Tetrahedron 67 (2011) 3105-3110

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Near-infrared BODIPY dyes modulated with spirofluorene moieties

Toshiyuki Kowada, Shuhei Yamaguchi, Hiroki Fujinaga, Kouichi Ohe*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

ABSTRACT

ARTICLE INFO

Article history: Received 27 January 2011 Received in revised form 22 February 2011 Accepted 24 February 2011 Available online 2 March 2011

Keywords: BODIPY dye Fluorescence Near-infrared C–H arvlation Charge transfer

1. Introduction

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) are attractive fluorescent dyes because of their remarkable physical properties, such as high photoluminescent quantum yields, large molar absorption coefficients, narrow emission bands, and high environmental stability.¹ Therefore, they have been widely used in a variety of organic functional materials where biological applications require light-emitting properties in the near-IR or visible red region.² To modulate the optical properties of BODIPY dyes, in particular, the following strategies are elaborated: (1) extension of π -conjugation by introducing aryl³ or styryl⁴ substituents at the 3,5positions; (2) rigidifying the molecular structure to suppress the free rotation of extended substituents and enhance the coplanarity;⁵ and (3) introducing electron-donating groups at the 3,5-positions. $^{5-8}$ In particular, the third approach is the most effective for the red shift of both the absorption and the emission spectra. Burgess et al. investigated the phenyl- or *p*-anisyl-substituted BODIPY dyes (A and **B**) and found that the introduction of the electron-donating methoxy groups led to the red shift of the spectra by about 30 nm (Fig. 1, **A**: λ_{em} 588 nm, **B**: λ_{em} 626 nm).^{6a} Similar phenomena have been observed in styryl-substituted BODIPY dyes D^{4a} (λ_{em} 639 nm) and \mathbf{E}^{6b} (λ_{em} 653 nm). Ziessel et al. reported that strong electrondonating *p*-aminostyryl groups have great potential to give a bathochromic shift of about 80 nm (Fig. 1, **F**: λ_{em} 767 nm).^{6c} In addition, applications in fluorescent sensors of pH⁷ and/or metal ions^{8,9} take advantage of the basicity or coordination of amino groups. However,

C: unknown

© 2011 Elsevier Ltd. All rights reserved.

D: Ar = 4-Tolyl $\lambda_{\rm abs}$ 626 nm, $\lambda_{\rm em}$ 639 nm, $\Phi_{\rm F}$ 0.92

ÒMe E: Ar = 4-HO-C₆H₄- $\lambda_{\rm abs}$ 647 nm, $\lambda_{\rm em}$ 653 nm, $\Phi_{\rm F}$ 0.73

Fig. 1. The photophysical properties of 3,5-diaryl or distyryl-substituted BODIPY dyes.

New structurally constrained BODIPY dves having electron-donating substituents were synthesized. As

the key compounds for the construction of the BODIPY dyes, 1'H-spiro-[fluorene-9,4'-indeno[1,2-b]

pyrrole] (sp-FIP) derivatives with electron-donating groups, such as OMe and NMe₂ at its 6'-position,

were prepared using palladium-catalyzed intramolecular direct C-H arylation of a pyrrole moiety. The

resulting BODIPY dyes showed bathochromic shift in absorption and fluorescence spectra in comparison to the unsubstituted analogs. Furthermore, pH-dependent reversible spectrum changes of the BODIPY

dye were observed with the addition of trifluoroacetic acid (TFA) and subsequent addition of *i*-Pr₂NEt.

A: Ar = $4 - I - C_6 H_4 \lambda_{\rm abs}$ 555 nm, $\lambda_{\rm em}$ 588 nm, $\Phi_{\rm F}$ 0.20

Corresponding author. Tel.: +81 75 383 2495; fax: +81 75 383 2499; e-mail address: ohe@scl.kyoto-u.ac.jp (K. Ohe).

B: Ar = 4-I-C₆H₄- $\lambda_{\rm abs}$ 582 nm, $\lambda_{\rm em}$ 626 nm, $\Phi_{\rm F}$ 0.42 Meol

p-aminophenyl-substituted BODIPY dyes (type **C**) have not so far been explored.

We recently reported that structurally constrained BODIPY dyes that were synthesized using the strategies 1 and 2 shown above exhibited intense fluorescence with the emission maxima around 670 nm (Fig. 2).¹⁰ We also described solvent-dependent fluorescence of the BODIPY dye with *p*-aminophenyl substituents at the 8-positions, which was caused by photoinduced electron transfer (PeT).^{10,11} We now report the synthesis of structurally constrained BODIPY dyes with *p*-amisyl or *p*-aminophenyl substituents at the 3,5-positions (types **B** and **C**).

Fig. 2. Structurally constrained BODIPY dyes.

