Bis(1-cyclohexen-3-on-1-oxy)silane, Silyl-enole von β -Ketonen

Bis (1-cyclohexene-3-on-1-oxy)silanes, Silyl-enoles of β -Ketones

Wibke Dietz, Yvonne Schwerdtfeger, Uwe Klingebiel und Mathias Noltemeyer

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany

Reprint requests to Prof. Dr. U. Klingebiel. Fax: +49(0)551 39-3373. E-mail: uklinge@gwdg.de

Z. Naturforsch. 2007, 62b, 1371 – 1376; received July 13, 2007

5,5-Dimethylcyclohexane-1,3-dione (dimedone) and cyclohexane-1,3-dione react with $Cl_2Si(CMe_3)_2$ in the presence of triethylamine to give the bis(1-cyclohexene-3-on-1-oxy)di^t butylsilanes **2** and **3**. Using dimedone and Cl_2SiMe_2 , the analogous dimethylsilane **1** is obtained. A 1,4-Michael-Addition occurs using cyclohexane-1,3-dione in the reaction with Cl_2SiMe_2 to give a spirocyclic diketone (**4**). The reaction of cyclohexane-1,3-dione with lithium-diisopropylamide and F_3SiCMe_3 leads to the formation of a salt $[^iPr_2NH_2]_2HF[C_6H_7O_2]_2$, **5**. The crystal structures of **2**-**5** were determined.

Key words: Silylenole, Cyclohexane-1,3-dione, Spirocyclic Diketone

Einleitung

Durch die Polarisierung der Kohlenstoff-Sauerstoff-Bindung besitzen Ketone zwei Reaktionszentren, das partiell negativ geladene Sauerstoff- und das leicht positiv geladene Kohlenstoffatom. Die Carbonylgruppe weist dabei ein großes Dipolmoment auf ($ca.9\times10^{-3}$ cm). Wasserstoffatome, an einem α -Kohlenstoffatom gebunden, sind durch die benachbarte Carbonylgruppe stark acid, ihre pKa-Werte liegen zwischen 19 und 21. Der Austritt eines α -Protons führt zu EnolatIonen. Diese Keto-Enol-Tautomerie spielt bei Reaktionen von Carbonylverbindungen eine entscheidende Rolle. In einfachen Carbonylverbindungen liegt das Gleichgewicht stark auf der Seite der Ketone (Tab. 1). Der Enolgehalt des Acetons beträgt beispielsweise nur 2.5×10^{-4} %.

Die Energiedifferenz zwischen Enol und Keton beträgt ca. 100 kJ mol⁻¹. Die Keto-Form ist somit die thermodynamisch stabilere Form. Die Enol-Formen der einfachen Carbonylverbindungen können daher normalerweise nicht isoliert werden [1]. Steht die Enol-Doppelbindung jedoch in Konjugation mit einer weiteren Doppelbindung, so wird die Enol-Form stabilisiert. 1,3-Dicarbonylverbindungen (β -Dicarbonyle) enthalten größere Mengen an Enol. So liegt Dimedon (5,5-Dimethylcyclohexan-1,3-dion) zu 33 % in seiner Enol-Form vor [2].

Enol		Keton	
C-O	360	C=O	750
O–H	460	C-H	410
C=C	590	C-C	350
gesamt:	1410	gesamt:	1510

Tab. 1. Bindungsenthalpien [kJ mol⁻¹] der Ketone und Enole.

Erst Mitte des letzten Jahrhunderts wurden Reaktionen von Tri(alkyl)chlorsilanen mit Carbonylverbindungen durchgeführt und die Bildung von Silylenolen IR- sowie NMR-spektroskopisch nachgewiesen. Die Stabilität der Si-O-Bindung verschiebt die Gleichgewichte auf die Seite der Enole.

Silyl-enole haben in der organischen Synthese breite Anwendung gefunden [3]. Zum Beispiel dienen sie zum Aufbau von Kohlenstoff-Kohlenstoff-Bindungen über Alkylierung, Adolreaktion, Claisen- und Knoevenagel-Kondensation, Michael-Addition und eine Reihe ähnlicher Reaktionen [4, 5].

