THE INFRARED SPECTRA OF IMIDAZOLE COMPLEXES OF FIRST TRANSITION SERIES METAL(II) NITRATES AND PERCHLORATES

JOHN B. HODGSON, (the late) GORDON C. PERCY and DAVID A. THORNTON Department of Inorganic Chemistry, University of Cape Town (South Africa) (Received 21 November 1979)

ABSTRACT

The IR spectra (4000–140 cm⁻¹) of the twelve imidazole (Him) complexes $[M(Him)_6]$ (NO₃)₂ (M = Co, Ni, Zn); $[M(Him)_6](ClO_4)_2$ (M = Mn, Fe, Co, Ni); $[Zn(Him)_5](ClO_4)_2$; $[Cu(Him)_4X_2]$ (X = NO₃, ClO₄); $[Zn(Him)_4(NO_3)_2]$; $[Zn(Him)_4](ClO_4)_2$ and their deuterated analogues are discussed. The ratio between the frequencies of corresponding bands in the deuterated and undeuterated species is used to assign the internal imidazole vibrations. The internal modes of the NO₃⁻ and ClO₄⁻ ions are discussed in relation to the known or proposed structures of the complexes. The metal—ligand vibrations are assigned on the grounds of the shifts which occur on imidazole deuteration and metal ion substitution.

INTRODUCTION

Although the IR spectra of imidazole complexes have been widely studied [1-10] most of the work refers to the halide complexes. No isotopic labelling studies of the metal nitrate and perchlorate complexes have been made. In previous papers [11-13], ν^{D}/ν^{H} ratios have been successfully applied to distinguishing between the C-H(D) and ring modes in heterocyclic and aromatic molecules and their metal complexes.

 ν^{D}/ν^{H} is defined as the ratio between the frequencies of corresponding bands in the IR spectra of a ring-deuterated molecule and its normal (unlabelled) analogue. As described in the preceding paper [13], the ν^{D}/ν^{H} values have assisted in resolving the vexed question of assignments in the IR spectrum of imidazole (Him). In this paper we discuss the application of deuteration to the IR spectra of the imidazole complexes [M(Him)₆](NO₃)₂ (M = Co, Ni, Zn), [M(Him)₆](ClO₄)₂ (M = Mn, Fe, Co, Ni), [Zn(Him)₅] (ClO₄)₂, [Cu(Him)₄X₂] (X = NO₃, ClO₄), [Zn(Him)₄(NO₃)₂] and [Zn(Him)₄] (ClO₄)₂.

EXPERIMENTAL

The complexes $[M(Him)_6](NO_3)_2$ (M = Co, Ni) were prepared by slow addition of imidazole (0.003 mole) in water (2 ml) to a solution of the

(hydrated) metal(II) nitrate (0.0005 mole) in water (2 ml). The precipitates were collected by filtration and washed with cold water. $[Zn(Him)_6](NO_3)_2$ was isolated from a concentrated ethanol solution of zinc(II) nitrate (0.0005) mole) and imidazole (0.003 mole) which was allowed to stand for two days at room temperature. The crystals were washed with cold ethanol. The complexes $[M(Him)_6](ClO_4)_2$ (M = Mn, Fe, Co, Ni) and $[Zn(Him)_5](ClO_4)_2$ were similarly obtained from aqueous solutions of imidazole (0.003 mole) and the metal(II) perchlorate (0.0005 mole). The Fe(II) complex was prepared under nitrogen. The complexes [Cu(Him)₄ X_2] (X = NO₃, ClO₄) were readily precipitated when imidazole (0.002 mole) in ethanol (3 ml) was added to the Cu(II) salt (0.0005 mole) in ethanol (3 ml). The complexes $[Zn(Him)_4(NO_3)_2]$ and $[Zn(Him)_4](ClO_4)_2$, being more soluble, were crystallized by slow evaporation of concentrated solutions of imidazole (0.002)mole) and the Zn(II) salt (0.0005 mole) in ethanol (6 ml). The tetrakis (imidazole) complexes were washed with cold ethanol. Purity and composition of all compounds were established by microanalysis (C,H,N).