2. Results and discussion

The preparations of 6'-methoxy-1'H-spirolfluorene-9.4'-indeno-[1.2-*b*]pyrrole] (**MeO-sp-FIP**) and 6'-(*N.N*-dimethylamino)-1'H-spiro [fluorene-9,4'-indeno[1,2-b]pyrrole] (Me₂N-sp-FIP) as key compounds for the synthesis of structurally constrained BODIPY dyes are summarized in Scheme 1. The reaction of 1-bromo-2-iodo-4methoxybenzene (1a) and 4-bromo-3-iodo-N,N-dimethylaniline (1b) with isopropyl Grignard reagent followed by quenching with 9-fluorenone gave 2a and 2b in 81% and 77% yield, respectively. Friedel–Crafts alkylation of *N*-tosylpyrrole with 2a and 2b using AlCl₃ afforded **3a** and **3b** in 97% and 70% yield, respectively. The catalytic intramolecular direct C–H arylation^{10,12} of **3a** using Pd-(PPh₃)₄ proceeded smoothly to afford **4a** in 60% yield. From **3b**, **4b** was obtained in 35% yield using Pd₂(dba)₃ and P(t-Bu)₃ instead of Pd(PPh₃)₄. Detosylation of **4** using tetrabutylammonium fluoride (TBAF) gave sp-FIP derivatives, MeO-sp-FIP and Me₂N-sp-FIP, in excellent yields (quantitative yield and 87%, respectively).¹

We next examined the transformation of **sp-FIP** derivatives to BODIPY dyes (Schemes 2 and 3). **MeO-sp-FIP** was reacted with methyl 4-formylbenzoate to give dipyrromethane, which was subsequently oxidized and complexed with BF₃·OEt₂, leading to the formation of BODIPY dye **5a**. Although we attempted to prepare **5b** using **Me₂N-sp-FIP** in a similar manner, the oxidation using DDQ or *p*-chloranil resulted in decomposition or recovery of the corresponding dipyrromethane. Thus, we changed the synthetic route to **5b** (Scheme 3). Acylpyrrole **6** was prepared by the reaction of **Me₂Nsp-FIP** with methyl 4-(chlorocarbonyl)benzoate in 52% yield, and then the condensation of **6** with 1 equiv of **Me₂N-sp-FIP**, followed by complexation with BF₃·OEt₂ led to the desired BODIPY dye **5b**.

The absorption and emission spectra of **5a** and **5b** were measured in THF (Table 1). The absorption maximum and the emission maximum of **5a** were red-shifted by about 30 nm compared with those of **5c** without electron-donating groups. Furthermore, **5a** showed intense fluorescence (Φ_F =0.61) with a small Stokes shift (15 nm) because of its rigid structure. Because of the strong electron-donating ability of *N*,*N*-dimethylamino groups, **5b** exhibited bathochromic shifts of about 80 nm in both absorption and emission maxima compared with **5c**. However, **5b** showed lower

Table 1

Photophysical properties of BODIPY dyes **5a**–**c** in THF ($c=1.00\times10^{-6}$ M)

	R	λ_{abs} [nm]	$\varepsilon [\mathrm{M}^{-1} \mathrm{cm}^{-1}]$	λ _{ex} [nm]	λ _{em} [nm]	$\Phi_{\rm F}{}^{\rm a}$
5a	OMe	666	159,000	666	681	0.61
5b	NMe_2	738	133,000	733	769	0.24
5c ^b	Н	641	161,100	640	652	0.67

^a Determined by the calibrated integrating sphere system.

^b Ref. 10.

Table 2

quantum yield ($\Phi_{\rm F}$ =0.30) with larger Stokes shift (31 nm) than **5a** and **5c**. This indicates the occurrence of intramolecular charge transfer (ICT)^{7,8,14} in **5b**.

When the absorption spectra of **5b** were measured in various solvents, the positions of the absorption maxima were slightly affected by the solvent polarity (Fig. 3, Table 2). In contrast, the features of solvent-dependent fluorescence of **5b** were found in the emission spectra. The emission maximum obviously shifts to a longer wavelength, and the emission spectra were broadened and weakened by going from nonpolar to polar solvents (cyclohexane: 741 nm; DMF: 792 nm). Furthermore, in cyclohexane, **5b** showed sharp and narrow emission spectrum with the highest fluorescence quantum yield ($\Phi_{\rm F}$ =0.51).

solution of **5b** (Fig. 4). In the absorption spectra, the initial absorption band at 741 nm decreased and a distinctive sharp absorption band of a BODIPY dye appeared at 636 nm, which can correspond to **5b-2H**⁺ ([TFA]=1 M, Fig. 4). The emission spectra showed a parallel change with the absorption spectra. The original broad fluorescence band of **5b** changed with blue shift as TFA was added, and a sharp and strong emission peak arose at 647 nm when the TFA concentration reached 1 M. This indicates that the protonated amino groups no longer act as electron-donors. Then, to prove that the phenomenon is caused by the protonation on amino groups rather than such structural changes as hydrolysis of the ester group or deboronation, i-Pr₂NEt was added to the acidic solution (5b with [TFA]=1 M). As expected, the identical spectra of the original **5b** were restored (Fig. 4). Thus, it is obvious that ICT between amino groups and boron atom is inhibited by the protonation on amino groups.

In conclusion, we have developed structurally constrained BODIPY dyes with electron-donating groups, such as MeO or Me₂N at the *para* position of phenyl groups substituted at 3,5-positions on the BODIPY core. Palladium-catalyzed intramolecular direct C–H arylation of a pyrrole moiety allowed us to synthesize **sp-FIP** derivatives as the key compounds for the construction of the BODIPY dyes. The emission bands of the resulting BODIPY dyes were shifted bathochromically in comparison to unsubstituted analogs because of the electron donation from the MeO and Me₂N groups. In addition, amino-substituted BODIPY dye **5b** showed ICT character. The ICT process could be modulated by protonation on amino groups and recovery of original absorption and fluorescence upon deprotonation with an additional base was demonstrated. We envision the application of **5b** in pH and/or metal ion sensors and further investigations will be reported in due course.