In der Literatur findet man chlor-, alkoxy- und amino-funktionelle Silyl-enole [6]. Wir stellten kürzlich fluorfunktionelle Silyl-enole dar und zeigten deren Verwendung zur Synthese von Bis- und Tris(enol)-silanen [7]. In der vorliegenden Arbeit berichten wir über die Herstellung von Silyl-enolen der β -Diketone Dimedon (5,5-Dimethylcyclohexan-1,3-dion) und Cyclohexan-1,3-dion, zeigen eine Michael-Addition zu einem spirocyclischem Diketon und präsentieren die Kristallstruktur eines Dialkyl-ammonium-1,3-cyclohexenolats, das unter Einschluss

0932-0776 / 07 / 1100-1371 \$ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen ∙ http://znaturforsch.com

von HF ein Dimeres bildet. 4 entsteht durch Hydrolyse des eingesetzten Fluorsilans.

Ergebnisse und Diskussion

Synthese von Bis(1-cyclohexen-3-on-1-oxy)dialkyl silanen

Dimedon zeigt ein Keto-Enol-Gleichgewicht mit Anteilen der Komponenten von etwa 3:1.

Im festen Zustand kristallisiert das Dimedon in der Enol-Form. Die beiden Formen können bei Raumtemperatur nicht voneinander getrennt werden. In Reaktionen des Dimedons mit Chlorsilanen in Gegenwart von Aminen als HCl-Fänger [8] oder des lithiierten Dimedons mit Fluorsilanen entstehen jedoch Silyl-enole. Bei Ansätzen im molaren Verhältnis 2:1 isolierten wir die Bis(1-cyclohexen-3-on-1-oxy) dialkylsilane 1 und 2 (Gl. 1).

HO HO
$$+ E_{l_3}N$$
 $+ \frac{1/2}{1/2} R_2 SiCl_2$ $+ \frac{1/2}{1/2} R_2 SiCl_2$

In der Reaktion von Cyclohexan-1,3-dion mit Di*tert*-butyldichlorsilan entsteht ebenfalls das Bis(1-cyclohexen-3-on-1-oxy)-dialkylsilan **3** (Gl. 2).

In der analogen Umsetzung des Cyclohexen-1,3dions mit Me₂SiCl₂ wird das spirocyclische Keton **4** gebildet (Gl. 3).

Der Reaktionsmechanismus folgt einer 1,4-Michael-Addition zweier Enole und ihrer zweifachen Silylierung. Verbindung 4 ist chiral. NMR-spektroskopisch wurde nur ein Isomer als Recemat gefunden.

Bei der Umsetzung des Li-enolats von Cyclohexen-1,3-dion mit ^tBuSiF₃ entstand durch partielle Hydrolyse das Produkt **5**.

Kristallstrukturen

Die Silyl-enole 2 und 3

Die Verbindungen **2** und **3** wurden aus *n*-Hexan bzw. THF in röntgentauglichen Kristallen erhalten (Abb. 1, 2).

Die kurze Si-O-Bindung in 2 bewirkt eine Verkürzung der benachbarten C-O-Einfachbindung auf ca. 135 pm (berechneter Wert: 143 pm). Bei den Bindungen C(3)–C(10) und C(14)–C(15) handelt es sich um C=C Doppelbindungen (133 pm). Die benachbarte C-C-Einfachbindung wird mit ca. 145 pm gemessen. Die C-O-Si-Winkel sind deutlich aufgeweitet und betragen 138 bzw. fast 140°. Die Winkel innerhalb der beiden Ringe lassen dieselbe Tendenz wie beim Dimedon erkennen. Nahe der Doppelbindung betragen sie innerhalb des Rings ca. 120° und sinken bis zu einem ungefähren Wert des Tetraederwinkels bei C(5). In der Packung sind die Moleküle über Wasserstoffbrücken zwischen dem Sauerstoffatom der Carbonylgruppe und einem Wasserstoffatom der tert-Butylgruppe eines anderen Moleküls verbunden.

Die Kristallstruktur der Verbindung 3 ist ähnlich, da sich das Molekül lediglich durch die fehlen-

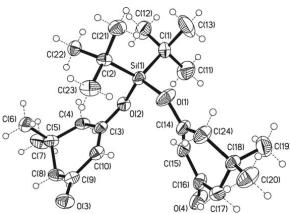


Abb. 1. Molekülstruktur der Verbindung **2.** Ausgewählte Bindungslängen [pm] und -winkel [$^{\circ}$]: Si(1)–O(2) 164,9(1), Si(1)–O(1) 165,6(2), O(2)–C(3) 135,7(2), O(1)–C(14) 134,8(2), C(3)–C(10) 133,0(3), C(14)–C(15) 133,2(3), C(10)–C(9) 146,0(3), C(15)–C(16) 144,6(3), O(3)–C(9) 122,2(2), O(4)–C(16) 122,0(2); C(3)–O(2)–Si(1)139,7(1) C(3)–C(10)–C(9) 121,2(2), C(8)–C(5)–C(4) 108,5(2), C(8)–C(5)–C(7) 109,9(2), C(8)–C(5)–C(6) 109,5(2).