The Him- d_3 labelled complexes were prepared as described for the unlabelled compounds, employing 1,2,4,5-tetradeuteroimidazole (Him- d_4) of 98% isotopic purity supplied by Merck, Sharp and Dohme (Canada) Ltd. The deuteroimine (ND) groups of Him- d_4 undergo rapid exchange in aqueous or ethanol solution to yield complexes comprising 2,4,5-trideuteroimidazole (Him- d_3). The complexes [M(Him- d_4)₆](NO₃)₂ (M = Co, Ni) were obtained as described for [M(Him- d_3)₆](NO₃)₂ by substitution of D₂O for H₂O. The complex [Co(Him- d_1)₆](NO₃)₂ was similarly obtained from 1-deuteroimidazole (Him- d_1) synthesized by successive recrystallisation of Him- d_4 from D₂O in an atmosphere of nitrogen.

Inrared spectra were determined on Nujol or hexachlorobutadiene mulls between caesium iodide plates ($4000-300 \text{ cm}^{-1}$) or polyethylene plates ($300-150 \text{ cm}^{-1}$) on Beckman IR-12 and Perkin-Elmer 180 spectrophotometers.

RESULTS AND DISCUSSION

The internal ligand modes of Him were assigned by d_1 -, d_3 - and d_4 -labelling of imidazole in the complex $[Co(Him)_6](NO_3)_2$ and by d_3 - and d_4 -labelling of $[Ni(Him)_6](NO_3)_2$. The ratios ν^{D_1}/ν^{H_4} , ν^{D_3}/ν^{H_4} and ν^{D_4}/ν^{H_4} were determined and used in relation to the study of the IR spectra of deuterated imidazoles [13] to assign the ligand vibrations. These assignments for the free ligand are applicable to the complexes also, since, apart from some shifts and minor splittings, the ligand spectrum is faithfully reproduced in the spectra of the complexes. The value of the ν^{D}/ν^{H} ratio which serves to distinguish between νC —H (or νN —H) and ring modes is 0.83, ratios above this value indicating a ring mode and values below 0.83 indicating νC —H (or νN —H) modes [13].

The complexes $[M(Him)_6](NO_3)_2$ (M = Co, Ni, Zn)

The Co(II) and Ni(II) complexes are isomorphous, occupying the space group $R\bar{3}$ [14, 15]. Complete assignments for the low frequency vibrational spectra of the Co(II) complex result from a single crystal study [10] (for which the complex is suited since the point group, site group and factor group are S_6). The frequencies and shifts are recorded in Table 1. It is clear from the band-for-band correspondence between the spectra that the Zn(II) complex is isostructural with those of Co(II) and Ni(II).

Structural determination of the Ni(II) complex [14] reveals ionic nitrate groups with essentially C_3 symmetry insufficiently distorted from the D_{3h} symmetry of an isolated nitrate ion to cause splitting of degeneracies or to induce activity of IR-inactive modes. Of the four normal vibrational modes of a nitrate ion, v_1 (which occurs near 1050 cm⁻¹) is IR-inactive but frequently appears in the spectra of complexes in which NO₃⁻ lies outside the coordination sphere as a result of relaxation of the free ion selection rules under the constraint of the crystal field. The v_1 band is absent from all three spectra discussed here, while v_2 , v_3 and v_4 appear where expected for an ionic nitrate. That the v_2 band shifts and shows an apparent increase in intensity in the d_3 and d_4 -labelled complexes is due to its coincidence with the δ C—D mode of coordinated Him- d_3 and Him- d_4 .

All the metal-ligand modes are below 300 cm^{-1} (one asymmetric stretch and one N-M-N bend are expected in $O_{\rm h}$ point group symmetry). It is generally agreed [3, 8–10] that the band of highest frequency is ν M–N. The equivalent band in the spectrum of $[M(Him)_6]Cl_2$ (M = Ni, Zn) exhibits the largest metal isotope shifts in this region [8]. Furthermore, the d_3 -induced shifts in these bands are of the magnitude expected for a vibrationally pure ν M—N band and they are strongly metal ion dependent in the c.f.s.e. sequence Co < Ni > Zn. Four opinions exist as to the origins of the remaining one (or two) bands within the range $140-300 \text{ cm}^{-1}$. One view [9] is that these weaker bands may be components of the T_{1u} stretch arising from departure from O_h symmetry. Eilbeck and co-workers [3] assigned the 200 cm⁻¹ band in $[Co(Him)_6]Cl_2$ to δN —Co—N while others [8] consider them to be ligand modes originating in the very weak 180 cm⁻¹ band of free Him. However, the 180 cm^{-1} band has elsewhere [16] been assigned to a translational lattice mode. Adams and Trumble [10] have provided the most complete assignment study and suggest that these bands originate in M-Him torsional modes and the bending vibrations $\delta M - N - C$. The latter seems the most appropriate assignment and receives support from our labelling study in that the d_3 induced shifts of these bands are frequently higher than those expected [17] and generally observed for νM —N. The δM —N—C mode involves one of the deuterated carbon atoms in the d_3 -labelled complex and the mass effect on $\delta M - N - C$ would be greater than on $\nu M - N$ which is relatively isolated from the site of deuteration.