Fig. 3. The absorption (left) and emission spectra (right) of 5b in various solvents.

Photophysical prope	rties of BODIPY dyes 5b in	various solvents ($c=1.00\times10^{-6}$ M))

Solvent	λ _{abs} [nm]	$\varepsilon [\mathrm{M}^{-1} \mathrm{cm}^{-1}]$	λ _{ex} [nm]	λ _{em} [nm]	$\Phi_{\rm F}{}^{\rm a}$
Cyclohexane	724	152,500	714	741	0.44
Benzene	743	147,800	732	769	0.37
THF	738	133,000	733	769	0.24
MeCN	741	89,340	741	783	0.23
DMF	752	115,800	741	792	0.11

^a Determined by the calibrated integrating sphere system. Corrected for background noise at around 820 nm.

In general, the emission properties of the ICT fluorophores having amino groups can be modulated by cation binding, which reduces the electron-donating ability of the nitrogen atom. As a result, ICT process is prohibited and the inherent sharp emission of the BODIPY dye is restored. We next added TFA to the acetonitrile

3. Experimental section

3.1. General

Unless otherwise specified, all reagents were purchased from a chemical supplier and used without further purification. Tetrahydrofuran (THF) was distilled over benzophenone ketyl under nitrogen atmosphere. *N*,*N*-Dimethylformamide (DMF) was distilled over CaH₂ under nitrogen atmosphere. CH₂Cl₂ was dried and collected using a Grubbs-type solvent purification system manufactured by Glass Contour. Melting points are uncorrected. ¹H and ¹³C spectra were recorded on a JEOL AL-300 (300 MHz for ¹H and 75.5 MHz for ¹³C) instrument or a JEOL EX-400 (400 MHz for ¹H and 100 MHz for ¹³C) instrument. IR spectra were obtained on a JASCO 460 plus FT/IR spectrometer. Mass spectra were measured with a JEOL JMS-SX102A. Analytical thin-layer chromatography (TLC)

Fig. 4. The absorption spectra (left) and the emission spectra (right) of 5b after an addition of *i*-Pr₂NEt.

was performed on Merck 60 F_{254} silica plates and visualized by UV light. Column chromatography was carried out on Silicycle Silica-Flash F60 60–63 µm (230–400 mesh) silica gel. UV–vis absorption spectra were recorded on a JASCO V-570 UV–vis–NIR spectrometer. Emission spectra were measured with a Jobin Yvon-Horiba FluoroMax-3. Degassed spectral grade solvents were used for the measurements. Absolute fluorescence quantum yields were determined by the calibrated integrating sphere system.

3.2. Syntheses

3.2.1. 4-Bromo-3-iodo-N,N-dimethylaniline (**1b**). To a solution of 4-bromo-3-iodoaniline¹⁵ (12.8 g, 42.9 mmol) in DMF (120 mL) was added K₂CO₃ (23.7 g, 172 mmol) and MeI (6.42 mL, 103 mmol), and the solution was stirred at 70 °C for 13 h. After cooling to ambient temperature, water (180 mL) was added and the solution was extracted with Et₂O (5×40 mL). The organic layers were combined, washed with brine (3×100 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give brown solid. The crude product was purified by recrystallization from EtOAc/hexane (v/v=1/4) to give **1b** (10.5 g, 75%) as a pale brown solid; mp 93.8–94.8 °C. IR (KBr) 580, 797, 827, 955, 1231, 1362, 1496, 1582, 2810, 2889 cm^{-1. 1}H NMR (300 MHz, CDCl₃): δ =2.90 (s, 6H), 6.54 (dd, *J*=2.9, 8.8 Hz, 1H), 7.15 (d, *J*=3.3 Hz, 1H), 7.35 (d, *J*=8.8 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ =40.3, 101.7, 113.8, 115.1, 123.5, 132.2, 150.0.

3.2.2. 9-(2-Bromo-5-methoxyphenyl)-9H-fluoren-9-ol (**2a**). The solution of 1-bromo-2-iodo-4-methoxybenzene (**1a**)¹⁶ (14.1 g, 45.0 mmol) in dry THF (45 mL) was cooled to -40 °C. To the solution was added dropwise 1.0 M THF solution of isopropyl magnesium bromide (45 mL), prepared from isopropyl bromide and magnesium turnings. After stirring for 4 h, 9-fluorenone (6.34 g, 35.2 mmol) in dry THF (35 mL) was added over 15 min and stirred at room temperature for 18 h. The reaction mixture was quenched with saturated aqueous solution of NH₄Cl (100 mL) and extracted with EtOAc $(3 \times 30 \text{ mL})$. The organic layers were combined, washed with brine $(2 \times 50 \text{ mL})$, and dried over MgSO₄. The solvents were removed under reduced pressure to give a pale yellow solid. The crude product was purified by washing with CHCl₃/hexane (v/v=1/3) to give **1a** (10.5 g, 81%) as a white solid; mp 217.8–218.5 °C. IR (KBr) 734, 771, 1009, 1029, 1288, 1462, 1572, 1598, 2939, 3066, 3437 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.40 (br s, 1H), 3.91 (s, 3H), 6.72 (dd, J=3.3, 8.8 Hz, 1H), 7.15-7.30 (m, 5H), 7.39 (dd, J=7.3, 7.3 Hz, 2H), 7.67 (d, J=7.7 Hz, 2H), 8.06 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ =55.5, 111.1, 114.6, 115.1, 120.2, 124.0, 128.4, 129.3, 135.0, 141.4, 141.9, 148.6, 158.8 (two peaks are overlapped). Anal. Calcd for C₂₀H₁₅O₂Br: C, 65.41; H, 4.12. Found: C, 65.18; H, 3.92.