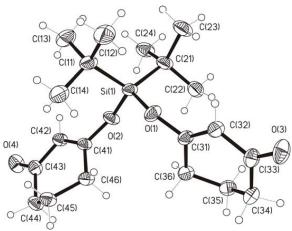


Abb. 2. Molekülstruktur der Verbindung 3. Ausgewählte Bindungslängen [pm] und -winkel [$^{\circ}$]: Si(1)–O(2) 164,4(1), O(1)–C(31) 135,3(2), C(31)–C(32) 133,5(2), C(32)–C(33) 145,3(2), O(3)–C(33) 122,0(2); C(31)–O(1)–Si(1) 138,6(1), C(36)–C(31)–C(32) 123,5(1), C(31)–C(32)–C(33) 121,8(1), C(36)–C(35)–C(34) 111,1(1).

den Methylgruppen von Verbindung **2** unterscheidet (Abb. 2).

Die Si-O-Bindung der Verbindung **3** ist wie in **2** recht kurz und die benachbarte C-O-Bindung wird mit 135 pm gemessen. Die Bindungslängen C(41)-C(42) und C(31)-C(32) liegen wieder im Bereich von C=C-Doppelbindungen.

Die Winkel innerhalb der Ringe weisen aufgrund der Doppelbindung Werte nahe 120° auf. Sie sin-

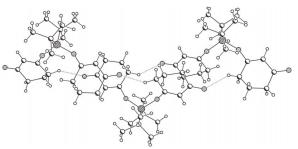


Abb. 3. Packungsplot der Verbindung 3.

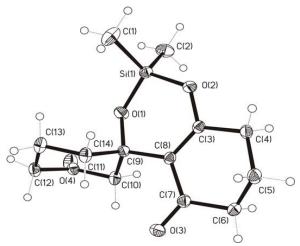


Abb. 4. Molekülstruktur der Verbindung 4. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si(1)–O(2) 167,3(1), O(2)-C(3)Si(1)-O(1)163,1(1), 135,5(2), O(1)-C(9)144,7(2), C(3)-C(8)136,2(2), C(9)-C(10)153.9(2). C(8)-C(7) 147,7(2), C(10)-C(11) 151,4(2), O(3)-C(7)123,1(2), O(4)-C(11)22,0(2), C(8)-C(9)153.3(2): 123,9(9), C(3)-O(2)-Si(1)C(9)-O(1)-Si(1)126,3(8), C(14)-C(9)-C(10) 109,9(1), C(8)-C(3)-C(4)125,4(1). C(9)-C(10)-C(11) 109,9(1), C(3)-C(8)-C(7) 117,9(1), C(12)-C(13)-C(14) 111,9(1), C(4)-C(5)-C(6) 109,7(1).

ken bis zu einem Wert von 111° und 110° bei C(35) bzw. C(45).

Die einzelnen Moleküle sind über Wasserstoffbrücken miteinander verbunden. Die Bindung entsteht über ein Sauerstoffatom der Carbonylgruppe des einen Moleküls mit einem Wasserstoffatom einer CH₂-Gruppe des anderen Moleküls (Abb. 3).

Das spirocyclische Diketon 4

Die Verbindung 4 kristallisiert aus n-Hexan in der monoklinen Raumgruppe $P2_1/n$, (Z=4). Die Struktur ist in Abb. 4 wiedergegeben.

Im Kristall der Verbindung 4 sind die Moleküle durch Wasserstoffbrücken, die zwischen dem

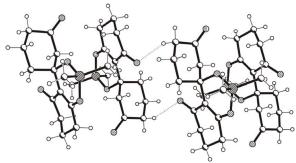


Abb. 5. Packungsplot der Verbindung 4.