	-1
1	되
4	Ļ
1	മ്പ
	4
1	H

-	
o, Ni, Zn)	
o, Ni,	
Ŭ #	
, (M	
(°)	
1(Him),](NO ₃), (M	
Him	
[M(
a of	
R spectra	
IR s	
n the Il	
.=	
ssignments	
ssign	
and assig	
nd ba	
H an	
U Cr	Ì
tios	
), ra	
cm_	
ies (
nenc	
Freq	

TABLE 1												
Frequenc	Frequencies (cm ⁻¹), ratios $\nu^{ m D}/\nu^{ m H}$ and	, ratios $\nu^{\rm D}$		und assignr	band assignments in the IR spectra of $[M(Him)_{b}](NO_{3})_{3}$ (M = Co, Ni, Zn)	e IR spect	ra of [M(F	lim),](N	0,), (M =	Co, Ni, Zn	()	
[Co(Him	[Co(Him),](NO ₃) ₁			[Ni(Him]	[Ni(Him) _b](NO ₃) ₂		[Zn(Him	{Zn(Him),](NO ₃) ₁	2 Mean ^a			Assignment
Him	' <i>p</i> -	·d,	-d	Him	-d,	-q*	Him	d_3	$^{1}D_{1}/^{1}H_{4}$	$\mu D_3/\mu H_4$	$v^{\mathrm{D_4}/v^{\mathrm{H_4}}}$	
3185	2403 2389	3185	2393 2375	3173	3173	2398 2380	3100	3100	0.75	1.00	0.75	HNa
3135	3135	2374		3135	2378)) 	3134	2384	1.00	0.76	0.74	µC−−H
$\frac{3135}{3135}$	$\frac{3135}{3135}$	2352 2332	2331	3135 3135	2353 2336	2337	$\frac{3134}{3134}$	$2350 \\ 2340$	1.00	0.75 0.75	0.74 0.74	Н- Н- Н-
1536	1536	1489 1473	1485 1474	1540	1489 1474	1483 1477	1537	1490	1.00	0.96	0.96	v ring
1505 1490	1505 1488	1445	1447	1503 1490	1447	1449	1505sh 1490	1448	1.00	0.96	0.97	v ring
1455sh 1436	1455sh 1436	1455sh 1340sh	1455sh 1348sh	1460sh 1439	1460sh 1359sh	1460sh 1359sh	1439	1350	1,00	0.94	0.93	v ring
			1431			1431						
1374	1374	1373	1373	1373	1373	1373	1374	1374				v, NO,
1323	1323	1285 1268	1283 1265	1326	1290 1273	1290 1271	1324	1290	1,00	0.96	0.96	v ring
1252	1252 1243	941	941	1255	944	944	1247	941	1.00	0.75	0.75	åс−н
1232	918 905	1187 1178	914	1235	1191 1182	918	1234	1195 1178	0.74	0.96	0.74	h-nô
1179 1170	1180 1171	1155	1187 1167 1155	1183 1174	1160	1191 1173 1161	1180 1172	1158				Comb.
1136	11441136	1112	1112	1141	1117	1119	1138	1112	1.00	0.98	0.98	v ring
1101 1095	1112 1095	890 874	886 873	1104 1099	894 877	891 877	1102 1096	890 ^b 874	1.00	0.80	0.80	8С—H
1072 1067sh	1072 1067sh	818	814	1072	821	818	1073 1069sh	817	1.00	0.76	0.76	δСН

.