3.2.3. 9-(2-Bromo-5-(dimethylamino)phenyl)-9H-fluoren-9-ol (2b). The solution of 1b (3.42 g, 10.5 mmol) in dry THF (10 mL) was cooled to -40 °C. To the solution was added dropwise 1.0 M THF solution of isopropyl magnesium bromide (15 mL), prepared from isopropyl bromide and magnesium turnings. After stirring for 4 h, 9fluorenone (1.26 g, 7.00 mmol) in dry THF (10 mL) was added and stirred at room temperature for 17 h. The reaction mixture was quenched with saturated aqueous solution of NH₄Cl (20 mL) and extracted with EtOAc (3×10 mL). The organic layers were combined, washed with brine (2×30 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, the residue was purified with column chromatography on SiO₂ with EtOAc/hexane (v/v=1/10) as an eluent to give 2b (1.91 g, 72%) as a white solid; mp 161.9-162.8 °C. IR (KBr) 733, 746, 770, 1149, 1361, 1446, 1491, 1591, 2808, 2879, 3457 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ =2.40 (br s, 1H), 3.03 (s, 6H), 6.51 (dd, J=3.4, 8.8 Hz, 1H), 7.19-7.25 (m, 5H), 7.37 (dd, J=7.3, 8.3 Hz, 2H), 7.66 (d, J=7.3 Hz, 2H), 7.87 (br s, 1H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ =40.7, 106.9, 113.1, 113.3, 120.1, 124.0, 128.3, 129.1, 134.6, 140.6, 141.3, 149.0, 149.6 (two peaks are overlapped). HRMS (FAB): calcd for C₂₁H₁₈⁷⁹BrNO (M⁺), 379.0572. Found 379.0564.

3.2.4. 3-(9-(2-Bromo-5-methoxyphenyl)-9H-fluoren-9-yl)-N-tosylpyrrole (3a). To a solution of 2a (372 mg, 1.01 mmol) and Ntosylpyrrole (248 g, 1.12 mmol) in CH₂Cl₂ (30 mL) was added AlCl₃ (171 mg, 1.28 mmol) portionwise, and the solution was stirred at room temperature for 3 h. The reaction mixture was guenched with water (20 mL) and extracted with CH₂Cl₂ (3×10 mL). The organic layers were combined, washed with saturated aqueous solution of NaHCO₃ (2×20 mL) and brine (2×20 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ with EtOAc/ hexane (v/v=1/6) as an eluent to give **3a** (559 g, 97%) as a white solid; mp 205.8–206.6 °C. IR (KBr) 592, 675, 745, 796, 1067, 1173, 1367, 1465, 1595, 3119, 3134 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.37 (s, 3H), 3.60 (s, 3H), 6.42 (dd, *J*=1.8, 3.3 Hz, 1H), 6.60-6.63 (m, 2H), 6.85 (br s, 1H), 7.08 (dd, J=2.2, 3.3 Hz, 1H), 7.20-7.40 (m, 9H), 7.61 (d, J=8.4 Hz, 2H), 7.72 (d, J=7.3 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ=21.6, 55.1, 60.4, 113.3, 113.4, 115.6, 118.8, 119.3, 120.4, 121.5, 124.6, 126.8, 127.4, 127.6, 129.9, 131.8, 135.9, 136.0, 141.1, 143.1, 144.8, 149.6, 158.3. HRMS (FAB): calcd for C₃₁H₂₅⁸¹BrNO₃S (M+H⁺), 572.0722. Found 572.0733.

3.2.5. 3-(9-(2-Bromo-5-(dimethylamino)phenyl)-9H-fluoren-9-yl)-N-tosylpyrrole (**3b**). To a solution of **2b** (188 mg, 0.494 mmol) and N-

tosylpyrrole (116 mg, 0.525 mmol) in CH₂Cl₂ (5 mL) was added AlCl₃ (90.3 mg, 0.677 mmol) portionwise, and the solution was stirred at room temperature for 4 h. The reaction mixture was quenched with water (20 mL) and extracted with CH₂Cl₂ (3×5 mL). The organic layers were combined, washed with saturated aqueous solution of NaHCO₃ (2×20 mL) and brine (2×20 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ with EtOAc/hexane (v/v=1/2) as an eluent to give **3b** (199 mg, 70%) as a white solid; mp 216.0–216.8 °C. IR (KBr) 676, 743, 1063, 1173, 1371, 1593 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.38 (s, 3H), 2.68 (s, 6H), 6.41 (dd, *J*=3.3, 8.8 Hz, 1H), 6.45 (br s, 1H), 6.60 (br s, 1H), 7.08 (dd, *J*=2.6, 2.9 Hz, 1H), 7.16–7.39 (m, 9H), 7.62 (d, J=8.1 Hz, 2H), 7.72 (d, J=7.3 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ =21.6, 40.1, 60.6, 109.0, 112.6, 116.0, 116.9, 119.3, 120.3, 121.3, 124.7, 126.7, 127.3, 127.5, 129.8, 132.4, 135.4, 136.2, 141.1, 141.9, 144.7, 149.1, 150.0. HRMS (FAB): calcd for C₃₂H₂₈⁷⁹BrN₂O₂S (M+H⁺), 583.1055. Found 583.1057.

