ChemComm

COMMUNICATION

Check for updates

Cite this: Chem. Commun., 2021, 57, 4512

Received 31st December 2020, Accepted 23rd March 2021

DOI: 10.1039/d0cc08429h

rsc.li/chemcomm

Copper-catalyzed domino synthesis of multisubstituted benzo[b]thiophene through radical cyclization using xanthate as a sulfur surrogate†

The Cu-catalyzed domino synthesis of multi-substituted benzo[b]thiophene through radical cyclization of 2-iodophenyl ketones was developed using xanthate as a sulfur surrogate. This method was extended to obtain tetracyclic Lupinalbin analogues through double C–S/C–O bond formation by changing the substituents. The products were converted to a HTI photoswitch, benzothiophene-fused flavone.

Benzo[b]thiophenes are a promising class of organosulfur compounds. In particular, multi-substituted 3-hydroxybenzo[b]thiophene is considered essential, as it is used in a broad range of research fields, including medicinal sciences and materials chemistry. 3-Hydroxybenzo[b]thiophene is known to exhibit inhibitor activity against human monoamine oxidase (hMAO).¹ It also works as an anti-inflammatory agent,² a selective estrogen receptor downregulator (SERD) and a selective estrogen receptor modulator (SERM).³ Additionally, the 3-hydroxybenzo[b]thiophene core is a precursor for the synthesis of hemithioindigo (HTI), which is a chromophore that demonstrates proficient photoswitching properties under visible light irradiation.⁴ Benzothiophene synthesis from o-silylaryl triflates and acyl-substituted ketene dithioacetals was developed by Singh and co-workers (Scheme 1a).^{5a} Very recently, Yoshida and co-workers reported the synthesis of 3-substituted benzothiophenes by reacting aryne with alkynyl sulfides (Scheme 1a).^{5b} In spite of their significance, the domino synthesis of multi-substituted benzothiophenes remains difficult in terms of the applicable functional groups and substitution patterns.

On the other hand, copper-catalyzed radical cyclization has been established as a powerful tool for synthesizing complex molecules.⁶ In particular, much focus has been placed on the functionalization of carbonyl compounds and their derivatives, due to its importance in organic synthesis. To date, many reports are available on the α -functionalization of saturated carbonyl compounds *via* SN₂ displacement of a halogen atom by nucleophiles (Scheme 1b).⁷ In contrast, the incorporation of heteroatom functional groups into the $\beta(sp^3)$ -C–H bonds of simple ketones is sparsely reported due to their less acidic nature. Conventional methods involve Michael addition⁸ to *in situ* synthesized α,β -unsaturated compounds *via* the oxidation of the corresponding saturated carbonyl compounds in one or a few steps (Scheme 1b).⁹

Su and co-workers reported the first Cu-catalyzed direct β -functionalization of saturated ketones involving a tandem ketone dehydrogenation-conjugate addition sequence.¹⁰ Such protocols that involve direct functionalization of unactivated carbonyl compounds appear more attractive; however, there is a dearth of these direct methodologies. Additionally, α , β -sulfenylation reactions are also sparsely reported since sulfur causes catalyst poisoning to the metal catalyst.

Scheme 1 Transition metal-catalyzed Csp^3-H functionalization of carbonyl compounds.

View Article Online

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India. E-mail: gsekar@iitm.ac.in

[†] Electronic supplementary information (ESI) available. CCDC 2031230, 2031231 and 2043956. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d0cc08429h

Our group has delved into metal-catalyzed C–S bond formation using xanthate as a sulfur surrogate.¹¹ Building upon this work, we wanted to develop a methodology to afford 2, 3-disubstituted benzo[*b*]thiophene from unactivated ketones in the presence of copper as a catalyst, through the radical cyclization of the carbonyl compound using xanthate as a sulfur source. It was hypothesized that 2-thioaroyl-3-hydroxybenzo[*b*]thiophenes could be synthesized from 2-halophenyl ketones *via* Cu-catalyzed C–S bond formation through crosscoupling, followed by metal–enolate complex formation and homolytic cleavage of the complex, to eventually provide the cyclized benzo[*b*]thiophene with an active methylene group. It was further expected to undergo oxidation in the presence of DMSO and acetic acid to generate a 2-thioaroylbenzothiophene.

Thus, keeping the above points in mind, a trial reaction was performed with 2-iodophenyl ketone **1a**, and potassium ethyl xanthate (3 equiv.), in the presence of $Cu(OAc)_2$ (10 mol%) and acetic acid (2 equiv.) as additives in DMSO as a solvent at 110 °C. To our delight, the desired product **2a** was isolated in 60% yield within a short time span of 1 h. Encouraged by this, a thorough optimization of the reaction conditions was carried out (see the ESI† for details). The resultant optimized conditions utilize potassium ethyl xanthate (3 equiv.), $Cu(OAc)_2$ (20 mol%) as a catalyst and acetic acid (2 equiv.) as an additive in DMSO (2 mL) solvent at 120 °C to yield 85% of **2a** in 1 h (Scheme 2).