84

Comb.	H-N4	δ ring	уС−Н	ð ring	•		H-X	v, NO,			H-OK	v, NO,	γ ring	γ ring	N-Wa	SM-N-C	SM-N-C	2. /
	0.60	1.03	0.77	16'0			0.78				0.78		0.84	0.85				ייא גייין ציי
	0.95	1.03	0.77	0.91			0.78				0.78		0.85	0.84				
	0.60	1.02	1.00	0.95			1.00				1.00		1.00	1.00				0 1 0
	900p	971 962	726	840		862	667	817^{d}	770w	760w	592 579	712	564	520	194	150		
	935°	935°	935°	920	870	861	848	828	770w	760w	749	712	667	616	200	159		03 5 11
1001w	566sh	975 962	726	839			663	818 ^d	770w	760w	594 580	715	566	524				N. h. N.
	106	973 965	726	845			662	821 ^d	770w	760w	594 581	715	568	524	257	205	175	0
977w	938°	938 ^c	938 ^c	921			848	827	770w	760w	747	715	670	616	261	212	185	
996w	561sh	969sh 958	723	835			657	814 ^d	771w	760w	590 576	710	561	520				
	899	969sh 963	723	840			657	818d	771w	760w	590 677	710	563	521	235	193	164	The second s
	570 558	962	939	876			843	825	771w	760w	745	710	666	614				17
970w	939°	939 ^c	939°	918	871	861	844	825	773w	760w	746	710	666	614	238	201	172	awer of

^aMean of ratio for three complexes (maximum deviation = 0.01). ^b γ N-H and δ C-H coincident. ^{c γ}N-H, γ C-H and δ ring coincident. ^dNitrate vibration in spectra of Him-d, and Him-d, are coincident with δ C-D, hence the apparent low frequency shift in ν_1 NO₃. Sh, shoulder: w. weak. Sh, shoulder; w, weak.

TABLE 2

Mn	Fe	Со	Ni		Zn		Mean ^a	Assign
Him	Him	Him	Him	-d ₃	Him	- d ₃	$v^{\mathbf{D}_3}/v^{\mathbf{H}_4}$	ment
3437	3437	3437	3438	3438	3320	3320	1.00	vN—H
3350	3355	3355	3360	3360				
3165	3165	3165	3165	2363	3145	2360	0.75	vC—H
3143	3145	3145	3150	2335	3130	2335	0.74	vC—H
1535	1535	1535	1536	1497 1484	1545	1475	0.96	v ring
1486	1486	1486	1486	1440	1510 1497	1458	0.97	v ring
1421	1421	1421	1424	1461 1411 1403	1432	1425	1.00	ν ring
1325	1325	1325	1326	$1287 \\ 1273$	1330 1323sh	1275 1260	0.96	v ring
1255	1255	1'255	1257	948 932	1265	947 933	0.74	δС—Н
1223	1223	1223	1223	1166 1159	1245	1190	0.95	δΝΗ
1156	1156	1156	1156	ь	1170	b		v ring
1130sh	1130sh	1130sh	1130sh	1130sh	1130sh	1130sh		
1111	1111	1111	1111	1111	1110	1110	}	ν_{3} ClO
1084	1084	1084	1085	1085	1087	1087		
c	c	c	с	883	с	891 875		δCD
			1054	871 820	1071	875 826	0.77	δС—н
1049 975	1049 975	1049 975	1054 975	820 972	980	020	0.77	Comb.
975 936	936	936	936	961	953	973	1.03	δring
919	919	919	919	725	920	733sh	0.79	$\gamma C - H$
876	876	876	876	120	040	10051	0.10	-
864	864	864	864					Comb
845	845	845	845	771	847	778	0.91	δring
826	826	826	826	648	833 824	653	0.78	γС—Н
770	770	770	771	593	767	E77	0.76	$\gamma C-H$
758	758	758	758	579	757	577	0.70	-
727	727	727	725	715	725	725	1.00	γΝ—Η
656	656	656	660	567 557	670 650	547	0.84	γ ring
621	621	621	621	621	621	621		v, ClO
607	607	607	607	531	609sh	525	0.86	γ ring
595	595	595	595	520			0.00	
464w	464w	464w	464w	464w	464vw	464vw		ν_2 ClO
211(3) ^d	231(5) ^d	243(4) ^d 224(4) ^d	260	256	322 310 257	310 303 248		vM—N vM—N vM—N

Frequencies (cm⁻¹), ratios ν^{D_3}/ν^{H_4} and band assignments in the IR spectra of [M(Him)₆] (ClO₄)₂ (M = Mn, Fe, Co, Ni) and [Zn(Him)₅](ClO₄)₂