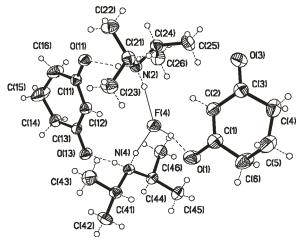


Abb. 6. Kristallstruktur der Verbindung 5. Ausgewählte Bindungslängen [pm] und -winkel [$^{\circ}$]: O(1)–C(1) 133,9(2), 123,3(2), C(1)–C(2) 134,5(3), C(1)–C(6)144,6(3), 149,3(3), C(2)-C(3)C(5)-C(6)152,4(3). O(11)-C(11) 127,0(2), O(13)-C(13) 126,8(2), C(11)-C(12) 138,9(3), C(11)-C(16) 151,0(3), C(14)-C(15) 146,9(3), C(15)-C(16) 143,4(3), N(2)-C(21) 150,6(2), N(4)-C(41)149,9(2); O(1)-C(1)-C(2)123,7(2), O(1)-C(1)-C(6)113,8(2), C(2)-C(1)-C(6)122,5(2), O(3)-C(3)-C(2)121,9(2), C(2)-C(3)-C(4)117,0(2), C(3)-C(4)-C(5)O(11)-C(11)-C(12) 123,7(2), O(11)-C(11)-C(16) 118,1(2), C(12)-C(11)-C(16) 118,2(2), C(11)-C(12)-C(13)124,1(2), O(13)–C(13)–C(12) O(13)-C(13)-C(14) 117,6(2), C(15)-C(14)-C(13) 115,0(2), C(21)-N(2)-C(24) 117,5(1), N(2)-C(21)-C(22) 111,1(2).

Carbonylsauerstoffatom eines Moleküls mit dem Wasserstoffatom einer CH₂-Gruppe eines anderen Moleküls ausgebildet werden, miteinander verknüpft (Abb. 5).

Kristallstruktur des 1:2-Fluorwasserstoff-Addukts von $[^{i}Pr_{2}NH_{2}]^{+}[C_{6}H_{7}O_{2}]^{-}$

Verbindung **5** kristallisiert in der monoklinen Raumgruppe $P2_1/c$ (Z = 4).

Wie in Abb. 6 zu erkennen ist, liegen als Einheit zwei Dialkylammonium-Kationen und zwei Enolat-Anionen zusammen mit einem HF-Molekül vor. Im Molekülverbund sind zwei Wasserstoffbrücken zwischen dem Fluoratom des Fluorwasserstoffs und je einem Wasserstoffatom der Diisopropylammonium-Kationen ausgebildet. Das Enolat-Anion A ist über zwei Wasserstoffbrücken an beide Ammonium-Kationen koordiniert. B bildet nur eine Brücke zum Fluorwasserstoffmolekül aus. Bei B ist die Doppelbindung zwischen C(1) und C(2) lokalisiert. Das Sauerstoffatom O(3) ist über eine Doppelbindung am Kohlenstoffatom C(3) gebunden. Die negative Ladung befindet sich am Sauerstoffatom O(1). Im Anion A sind die Abstände C(11)-O(11) und C(13)-O(13) fast gleich, die negative Ladung ist delokalisiert.

Experimenteller Teil

Die Reaktionen wurden in einer Inertgasatmosphäre durchgeführt. Die Reinheit der dargestellten Verbindungen wurde spektroskopisch bestätigt. Massenspektren: Finnigan MAT 8200 und 950 Spektrometer. ¹H,- ¹³C-, ²⁹Si-NMR Spektren: 5–20-prozentige Lösungen in CDCl₃, TMS (intern), Bruker AVANCE 500 oder 300 Kernresonanzspektrometer.

Bis(1-cyclohexen-3-on-1-oxy)dialkylsilane 1-3

Bei Raumtemp. werden zu einem Gemisch aus 0,1 Mol Dimedon (1, 2) bzw. Cyclohexan-1,3-dion (3) und 0,2 Mol Triethylamin in 100 mL Diethylether 0,05 Mol Dimethyl-(1) bzw. Di-*tert*-butyldichlorsilan (2, 3) gegeben. Nach 3 h Rühren bei Raumtemp. und 1 h Rühren unter Rückfluss wird das Produkt durch eine Fritte vom entstandenen Triethylaminhydrochlorid getrennt und aus THF oder *n*-Hexan kristallisiert.