With the optimized reaction conditions in hand, the scope for this domino synthesis of 3-hydroxybenzo[b]thiophene was explored with various 2-iodophenyl ketones and the results are summarized in Table 1. The reaction worked well for 2-iodophenyl ketone, with electron-donating substituents on the arene attached to the aliphatic chain, providing the desired products in good to excellent yields (Table 1, 2a-2j). The structures of 2b and 2i were confirmed by single crystal XRD analysis (CCDC 2031230 and 2031231[†]). Even sterically crowded di- and tri-substituted saturated ketones gave the desired products 2k-2m in moderate to good yields. The protocol was further employed for 2-iodophenyl ketone substituted with halogen groups and electron withdrawing groups on the arenes. Moderate to good yields of the resultant 3-hydroxybenzo[b]thiophene were obtained, irrespective of the position of the halogen substitution (2n-2u).

Intriguingly, the reaction proceeded smoothly with 2-iodophenyl ketone containing heterocyclic thiophene to give the cyclized product 2v in 82% yield within 30 min. Sterically demanding naphthalene and biphenyl-derived ketones underwent the domino reaction successfully to afford 2w and 2x in moderate yields. Next, the methodology was applied to 2-iodophenyl ketones bearing substitution on the iodo-attached aryl ring. Bromo- and dioxolanyl

 a Reaction conditions: 1 (0.5 mmol), xanthate (1.5 mmol), Cu(OAc)_2 (20 mol%), AcOH (1 mmol) in DMSO (2 mL) at 120 $^\circ$ C. All yields are isolated yields.

ketones were subjected to the optimized reaction conditions to produce **2y** and **2z** in 79% and 71% yield, respectively. The reaction was even suitable for the biphenyl-substituted ketone, giving the desired product **2aa** in good yield. However, the reaction was not successful when it was performed with an aliphatic substrate, such as 2-iodophenyl pentyl ketone **2ab**. This result suggests that the benzylic position is necessary for thioketone formation.

The protocol was examined for less reactive bromo substrates, such as 2'-bromophenylketone 4 (Table 2). On subjecting 2'-bromophenylketone 4a to the optimized reaction conditions, the desired cyclized product 2a was obtained in 74% yield in 1.5 h. Further, 2'-bromophenylketones with various substituents (4-Me, 4-Cl, 4-CN) underwent the cyclization successfully irrespective of the electronic nature of the substituent, to provide the desired products 2b, 2n, and 2t in moderate to good yields. Even 2'-bromophenylketone bearing thiophene also furnished the corresponding product 2v in 70% yield.

When the optimized reaction conditions were applied to iodophenyl ketone **1z** with a methoxy group at the *ortho*position on the arene ring attached to the aliphatic chain, a tetracyclic ring **3a** was obtained in 12 h in 92% yield (Table 3). The tetracyclic ring possesses benzothiophene-fused thioflavones, which are analogues of Lupinalbin that are known to be

Communication

 Table 2
 Domino synthesis of 3-hydroxybenzo[b]thiophene from 2'-bromophenylketone^a

 a Reaction conditions: 4 (0.5 mmol), xanthate (1.5 mmol), Cu(OAc)_2 (20 mol%), AcOH (1 mmol) in DMSO (2 mL) at 120 °C. All yields are isolated yields.

a potent estrogen receptor.¹² Considering the importance of this privileged scaffold, the scope of the tetracyclic moiety was examined.

The reaction worked well with the iodophenyl ketone bearing ethoxy and hydroxy groups at the *ortho*-position on the arene group attached to the aliphatic chain, to furnish **3a** in 78% and 85% yield, respectively. The reaction also gave good yields of **3a** with 2-bromophenylketone. When the reaction was carried out with iodophenyl ketone containing a 2,4-dimethoxy substituent on the arene ring attached to the aliphatic chain, the desired product **3b** was isolated in 14 h in 76% yield by the selective cleavage of the *ortho*-methoxy groups.

Iodophenyl ketone with 2,5-dimethoxy and 2,3,4-trimethoxy substituents on the arene ring attached to the aliphatic chain were also found to be compatible under the reaction conditions and gave **3c** and **3d** in moderate yields. The structure of the tetracyclic benzothiophene-fused thioflavone was confirmed by single crystal XRD analysis of **3c** (CCDC 2043956†).