TABLE 2 (continued)

Mn	Fe	Со	Ni		Zn		Mean ^a	Assignment
Him	Him	Him	Him		Him	-d ₃	$v^{\mathbf{D}_3}/v^{\mathbf{H}_4}$	
278(7) ^d 168(8) ^d	275(3) ^d 264(10) ^d	185(3) ^d 175(6) ^d	199 185	193 174	195	184		δM-N-C δM-N-C
					176	176		δη-Μ-Ν

^aMean of ratio for Ni(II) and Zn(II) complexes (maximum deviation = 0.01). ^bBand in spectrum of labelled complex is obscured by perchlorate absorption in 1100 cm⁻¹ region. ^cBand in spectrum of unlabelled complex is obscured by perchlorate absorption in 1100 cm⁻¹ region. ^dFigures in parentheses following metal—ligand frequencies are the shifts towards lower frequency induced by Him-d₃ labelling. Sh, shoulder; w, weak; vw, very weak.

The complexes $[M(Him)_6](ClO_4)_2$ (M = Mn, Fe, Co, Ni) and $[Zn(Him)_5]$ $(ClO_4)_2$

Except for splitting of the ν Co—N bands in the spectrum of the Co(II) complex, the striking similarity of the band patterns of the complexes of Mn(II) through Ni(II) is sufficient evidence of their isostructural character. The Zn(II) complex is five-coordinate and probably has square-based pyramidal configuration. The mid-IR spectra (Table 2) are characterized by two ν N—H bands near 3360 cm⁻¹ except for the Zn(II) complex which has a single broad band at 3320 cm⁻¹. Differences also occur with respect to the γ ring mode near 600 cm⁻¹ which exhibits two bands in the complexes of Mn(II) through Ni(II) but which appears as a shoulder at 609 cm⁻¹ in the Zn(II) spectrum. Only the Co(II) complex has previously received any attention [9]. Its magnetic moment ($\mu_{eff} = 5.10$ B.M.) and electronic spectrum are typical of spin-free octahedral Co(II). It was concluded [9] from the mid-IR spectrum that the perchlorate groups are ionic.

The nine vibrational degrees of freedom of the T_d point group free perchlorate ion are distributed over the four fundamental vibrational modes: A_1 - $(v_1) + E(v_2) + 2T_2(v_3, v_4)$. The triply degenerate modes are IR-active, v_3 occurring near 1100 cm⁻¹ as an (occasionally split) broad band while v_4 is observed near 625 cm⁻¹. The non-degenerate v_1 band, theoretically IR-forbidden, often occurs as a weak band near 930 cm⁻¹ because of relaxation of the T_d symmetry criteria in a field of lower symmetry [18, 19]. Coordination of the perchlorate group induces marked differences from the free ion spectrum as a result of lowering of symmetry and vibrational coupling. The perchlorate bands of the complexes under discussion conform with those expected for the free ion except insofar as activation of v_1 cannot be ruled out due to masking by imidazole bands in the 930 cm⁻¹ region. The v_2 , v_3 and v_4 perchlorate assignments are confirmed by absence of sensitivity to imidazole deuteration.

TABLE 3

Cu(II)		Zn(II)		Mean ^a	Assignment
Him		Him		$\nu^{\mathbf{D}_3}/\nu^{\mathbf{H}_4}$	
3381	3381	3380	3380	1.00	νN—H
3351	3351				
3164	2372	3160	2379	0.75	$\nu C-H$
3144	2340	3145	2355	0.75	$\nu C-H$
	1 40 0	3131	2337	0.75	$\nu C-H$
1545	1486 1471	1546	1493	0.96	ν ring
1513	1465	1512	1471	o	_
1493	1454	1508sh	1453	0.97	<i>v</i> ring
	1421				
1434	1409	1431	1404	0.98	ν ring
			1347		
			1339		
1330	1303	1331	1273	0.06	11 m ² 14 -4
	1276	1991	1273	0.96	ν ring
1266	950	1267	948	0.75	δС—Н
1225	1198 1183	1230	1188		Comb.
1175	b	1183	b		ν ring
c	с	1133	c		δΝ-Η
1135sh	1135sh)	1100			011-11
1111	1111	1120-	-1060 ^d		ν_3 ClO ₄
1070	1070 J	1120	1000		ν_{3} 010 ₄
e	890	е	889		δC—D
	877 ^f		000		
1056	827	1050	828	0.78	δС—н
1000	980	1000	020	0.10	
950	970	953	974	1.02	δring
930w	930w	200	574	1.02	$\nu_1 \text{ ClO}_4$
2001	380W		930		$\nu_1 \operatorname{CIO}_4$
	745		759		
917	738 ^f	920	735 741	0.81	$\gamma C-H$
870	845	873	741		
	781	854			
847	776	847	776	0.92	δring
	650				
g	644	833	g		$\gamma C-H$
764	598	760	600	0.78	үС—н
757	586 ^f	100	000	0.78	ис-п
	760				
721	715	730	720	0.99	~N_U
660	565			0.33	γΝ—Η
650	552	652	556	0.85	γ ring
625	625	622	699		
610	525 521		622 594	0.05	ν_{4} ClO ₄
010	V21	614	524	0.85	γ ring

