-

oselectivity is observed with formation of -ketonyl--
cyanonaphthalenes. The use of one 2-alkynyl benzalde-
hyde to access three distinct classes of highly functional-
ized naphthalene products highlights the synthetic utility. 
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