3.2.6. 6'-Methoxy-1'-tosyl-1'H-spiro[fluorene-9,4'-indeno[1,2-b]pyrrole] (4a). A flame dried flask was charged with 3a (6.85 g, 12.0 mmol), K₂CO₃ (3.32 g, 24.0 mmol), Pd(PPh₃)₄ (417 mg, 0.361 mmol), and dry DMF (100 mL) under nitrogen atmosphere. The solution was stirred at 100 °C for 13 h. The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of CH₂Cl₂ (100 mL), the filtrate was washed with brine (6×150 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give a brown solid. The crude product was purified by washing with $CHCl_3/hexane(v/v=1/v)$ 3) to give **4a** (3.93 g, 67%) as a pale green solid: mp 211.3-212.0 °C. IR (KBr) 539, 583, 679, 750, 1125, 1171, 1276, 1368, 1586, 3139 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.42 (s, 3H), 3.60 (s, 3H), 5.83 (d, *I*=3.3 Hz, 1H), 6.09 (d, *I*=2.6 Hz, 1H), 6.64 (d, *I*=7.7 Hz, 2H), 6.80 (dd, J=2.6, 8.4 Hz, 1H), 7.08 (dd, J=6.6, 7.3 Hz, 2H), 7.14 (d, J=2.9 Hz, 1H), 7.29–7.35 (m, 4H), 7.78 (d, J=7.7 Hz, 2H), 7.81 (d, J=8.4 Hz, 2H), 8.05 (d, J=8.4 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ =21.6, 55.3, 60.2, 108.8, 110.7, 112.2, 120.0, 120.1, 123.6, 125.7, 126.7, 127.2, 127.7, 127.8, 130.0, 136.0, 138.2, 138.3, 141.7, 145.0, 146.7, 154.6, 158.2. HRMS (FAB): calcd for C₃₁H₂₄NO₃S (M+H⁺), 490.1477. Found 490.1494.

3.2.7. 6'-(N,N-Dimethylamino)-1'-tosyl-1'H-spiro[fluorene-9,4'-indeno[1,2-b]pyrrole] (4b). A flame dried flask was charged with 3b (2.93 g, 5.02 mmol), K₂CO₃ (1.38 g, 10.0 mmol), Pd₂(dba)₃ (115 mg, 0.126 mmol), P(*t*-Bu)₃ (103 mg, 0.510 mmol), and dry DMF (50 mL) under nitrogen atmosphere. The solution was stirred at 100 °C for 96 h. The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of CH_2Cl_2 (50 mL), the filtrate was washed with brine (6×100 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, the residue was purified with column chromatography on SiO₂ with EtOAc/hexane (v/v=1/6) as an eluent to give **4b** (897 mg, 35%) as a greenish brown solid; mp 199.6 °C (dec). IR (KBr) 576, 679, 743, 1122, 1174, 1371, 1432, 1606, 3130 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.41 (s, 3H), 2.73 (s, 6H), 5.78 (d, J=2.9 Hz, 1H), 5.91 (d, J=2.6 Hz, 1H), 6.60–6.67 (m, 3H), 7.04–7.09 (m, 3H), 7.25–7.34 (m, 4H), 7.77 (d, J=7.3 Hz, 2H), 7.81 (d, J=8.4 Hz, 2H), 8.00 (d, J=8.4 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ =21.6, 40.6, 60.4, 108.5, 108.8, 111.0, 119.9, 120.0, 123.4, 123.7, 124.7, 126.8, 127.56, 127.61, 129.9, 136.1, 136.9, 138.9, 141.6, 144.7, 147.5, 149.0, 154.3. HRMS (FAB): calcd for C₃₂H₂₆N₂O₂S (M⁺), 502.1715. Found 502.1705.

3.2.8. 6'-Methoxy-1'H-spiro[fluorene-9,4'-indeno[1,2-b]pyrrole] (**MeO-sp-FIP**). To a solution of **4a** (1.96 g, 4.00 mmol) in THF (300 mL) was added 1.0 M THF solution of TBAF (40 mL), and the solution was stirred at 65 °C for 14 h under nitrogen atmosphere. After cooling to ambient temperature, water (40 mL) was added

and THF was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3×15 mL). The organic layers were combined, washed with brine (2×50 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, the residue was purified with column chromatography on SiO₂ with CH₂Cl₂/hexane (v/v=1/1) as an eluent to give **MeO-sp-FIP** (1.34 g, quantitative yield) as a pale pink solid; mp 156.9–157.8 °C. IR (KBr) 742, 1274, 1444, 1461, 1587, 3063, 3418 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =3.58 (s, 3H), 5.77 (br s, 1H), 6.13 (d, *J*=2.2 Hz, 1H), 6.71–6.76 (m, 2H), 6.85 (d, *J*=7.7 Hz, 2H), 7.11 (dd, *J*=7.3, 7.7 Hz, 2H), 7.23 (d, *J*=8.4 Hz, 1H), 7.33 (dd, *J*=7.3, 7.7 Hz, 2H), 7.80 (d, *J*=7.7 Hz, 2H), 8.33 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ =55.4, 60.8, 103.9, 111.1, 111.6, 116.1, 119.8, 120.9, 123.8, 127.4, 127.6, 128.7, 132.4, 137.6, 141.6, 148.7, 155.1, 157.3. HRMS (FAB): calcd for C₂₄H₁₈NO (M+H⁺), 336.1388. Found 336.1371.