Frequencies (cm⁻¹), ratios ν^{D_3}/ν^{H_4} and band assignments in the IR spectra of [Cu(Him)₄ (ClO₄)₂] and [Zn(Him)₄](ClO₄)₂

Cu(II)		Zn(II)		Mean ^a	Assignment
Him	-d ₃	Him	-d ₃	$\nu D_3/\nu H_4$	
462vw	462vw	464vw	464vw		$\nu_2 \text{ ClO}_4$
307	303				vCu-N asym
286	284				vCu-N sym.
		271	268		vZn-N
240	238	199	189		δΜ-ΝС
228	219	185	175		δ MN C
167	162				δNCuN

TABLE 3 (continued)

^aMean of ratios for Cu(II) and Zn(II) complexes. ^bBand in spectrum of labelled complex obscured by perchlorate absorption near 1100 cm⁻¹. ^cBand obscured by perchlorate absorption near 1100 cm⁻¹. ^dPerchlorate band in spectrum of the Zn(II) complex occurs as a continuous absorption in the range 1120–1060 cm⁻¹. ^eBand in spectrum of unlabelled complex obscured by perchlorate absorption near 1100 cm⁻¹. ^fMean of doublet. ^gBand not observed. Sh, shoulder; w, weak; vw, very weak.

The far-IR spectra receive the same assignments that were provided for the nitrate complexes. Splitting of ν Co—N suggests that the Co(II) complex may deviate from the regular octahedral structure implied by its magnetic moment [9]. Both components of the ν Co—N band are equally shifted ($\Delta \nu = 4 \text{ cm}^{-1}$) by imidazole deuteration. The c.f.s.e. sequence Mn < Fe < Co < Ni is followed by ν M—N.

Apart from the differences in the mid-IR region mentioned above, the five-coordinate Zn(II) complex has relatively high values of ν Zn—N as expected from the lower coordination number. Furthermore, the far-IR region comprises five bands below 400 cm⁻¹ as opposed to three or four for the octahedral complexes. It would seem reasonable to assign the three bands in the region 250—350 cm⁻¹ to the three IR-active ν Zn—N modes expected for a [Zn(Him)₅]²⁺ cation with $C_{4\nu}$ symmetry (tetragonal bipyramidal structure).

The complexes $[Cu(Him)_4(ClO_4)_2]$, $[Zn(Him)_4](ClO_4)_2$ and $[M(Him)_4]$ $(NO_3)_2$ (M = Cu, Zn)

The perchlorate groups of $[Cu(Him)_4(ClO_4)_2]$ may be considered just within the coordination sphere (Cu—O distance 2.625 Å) yielding an essentially six-coordinate tetragonal complex with four co-planar coordinate nitrogen atoms [20]. The hydrogen atoms on the imidazole nitrogens form hydrogen bonds with the perchlorate oxygen atoms as suggested by the IR spectrum (Table 3) which reveals doubling of ν N—H. The crystal structure shows that the monodentate perchlorates approximate the symmetry of the free ion. Tetragonal distortion along the Cu—O bonds evidently lowers the Cu—O covalent character. This is apparent from the IR spectrum where the