Bis(5,5-dimethyl-1-cyclohexen-3-on-1-oxy)dimethylsilan (1)

 $\begin{array}{l} C_{18}H_{28}O_4\text{Si }(336,55). \text{ Ausb. } 13,7 \text{ g }(82 \%). -\text{Fp. }65 \text{ }^{\circ}\text{C.} -\text{MS } \text{ (El): } \textit{m/z} \ (\%) = 336 \ (10) \ [\text{M}]^+, 321 \ (54) \ [\text{M}-\text{Me}]^+. -\text{NMR } (\text{CDC1}_3/\text{TMS}): \ ^1\text{H}-\text{NMR: } \delta = 0,41 \ (\text{s, 6H, Si}(\text{C}H_3)_2), \\ 1,03 \ (\text{s, 12H, C}(\text{C}H_3)_2), \ 2,16 \ (\text{s, 4H, C}_{(6)}H_2), \ 2,24 \ (\text{s, 4H, C}_{(4)}H_2), \ 5,44 \ (\text{s, 2H, C}_{(2)}H). -\ ^{13}\text{C-NMR: } \delta = -2,14 \ (\text{Si}(\text{CH}_3)_2), \ 28,19 \ (\textit{C}(\text{CH}_3)_2), \ 32,45 \ (\textit{C}_{(5)}), \ 44,37 \ (\textit{C}_{(6)}), \\ 50,32 \ (\textit{C}_{(4)}), \ 109,61 \ (\textit{C}_{(2)}), \ 171,69 \ (\textit{C}_{(1)}), \ 199,82 \ (\textit{C}_{(3)}). -\ ^{29}\text{Si-NMR: } \delta = -1,51 \ (\textit{Si}(\text{CH}_3)_2). \end{array}$

 $Bis(5,5-dimethyl-1-cyclohexen-3-on-1-oxy)di^{-t}butylsilan(2)$

 $C_{24}H_{40}O_4Si$ (420,73). Ausb. 17,0 g (81%). – Fp. 68 °C. – MS (El): m/z (%) = 420 (40) [M]⁺, 405 (14) [M–Me]⁺. – NMR (CDCl₃/TMS): ¹H-NMR: δ = 1,07 (s, 18H, SiC(CH_{3})₃), 1,08 (s, 12H, $C(CH_{3}$)₂), 2,19 (s, 4H, $C_{(6)}H_{2}$),

Summenformel C24H40O4Si C20H32O4Si C₁₄H₂₀O₄Si C24H47FN2O4 Molare Masse [g/mol] 420,65 364,55 280.39 446,64 293(2) Temperatur [K] 133(2)133(2)133(2) 71,073 Wellenlänge [pm] 71.073 71,073 71,073 monoklin orthorhombisch monoklin Kristallsystem monoklin Raumgruppe $P2_1/c$ Pbca $P2_1/c$ $P2_1/c$ 2059,7(4) 1417,5(3) 1001,28(16) 1797,5(5) *a* [pm] 1121.9(2) 1629.8(3) 945,53(16) 869,45(11) *b* [pm] 2292,5(4) 1765,8(4) 1482,5(3) 1521,41(8) c [pm] β [°] 108,3(4) 90 94,831(8) 115,630(16) $V [nm^3]$ 5028,2(16) 4,0793(14) 1,3986(4) 2,6730(9) $D_{\text{ber.}}$ [Mg/m³] 1,111 1,187 1,332 1,110 Abs.-koeffizient [mm⁻¹] 0,079 0.135 0.175 0.118 F(000), e 1840 1584 600 984 Kristallgröße [mm³] $0,30 \times 0,30 \times 0,10$ $0,30 \times 0,30 \times 0,20$ $0,50 \times 0,30 \times 0,20$ $0,30\times0,30\times0,30$ Gem. θ -Bereich [$^{\circ}$] 1,83 - 27,872,23 - 27,812,04 - 27,582,16-24,82 $-21 \le h \le 21$, Indexgrenzen hkl $-25 \le h \le 26$, $-15 \le h \le 18$, $-13 \le h \le 13$, $-13 \le k \le 14$, $-21 \le k \le 21$, $-12 \le k \le 12$ -9 < k < 10, $-30 \le l \le 29$ $-19 \le l \le 16$ $-23 \le l \le 23$ $-22 \le l \le 22$ Gemessene Reflexe 67235 54091 16780 25985 Unabhängige Reflexe 4808 3215 4586 11835 0,079 0,034 0,065 0,043 Vollständig bis $\theta = 27.7^{\circ}$ 0,98 0,99 0,99 0,99 Transm. (max/min) 0,97/0,99 0,97/0,96 0,97/0,92 0,98/0,98 Verfeinerte Parameter 174 543 232 316 Goodness-of-fit (F^2) 1,005 1,015 1,091 1,056 $R1/wR2[I > 2\sigma(I)]$ 0,050/0,119 0,040/0,109 0,045/0,122 0,048/0,133 R1/wR2 (sämtl. Daten) 0,094/0,141 0,051/0,118 0,045/0,124 0,061/0,140

0,52/-0,26

Tab. 2. Kristalldaten und Strukturverfeinerungen für 2-5.