3.2.9. 6'-(N,N-Dimethylamino)-1'H-spiro[fluorene-9,4'-indeno-[1,2*bpyrrole]* (*Me*₂*N*-*sp*-*FIP*). To a solution of **4b** (736 mg, 1.46 mmol) in THF (2 mL) was added 1.0 M THF solution of TBAF (14.6 mL), and the solution was stirred at 65 °C for 22 h under nitrogen atmosphere. After cooling to ambient temperature, water (40 mL) was added and THF was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3×10 mL). The organic layers were combined, washed with brine (2×40 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, the residue was purified with column chromatography on SiO₂ with CH_2Cl_2 /hexane (v/v=1/1) as an eluent to give Me₂N-sp-FIP (441 mg, 87%) as a pale green solid; mp 178.2 °C (dec). IR (KBr) 737, 797, 1440, 1488, 1582, 3396 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =2.71 (s, 3H), 5.73 (dd, *J*=1.8, 2.6 Hz, 1H), 6.00 (d, *J*=2.2 Hz, 1H), 6.56 (dd, J=2.2, 8.1 Hz, 1H), 6.70 (dd, J=2.2, 2.6 Hz, 1H), 6.87 (d, *J*=7.7 Hz, 2H), 7.11 (dd, *J*=7.3, 7.3 Hz, 2H), 7.20 (d, *J*=8.4 Hz, 1H), 7.32 (dd, J=7.3, 7.7 Hz, 2H), 7.80 (d, J=7.7 Hz, 2H), 8.28 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ=41.0, 60.9, 103.7, 109.7, 110.8, 116.2, 119.7, 120.1, 123.9, 125.4, 127.2, 127.5, 131.4, 138.2, 141.5, 148.4, 149.5, 154.6. HRMS (FAB): calcd for C₂₅H₂₀N₂ (M⁺), 348.1626. Found 348.1631.

3.2.10. BODIPY dye 5a. To a solution of MeO-sp-FIP (336 mg, 1.00 mmol) and methyl 4-formylbenzoate (81.8 mg, 0.50 mmol) in dry CH₂Cl₂ (20 mL) was added two drops of TFA, and the solution was stirred at 0 °C for 2 h under nitrogen atmosphere. The reaction mixture was quenched with saturated aqueous solution of NaHCO3 (20 mL) and extracted with CH₂Cl₂ (3×10 mL). The organic layers were combined, washed with brine (2×25 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on SiO_2 with CH_2Cl_2 as an eluent to afford a crude product (220 mg) as a purple solid. The crude product was then dissolved in dry CH₂Cl₂ (10 mL). After an addition of *p*-chloranil (66.5 mg, 0.270 mmol) in dry CH₂Cl₂ (10 mL), the solution was stirred at 0 °C for 90 min under nitrogen atmosphere. *i*-Pr₂NEt (0.231 mL, 1.33 mmol) and BF₃·OEt₂ (0.360 mL, 1.32 mmol) were successively added and after 2 h, the reaction mixture was washed with 10% aqueous solution of NaCl (3×30 mL), and dried over Na₂SO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ with CH₂Cl₂ as an eluent to afford 5a (152 mg, 36% yield based on MeO-sp-FIP) as a dark brown solid; mp>300 °C. IR (KBr) 745, 1060, 1176, 1260, 1323, 1548, 1606, 1723, 3062 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ=3.67 (s, 6H), 3.82 (s, 3H), 6.03 (s, 2H), 6.14 (d, J=2.2 Hz, 2H), 6.96 (d, J=7.3 Hz, 4H), 7.04 (dd, J=2.6, 8.8 Hz, 2H), 7.16 (dd, J=7.3, 7.7 Hz, 4H), 7.33–7.41 (m, 6H), 7.77 (d, J=7.3 Hz, 4H), 7.87 (d, J=8.1 Hz, 2H), 8.40 (d, J=8.8 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃) δ =52.2, 55.6, 59.8, 109.9, 115.0, 119.3, 120.0, 124.2, 125.47, 125.53, 127.9, 128.0, 129.2, 130.3, 130.8, 138.1, 138.9, 140.2, 141.2, 142.9, 148.2,

159.3, 161.1, 162.2, 166.2. HRMS (FAB): calcd for C₅₇H₃₈O₄N₂F₂B (M+H⁺), 863.2902. Found 863.2916.