TABLE 4

Cu(II)		Zn(II)		Mean ^a	Assignmen
Him	-d ₃	Him	-d ₃	v ^D 3/v ^H 4	
3315	3310	3237	3237	1.00	νN—H
	2356	3160 ^b	2363	0.75	νCΗ
8155	2343	3148	2355	0.75	$\nu C-H$
3134	2329	3136 ^b	2334 ^b	0.74	$\nu C - H$
1537	1484 1472	1544	1498	0.96	ν ring
			1478		
1498	1450	1512	1466	0.97	ν ring
1490	1400	1505	1433	0.97	v ring
1432	1404sh	1461	1431	0.98	ν ring
1399	1390	1406	1394		$\nu_4 NO_3$
1343	1337	1324	1335		$\nu_1 NO_3$
1322	1292	1015	1289	0.07	-
1311sh	1272	1315	1270	0.97	u ring
	946	1001	945	0.85	Sc. 11
1257	937	1261	940	0.75	δС—Η
1242	1190	1248	1210		
	1174	1238	1196		
	1166				
	1147				
1167	1110	1189	1117	0.94	ν ring
1132	1080	1136	1079	0.95	δΝ-Η
	888 ^b	1104			
1097	876	1092	891	0.80	δС—Н
			831		0
1068	819	1069	819	0.77	δС—Н
1044	1049	1035	1035		$\nu_2 NO_3$
1044	1040	1000	1010		· 2 1103
949	975				•
942	968	954	971	1.03	δ ring
931	757	919			
925	736	912	736	0.80	γ C—H
890		865			
856		842sh			. .
846	773	835	770	0.91	δ ring
823	823sh	813	813sh		$\nu_6 \text{ NO}_3$
761	595 ^b	768	597		
746	580 ^b	760	593	0.78	$\gamma C-H$
739sh	722	745	c	0.98	γΝ—Η
		718	718	0.00	ν_{3} NO ₃
709	709	703	703		$v_{\rm s}$ NO ₃
	567		551		
660	560	644	549	0.85	γ ring
619	529	623	530sh	0.85	γ ring
	040	040	oovan	0.00	/ ****5

Frequencies (cm⁻¹), ratios ν^{D_3}/ν^{H_4} and band assignments in the IR spectra of [Cu(Him)₄ (NO₃)₂] and [Zn(Him)₄ (NO₃)₂]

TABLE	4 (continue	ed)
-------	-----	----------	-----

Cu(II)		Zn(II)		Mean ^a	Assignment
Him	-d ₃	Him		$v^{\mathbf{D}_3}/v^{\mathbf{H}_4}$	
290	287	271	267		νMN
254	246				δΜ-Ν-С
223	216	202	194		δΜ-Ν-C
165	157	156	154		δΝ-Μ-Ν

^aMean of ratios for Cu(II) and Zn(II) complexes. ^bMean of doublet. ^cBand in spectrum of labelled complex not observed (possibly coincident with 736 cm⁻¹ band). Sh, shoulder.

 v_3 perchlorate band displays structure characteristic of the ionic perchlorates in $[M(\text{Him})_6](\text{ClO}_4)_2$. The asymmetric deformation, v_4 , occurs as a single band at 625 cm⁻¹ while IR-forbidden v_1 and v_2 appear weakly at 930 and 462 cm⁻¹. All of these assignments receive support from absence of sensitivity to imidazole deuteration.

Crystal structure determination of $[Zn(Him)_4](ClO_4)_2$ reveals tetrahedral Zn(II) [21]. The perchlorate spectrum is similar to that of the ionic perchlorates in the hexakis(imidazole) complexes except that ν_3 displays no structure. Unlike $[Cu(Him)_4](ClO_4)_2]$, ν_1 is absent from the spectrum of the Zn(II) complex.

In C_i site symmetry, two ν Cu—N bands are expected for [Cu(Him)₄(ClO₄)₂] and two are observed by contrast with the tetrahedral [Zn(Him)₄](ClO₄)₂ (T_d site symmetry) for which one ν Zn—N band is expected and observed.

 $[Cu(Him)_4(NO_3)_2]$ structurally resembles the analogous perchlorate (Cu-O distance 2.57Å) [22]. That the nitrato groups are essentially coordinated to the Cu(II) ion is apparent from the nitrate IR bands (Table 4) which differ from those of the complexes $[M(Him)_6](NO_3)_2$. In the Cu(II) complex the nitrate group symmetry is lowered from D_{3h} to approximate C_{2v} symmetry, thus lifting degenerate modes and activating all six vibrational degrees of freedom [23, 24]. It is apparent from Table 4 that the nitrate group absorptions of $[Zn(Him)_4(NO_3)_2]$ are similar to those of the Cu(II) complex (except for the absence of v_3 from the spectrum of the latter, where it is probably unresolved from v_5) and that both molecules therefore contain monodentate nitrato groups. The position of $\nu N - O$ in monodentate nitrato complexes is symptomatic of the strength of the M-O covalency [24]. Comparison of the frequencies in Table 4 for the Cu(II) and Zn(II) complexes shows that v_2 (vN-O) for monodentate nitrate in the Zn(II) complex is 14 cm^{-1} lower in frequency than the corresponding band in the Cu(II) complex, indicating higher covalency in the Zn–O bands. This is consistent with the observed distortion [22] of the Cu(II) complex involving elongation of the axial Cu-O bonds.