2,31 (d, ${}^4J_{\rm HH}$ = 0,8 Hz, 4H, $C_{(4)}H_2$), 5,50 (t, ${}^4J_{\rm HH}$ = 0,8 Hz, 2H, $C_{(2)}H$). $-{}^{13}$ C-NMR: δ = 21,39 (SiC(CH₃)₃), 27,38 (SiC(CH₃)₃), 28,32 (C(CH₃)₂), 32,45 ($C_{(5)}$), 44,54 ($C_{(6)}$ H₂), 50,32 ($C_{(4)}$ H₂), 110,86 ($C_{(2)}$ H), 171,89 ($C_{(1)}$), 199,71 ($C_{(3)}$). $-{}^{29}$ Si-NMR: δ = -14,28 (SiC(CH₃)₃).

0,35/-0,31

Bis(1-cyclohexen-3-on -1-oxy)di-tbutylsilan (3)

 $\Delta \rho_{\text{fin}}$ (max/min) [e Å⁻³]

 $C_{20}H_{32}O_4Si~(364,61)$. Ausb. 18,2 g (81%). – Fp. 71 °C. – MS (El): m/z (%) = 307 (100) [M]⁺. – NMR (CDCl₃/TMS): ¹H-NMR: δ = 1,01 (s, 18H, SiC(C H_3)₃), 1,95 (tt, ³ J_{HH} = 6,3 Hz, ³ J_{HH} = 6,1 Hz 4H, $C_{(5)}H_2$), 2,23 (t, ³ J_{HH} = 6,1 Hz, 4H, $C_{(6)}H_2$), 2,39 (dt, ³ J_{HH} = 6,3 Hz, ⁴ J_{HH} = 0,8 Hz, 4H, $C_{(4)}H_2$), 5,45 (t, ⁴ J_{HH} = 0,8 Hz, 2H, $C_{(2)}H$). – ¹³C-NMR: δ = 20,99 ($C_{(5)}H_2$), 21,42 (SiC(CH₃)₃), 27,27 (SiC(CH₃)₃), 30,48 ($C_{(6)}H_2$), 36,17 ($C_{(4)}H_2$), 112,28 ($C_{(2)}H$), 173,80 ($C_{(1)}$), 199,89 ($C_{(3)}$). – ²⁹Si-NMR: δ = –14,56 (SiC(CH₃)₂).

Diketon 4

0,2 Mol Cyclohexan-1,3-dion und die äquimolare Menge an Triethylamin werden in 100 mL THF mit 0,1 Mol Dichlordimethylsilan versetzt. Die Reaktionslösung wird anschließend 3 h bei Raumtemp. gerührt und 1 h unter Rückfluss erhitzt. Das Produkt wird durch eine Fritte vom Triethylaminhydrochlorid getrennt und aus *n*-Hexan kristallisiert.