3.2.11. 1'-(4-(Methoxycarbonyl)benzoyl)-6'-(N,N-dimethyl-amino)-1'H-spiro[fluorene-9,4'-indeno[1,2-b]pyrrole] (6). To a solution of Me₂N-sp-FIP (108 mg, 0.310 mmol) in dry CH₂Cl₂ (8 mL) was added methyl 4-(chlorocarbonyl)benzoate in dry CH₂Cl₂ (7 mL), and the solution was stirred at 40 °C for 12 h under nitrogen atmosphere. After an addition of water (20 mL), the reaction mixture was extracted with CH₂Cl₂ (3×5 mL). The organic layers were combined, washed with brine (2×20 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ with EtOAc/ CH_2Cl_2 (v/v=1/20) as an eluent to afford **6** (82.6 mg, 52%) as a orange solid; mp 163.5 °C (dec). IR (KBr) 740, 1279, 1352, 1583, 1725, 3223 cm^{-1} . ¹H NMR (300 MHz, CDCl₃) δ =2.78 (s, 6H), 3.91 (s, 3H), 5.92 (d, J=2.2 Hz, 1H), 6.37 (s, 1H), 6.60 (dd, J=2.2, 8.4 Hz, 1H), 6.91 (d, *J*=7.3 Hz, 2H), 7.15 (dd, *J*=7.3, 7.7 Hz, 2H), 7.36 (dd, *J*=7.3, 7.7 Hz, 2H), 7.62 (d, J=8.4 Hz, 1H), 7.80 (d, J=7.7 Hz, 2H), 7.86 (d, J=8.1 Hz, 2H), 8.04 (d, J=8.1 Hz, 2H), 11.02 (s, 1H). ¹³C NMR (75.5 MHz, CDCl₃) δ =40.4, 52.3, 60.6, 107.9, 111.4, 115.9, 119.9, 120.7, 121.2, 124.0, 127.6, 127.8, 128.7, 129.4, 132.0, 134.1, 134.9, 141.4, 143.2, 148.4, 148.8, 150.7, 157.0, 166.5, 182.2. HRMS (FAB): calcd for C₃₄H₂₇O₃N₂ (M+H⁺), 511.2022. Found 511.2018.

3.2.12. BODIPY dye 5b. To a solution of 6 (77.2 mg, 0.151 mmol) and Me₂N-sp-FIP (53.1 mg, 0.152 mmol) in CH₂Cl₂ (4 mL) was added POCl₃ (18 µl, 0.197 mmol), and the solution was stirred at 40 °C for 39 h under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was guenched with saturated aqueous solution of NaHCO₃ (15 mL) and extracted with CH₂Cl₂ $(3 \times 5 \text{ mL})$. The organic layers were combined, washed with brine (2×25 mL), and dried over Na₂SO₄. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on SiO₂ with $CH_2Cl_2/EtOAc (v/v=10/1)$ as an eluent to afford a crude product (53.8 mg) as a dark green solid. The crude product was then dissolved in CH₂Cl₂ (8 mL). *i*-Pr₂NEt (0.056 mL, 0.321 mmol) and BF₃·OEt₂ (0.087 mL, 0.320 mmol) were added and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was washed with 10% aqueous solution of NaCl (3×20 mL), and dried over Na₂SO₄. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on SiO₂ with CH₂Cl₂/EtOAc (v/v=40/1) as an eluent to afford **5b** (55.5 mg, 39% vield based on **6**) as a dark brown solid; mp>300 °C. IR (KBr) 1019, 1057, 1276, 1313, 1541, 1602, 1727 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ =2.87 (s, 12H), 3.82 (s, 3H), 5.86 (s, 2H), 5.90 (s, 2H), 6.81 (d, *I*=8.8 Hz, 2H), 6.99 (d, *I*=7.7 Hz, 4H), 7.16 (dd, *I*=7.3, 7.7 Hz, 4H), 7.31–7.40 (m, 6H), 7.76 (d, *J*=7.7 Hz, 4H), 7.85 (d, *J*=8.4 Hz, 2H), 8.32 (d, J=8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃) $\delta=40.4$, 52.1, 59.9, 106.7, 112.6, 117.7, 119.8, 121.3, 124.3, 125.2, 127.7, 127.8, 129.1, 130.2, 130.4, 134.4, 139.7, 139.9, 141.2, 142.3, 149.2, 152.0, 159.0, 160.6, 166.4. HRMS (FAB): calcd for C₅₉H₄₃O₂N₄F₂B (M⁺), 888.3457. Found 888.3448.

Acknowledgements

This work was financially supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 22350087) from the Japan Society for the Promotion of Science (JSPS). T.K. gratefully acknowledges the financial support by the Global COE Program 'International Center for Integrated Research and Advanced Education in Materials Science' (No. B-09) of MEXT, administrated by the JSPS.

Supplementary data

Supplementary data associated with this article can be found in online version at doi:10.1016/j.tet.2011.02.073.