Furthermore, the synthetic utility of 2-thioaroyl-3-hydroxybenzothiophene **2b** was demonstrated when it was derivatized to produce hemithioindigo **6** with a 4-fold-substituted double bond, which is known to function as an efficient photoswitch (Scheme 3b). In addition, the hydroxy group in **2b** was benzoylated to give the ester-bearing benzothiophene 7 along with the thioacylated by-product **8** (Scheme 3c). Also, the thioketone moiety in the tetracyclic Lupinalbin analogue **3a** was converted to ketone **9** in 78% yield using iodine and DMSO (Scheme 3d).

Scheme 3 Gram scale and synthetic applications of current protocol through post synthetic modifications.

To gain mechanistic insight, a series of controlled experiments were performed. In the presence of the radical scavenger BHT, a drastic decline in the yield to 23% was observed, while in the presence of TEMPO, not even a trace amount of the desired product was formed (Scheme 4a). When the expected intermediate xanthate ester **10** was used under the optimized conditions, the reaction proceeded to give 70% of **2a**, indicating that **10** forms in the due course of reaction (Scheme 4b).

Next, thioflavone **11** was subjected to the optimized conditions with iodine, since it is known that thioflavone rearranges to a benzothiophene moiety in the presence of molecular iodine. However, only the dehydrogenated thioflavone **12** was isolated in 68% yield, which shows that benzothiophene is not generated *via* the rearrangement of thioflavone **11** (Scheme 4c). When chalcone **13** was used under the standard reaction conditions, only 15% of the desired product **2a** was isolated, which might be due to the corresponding *in situ* generated saturated ketone (Scheme 4d). The chalcone can become reduced by xanthate and acetic acid through PCET,¹³ thus, giving rise to the saturated ketone. This result suggests that chalcone **13** may not play any role in the reaction mechanism.

Further, a reaction was performed using iodophenyl ketone **1h** with DMF as the solvent, keeping the other reaction parameters constant (Scheme 4e). Although the reaction took a longer time (6 h) to complete during the optimization in DMF, here the reaction was quenched after 1 h, and 2-benzyl benzothiophenone **14** was isolated in 58% yield. When the intermediate **14** was subjected to the optimized reaction conditions, 87% of the desired 2-thioaroyl-3-hydroxybenzo[*b*]thiophenone

 a Reaction conditions: 1z (0.5 mmol), xanthate (1.5 mmol), Cu(OAc)_2 (20 mol%), AcOH (1 mmol) in DMSO (2 mL) at 120 $^\circ C$. All yields are isolated yields.

Scheme 4 Controlled reactions.

2h was isolated in 30 min (Scheme 4f). Thus, Schemes 4e and f indicate that **14** acts as reaction intermediate which undergoes oxidation and thionation to eventually provide the desired product **2h**. Further, on reacting iodophenyl ketone **1a** under the optimized reaction conditions at lower temperature, intermediate **15** was isolated in 67% yield (Scheme 4g). On subjecting intermediate **15** to the optimized reaction conditions, 83% of the desired product **2a** was obtained (Scheme 4h).

A plausible reaction mechanism for the synthesis of 3-hydroxybenzo[*b*]thiophenethiones has been proposed by taking inferences from control experiments and literature reports (Scheme 5). Initially, 1-(2-iodophenyl)-3-phenylpropan-1-one might undergo oxidative addition in the presence of copper(1) to give intermediate **A**, which subsequently would provide intermediate **B** by ligand exchange with potassium ethyl xanthate. Reductive elimination of intermediate **B** would provide Cu(1) and xanthate ester.

This Cu(I) may be oxidized to Cu(II) by the xanthate dimer,¹⁵ which will reacting with the keto group of the xanthate ester to form metal–enol complex C'. The intermediate might undergo keto–enol tautomerism to give **D**. Eventually, intermediate **D** might undergo a homolytic cleavage⁹ to give the radical intermediate **E**. Consequently, the thiyl radical is generated through cleavage of the xanthate ester by *in situ*-generated xanthate radicals¹⁴ which would cyclize to produce **F**. The intermediate **F** should give the stable aromatic intermediate **G** *via* keto–enol tautomerism. The methylene group in intermediate **G** might be converted to a thiocarbonyl group under the reaction conditions to yield the product 3-hydroxybenzo[*b*]thiophenethione **2**. However, a detailed mechanistic study is currently underway in our laboratory.

In conclusion, an efficient copper-catalyzed domino protocol has been developed for the synthesis of 2-thioaroyl-3hydroxybenzothiophene from saturated ketones *via* radical cyclization using xanthate as an odorless sulfur source. This methodology was extended to less reactive 2-bromophenylketones without changing any parameters. The reaction also resulted in the formation of a tetracyclic Lupinalbin analogues by introducing the *ortho*-methoxy substituent in the iodophenyl ketones. Also, 2-thioaroyl-3-hydroxybenzo[*b*]thiophene was derivatized to produce hemithioindigo, which is known to function as an efficient photoswitch, and a dethionated Lupinalbin analogue using the I_2 /DMSO system.