The M-N stretches in the spectra of $[M(Him)_4(NO_3)_2]$ (M = Cu, Zn) occur as single bands at 290 and 271 cm⁻¹, respectively. It has been suggested

[4] that the 271 cm⁻¹ band in the Zn(II) complex is ν Zn—O. This seems unlikely for two reasons. Firstly, it has a *d*-sensitivity matching that of most bands assigned to ν M—N in the complexes studied here and secondly, it is unlikely that ν Zn—O would occur some 69 cm⁻¹ higher than any other band which may reasonably be assigned to ν Zn—N (i.e. the band at 199 cm⁻¹). The assignment proposed here yields the expected c.f.s.e. sequence of ν M—N: Cu > Zn.

ACKNOWLEDGEMENTS

We thank the University of Cape Town Research Committee and the Council for Scientific and Industrial Research for financial assistance.

REFERENCES

- 1 J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971, p. 202.
- 2 D. G. Holah and J. P. Fackler, Inorg. Chem., 4 (1965) 1112.
- 3 W. J. Eilbeck, F. Holmes, C. E. Taylor and A. E. Underhill, J. Chem. Soc. A, (1968) 128, 1189.
- 4 D. M. L. Goodgame, M. Goodgame, P. J. Hayward and G. W. Rayner Canham, Inorg. Chem., 7 (1968) 2447.
- 5 C. Perchard and A. Novak, J. Chim. Phys., 65 (1968) 1964.
- 6 C. E. Taylor and A. E. Underhill, J. Chem. Soc. A, (1969) 368.
- 7 C. Perchard and A. Novak, Spectrochim. Acta, Part A, 26 (1970) 871.
- 8 B. C. Cornilsen and K. Nakamoto, J. Inorg. Nucl. Chem., 26 (1974) 2467.
- 9W. J. Davis and J. Smith, J. Chem. Soc. A, (1971) 317.
- 10 D. M. Adams and W. R. Trumble, J. Chem. Soc. Dalton Trans., (1975) 30.
- 11 A. T. Hutton and D. A. Thornton, Spectrochim. Acta, Part A, 34 (1978) 645.
- 12 G. A. Foulds, J. B. Hodgson, A. T. Hutton, M. L. Niven, G. C. Percy, P. E. Rutherford and D. A. Thornton, Spectrosc. Lett., 12 (1979) 25.
- 13 J. B. Hodgson, G. C. Percy and D. A. Thornton, J. Mol. Struct., 66 (1980) 75.
- 14 A. Santoro, A. D. Mighell, M. Zocchi and C. W. Reimann, Acta Crystallogr., Sect. B, 25 (1969) 842.
- 15 M. Gerloch and P. N. Quested, J. Chem. Soc. A, (1971) 3729.
- 16 C. Perchard and A. Novak, J. Chem. Phys., 48 (1968) 3079.
- 17 S. Pinchas and I. Laulicht, Infrared Spectra of Labelled Compounds, Academic Press, New York, 1971, p. 38.
- 18 S. D. Ross, Spectrochim. Acta, 18 (1962) 225.
- 19 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., (1961) 3091.
- 20 G. Ivarsson, Acta Chem. Scand., 27 (1973) 3523.
- 21 C. A. Bear, K. A. Duggan and H. C. Freeman, Acta Crystallogr., Sect. B, 31 (1975) 2713.
- 22 D. L. McFadden, A. T. McPhail, P. M. Gross, C. D. Garner and F. E. Mabbs, J. Chem. Soc. Dalton Trans., (1976) 47.
- 23 J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971, p. 77.
- 24 B. M. Gatehouse, S. E. Livingstone and R. S. Nyholm, J. Chem. Soc., (1957) 4222.