References and notes

- 1. (a) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932; (b) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008, 47, 1184–1201.
- 2. Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142–155.
- 3. Wakamiya, A.; Sugita, N.; Yamaguchi, S. Chem. Lett. 2008, 37, 1094–1095.
- (a) Rohand, T.; Qin, W.; Boens, N.; Dehaen, W. Eur. J. Org. Chem. 2006, 4658–4663; (b) Qin, W.; Rohand, T.; Dehaen, W.; Clifford, J. N.; Driesen, K.; Beljonne, D.; Van Averbeke, B.; Van der Auweraer, M.; Boens, N. J. Phys. Chem. A 2007, 111, 8588–8597; (c) Dost, Z.; Atilgan, S.; Akkaya, E. U. Tetrahedron 2006, 62, 8484–8488.
- (a) Chen, J.; Burghart, A.; Derecskei-Kovacs, A.; Burgess, K. J. Org. Chem. 2000, 65, 2900–2906; (b) Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550–1551; (c) Wu, L.; Burgess, K. Chem. Commun. 2008, 4933–4935; (d) Mei, Y.; Bentley, P. A.; Wang, W. Tetrahedron Lett. 2006, 47, 2447–2449; (e) For aza-BODIPY derivatives, see: Zhao, W.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 1677–1679; (f) Zhao, W.; Carreira, E. M. Chem.-Eur. J. 2006, 12, 7254–7263; (g) Loudet, A.; Bandichhor, R.; Burgess, K.; Palma, A.; McDonnell, S. O.; Hall, M. J.; O'Shea, D. F. Org. Lett. 2008, 10, 4771–4774.
- 6. (a) Burghart, A.; Kim, H.; Weich, M.; Thoresen, L. H.; Reibenspies, J.; Burgess, K.; Bergström, F.; Johansson, L. B.-Å. J. Org. Chem. **1999**, 64, 7813–7819; (b) Liu, J.-Y.; Yeung, H.-S.; Xu, W.; Li, X.; Ng, D. K. P. Org. Lett. **2008**, 10, 5421–5424; (c) Ziessel, R.; Ulrich, G.; Harriman, A.; Alamiry, M. A. H.; Stewart, B.; Retailleau, P. Chem.—Eur. J. **2009**, 15, 1359–1369; (d) Yamada, K.; Toyota, T.; Takakura, K.; Ishimaru, M.; Sugawara, T. New J. Chem. **2001**, 25, 667–669; (e) Buyukcakir, O.; Bozdemir, O. A.; Kolemen, S.; Erbas, S.; Akkaya, E. U. Org. Lett. **2009**, *11*, 4644–4647.
- (a) Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem., Int. Ed. 2001, 40, 385–387; (b) Coskun, A.; Denis, E.; Akkaya, E. U. Org. Lett. 2005, 7, 5187–5189; (c) Bonardi, L.; Ulrich, G.; Ziessel, R. Org. Lett. 2008, 10, 2183–2186; (d) Deniz, E.; Isbasar, G. C.; Bozdemir, ÖA.; Yildirim, L. T.; Siemiarczuk, A.; Akkaya, E. U. Org. Lett. 2008, 10, 3401–3403; (e) Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R. A. L.; Beljonne, D.; Van der Auweraer, M.; De Borggraeve, W. M.; Boens, N. J. Phys. Chem. A 2006, 110, 5998–6009; (f) Saki, N.; Dinc, T.; Akkaya, E. U. Terahedron 2006, 62, 2721–2725; (g) Yu, Y.-H.; Descalzo, A. B.; Shen, Z.; Röhr, H.; Liu, Q.; Wang, Y.-W.; Spieles, M.; Li, Y.-Z.; Rurack, K.; You, X.-Z. Chem.—Asian J. 2006, 1–2, 176–187.
- (a) Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500–1501; (b) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. 2008, 10, 4065–4067; (c) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Lu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313–2316; (d) Baruah, M.; Qin, W.; Vallée, R. A. L; Beljonne, D.; Rohand, T.; Dehaen, W.; Boens, N. Org. Lett. 2005, 5, 4377–4380; (e) Qin, W.; Baruah, M.; Sliwa, M.; Van der Auweraer, M.; De Borggraeve, W. M.; Beljonne, D.; Van Averbeke, B.; Boens, N. J. Phys. Chem. A 2008, 112, 6104–6114; (f) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2005, 127, 10464–10465; (g) Guliyev, R.; Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 9007–9013; (h) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474–14475.
- (a) Qi, X.; Kim, S. K.; Han, S. J.; Xu, L.; Jee, A. Y.; Kim, H. N.; Lee, C.; Kim, Y.; Lee, M.; Kim, S.-J.; Yoon, J. *Tetrahedron Lett.* **2008**, 49, 261–264; (b) Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. *J. Org. Chem.* **2006**, 71, 2881–2884.
- 10. Kowada, T.; Yamaguchi, S.; Ohe, K. Org. Lett. 2010, 12, 296-299.
- (a) Sunahara, H.; Ūrano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 5597–5604; (b) Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 3357–3367; (c) Kennedy, D. P.; Kormos, C. M.; Burdette, S. C. J. Am. Chem. Soc. 2009, 131, 8578–8586; (d) Baruah, N.; Qin, W.; Basarić, N.; De Borggraeve, W. M.; Boens, N. J. Org. Chem. 2005, 70, 4152–4157.
- 12. For recent reviews, see: (a) Alberico, D.; Scott, M. K.; Lautens, M. *Chem. Rev.* **2007**, 107, 174–238; (b) Satoh, T.; Miura, M. *Chem. Lett.* **2007**, 36, 200–205; (c) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. *Aldrichimica Acta* **2007**, *40*, 35–41.
- 13. In our previous paper (Ref. 10), we used sodium hydroxide for a detosylation of **sp-FIP** precursor and obtained **sp-FIP** in 99% yield. However, in the case of **4a** and **4b**, the reaction systems were so complicated that the yields were 40% and 0%, respectively.
- 14. Valeur, B. Molecular Fluorescence; Wiley-VCH: Weinheim, Germany, 2002.
- 15. Sugiura, M.; Hirano, K. Biochem. Med. 1977, 17, 222-228
- Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888–890.