G. S. thanks IIT Madras (No. CHY/17-18/847/RFIR/GSEK) for financial support, N. S. thanks CSIR, A. N. thanks IIT Madras for senior research fellowship. We thank DST and Department of Chemistry, IIT Madras for instrumentation facilities.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- P. Guglielmi, D. Secci, A. Petzer, D. Bagetta, P. Chimenti, G. Rotondi, C. Ferrante, L. Recinella, S. Leone, S. Alcaro, G. Zengin, J. P. Petzer, F. Ortuso and S. Carradori, *J. Enzyme Inhib. Med. Chem.*, 2019, 34, 1511–1525.
- 2 M. R. Bleavins, F. A. de la Iglesia, J. A. McCay, K. L. White, Jr. and A. E. Munson, *Toxicology*, 1995, **98**, 111–123.
- 3 R. Xiong, J. Zhao, L. M. Gutgesell, Y. Wang, S. Lee, B. Karumudi, H. Zhao, Y. Lu, D. A. Tonetti and G. R. J. Thatcher, *J. Med. Chem.*, 2017, **60**, 1325–1342.
- 4 A. Gerwien, T. Reinhardt, P. Mayer and H. Dube, *Org. Lett.*, 2018, **20**, 232–235.
- 5 (a) P. Garg and A. Singh, Org. Lett., 2018, 20, 1320-1323;
 (b) T. Matsuzawa, T. Hosoya and S. Yoshida, Chem. Sci., 2020, 11, 9691-9696.
- 6 (a) J.-S. Lin, X.-Y. Dong, T.-T. Li, N.-C. Jiang, B. Tan and X.-Y. Liu, J. Am. Chem. Soc., 2016, 138, 9357–9360; (b) Q.-S. Gu, Z.-L. Li and X.-Y. Liu, Acc. Chem. Res., 2020, 53, 170–181; (c) Z.-L. Li, G.-C. Fang, Q.-S. Gu and X.-Y. Liu, Chem. Soc. Rev., 2020, 49, 32–48; (d) C.-J. Yang, C. Zhang, Q.-S. Gu, J.-H. Fang, X.-L. Su, L. Ye, Y. Sun, Y. Tian, Z.-L. Li and X.-Y. Liu, Nat. Catal., 2020, 3, 539–546.
- 7 (a) A. M. R. Smith and K. K. Hii, *Chem. Rev.*, 2011, 111, 1637–1656;
 (b) C. C. C. Johansson and T. J. Colacot, *Angew. Chem., Int. Ed.*, 2010, 49, 676–707; (c) Z. Yuan, C. Zhu, Z. Ma and C. Xia, *Chem. Commun.*, 2018, 54, 11033–11036.
- 8 K. Zheng, X. Liu and X. Feng, Chem. Rev., 2018, 118, 7586-7656.
- 9 (a) M. T. Pirnot, D. A. Rankic, D. B. C. Martin and D. W. C. MacMillan, *Science*, 2013, **339**, 1593–1596; (b) M. Chen and G. Dong, *J. Am. Chem. Soc.*, 2019, **141**, 14889–14897; (c) W. Xie, D. Kim and S. Chang, *J. Am. Chem. Soc.*, 2020, **142**, 20588–20593.
- 10 X. Jie, Y. Shang, X. Zhang and W. Su, J. Am. Chem. Soc., 2016, 138, 5623–5633.
- 11 (a) N. Sundaravelu and G. Sekar, *Chem. Commun.*, 2020, 56, 8826–8829; (b) N. Sundaravelu and G. Sekar, *Org. Lett.*, 2019, 21, 6648–6652.
- 12 C. P. Miller, M. D. Collini and H. A. Harris, *Bioorg. Med. Chem. Lett.*, 2003, 13, 2399–2403.
- 13 R. Prasanna, S. Guha and G. Sekar, Org. Lett., 2019, 21, 2650-2653.
- 14 A. Tazhe Veetil, T. Solomek, B. P. Ngoy, N. Pavlikova, D. Heger and P. Klan, *J. Org. Chem.*, 2011, **76**, 8232–8242.
- 15 (a) S. Sangeetha and G. Sekar, Chem. Commun., 2020, 56, 10906–10909; (b) Z. Zhu, X. Tang, J. Cen, J. Li, W. Wu and H. Jiang, Chem. Commun., 2018, 54, 3767–3770.