0,50/-0,50

0,55/-0,56

 $C_{14}H_{20}O_4Si~(280,43)$. Ausb. 8,4 g (30 %). – Fp. 75 °C. – MS (El): $m/z~(\%) = 280~(14)~[M]^+$. – NMR (CDCl₃/TMS): 1 H-NMR: $\delta = 0,23~(s, 3H, Si(CH_3)_A)$, 0,25 (s, 3H, Si(CH₃)_B), 1,79 (m, 2H, $C_{(14)}H_2$), 1,88 (t t, $^3J_{HH} = 6,4$ Hz, $^3J_{HH} = 6,3$ Hz, 2H, $C_{(5)}H_2$), 2,18 (s, 1H, $C_{(15)}H_A$), 2,21 (s, 1H, $C_{(15)}H_B$), 2,33 (t, $^3J_{HH} = 6,3$ Hz, 2H, $C_{(6)}H_2$), 2,42 (t, $^3J_{HH} = 6,4$ Hz, 2H, $C_{(4)}H_2$), 2,59 (t, $^3J_{HH} = 13,4$ Hz, 1H, $C_{(13)}H_A$), 2,60 (t, $^3J_{HH} = 13,4$ Hz, 1H, $C_{(13)}H_B$), 3,49 ($C_{(11)}H_A$), 3,52 ($C_{(11)}H_B$). – ^{13}C -NMR: $\delta = -0,52~(Si(CH_3)_A)$, –0,45 (Si(CH₃)_B), 20,05 ($C_{(5)}H_2$), 20,49 ($C_{(14)}H_2$), 32,13 (CH₍₂₎), 35,17 (CH₍₂₎), 38,44 (CH₍₂₎), 39,76 (CH₍₂₎), 40,35 (CH₍₂₎), 79,62 ($C_{(7)}$), 119,87 ($C_{(2)}$), 170,52 ($C_{(1)}$), 197,66 ($C_{(12)}$), 210,81 ($C_{(3)}$). – ^{29}Si -NMR: $\delta = -1,02~(SiC(CH₃)_2)$.

Bis(di- $^ipropylammonium)$ -(1-cyclohexen-3-on-1-olat) - HF-Addukt (5)

0,05 Mol Diisopropylamin in 200 mL *n*-Hexan werden mit der äquimolaren Menge an *n*-Butyllithium (15 proz. in *n*-Hexan) metalliert. Die Lösung wird 1 h bei Raumtemp. gerührt und 2 h unter Rückfluss erhitzt. Das entstandene Li-

thiumdiisopropylamid sowie 0,05 Mol Cyclohexan-1,3-dion werden jeweils auf -78 °C gekühlt und dann zügig zusammengegeben. Nachdem das Gemisch auf -20 °C erwärmt wurde, werden 0,05 Mol *tert*-Butyltrifluorsilan zugetropft. Nach einstündigem Rühren wird das Reaktionsgemisch auf Raumtemp. erwärmt und anschließend 2 h unter Rückfluss erhitzt. In der Zentrifuge wird die Reaktionslösung vom entstandenen Feststoff getrennt. Aus der Lösung kristallisiert Verbindung 5.

 $C_{24}H_{47}FN_2O_4$ (446,65). Ausb. 7,1 g (32%). – Fp. 78 °C. – NMR (CDCl₃/TMS): H-NMR: δ = 1,29 (d, ${}^3J_{\rm HH}$ = 6,5 Hz, 12 H, CH(C H_3)₂), 1,93 (t, ${}^3J_{\rm HH}$ = 6,3 Hz, 4H, C₍₅₎ H_2), 2,34 (breit) (4H, C₍₆₎ H_2), 2,73 (4H, C₍₄₎ H_2), 3,27 (sept, ${}^3J_{\rm HH}$ = 6,5 Hz, 2H, CH(CH₃)₂), 4,83 (2H, C₍₂₎H). – 13 C-NMR: δ = 19,14 (CH(H_3)₂), 21,56 (H_3),

Röntgenstrukturanalysen von 2, 3, 4 und 5

Die Datensammlung erfolgte auf einem Siemens-Stoe-Vierkreisdiffraktometer mit graphitmonochromatisierter MoK_{α} -Strahlung (λ = 71,069 pm). Die Strukturen wurden mit Direkten Methoden gelöst und nach der Methode der kleinsten Fehlerquadrate an F^2 verfeinert (SHELXL-97 [9]). Die kristallographischen Daten und Angaben zur Strukturanalyse sind in Tab. 2 zusammengefasst.

CCDC 650602 (2), 650603 (3), 650604 (4) und 650601 enthalten die beim Cambridge Crystallographic Data Centre hinterlegten Kristallstrukturdaten. Anforderung: www.ccdc.cam.ac.uk/data_request/cif.

^{25,47 (} $C_{(6)}$), 34,34 ($C_{(4)}$), 46,00 ($CH(CH_3)_2$), 102.60 ($C_{(1)}$), 194,18 ($C_{(3)}$). – ¹⁹F-NMR: δ = 34,17.

^[1] A. J. Kresge, Pure Appl. Chem. 1991, 63, 213.

^[2] J. Clayden, N. Greeves, S. Warren, P. Wothers, *Organic Chemistry*, Oxford University Press, Oxford, **2001**.

^[3] S. Torkelson, C. Ainsworth, Synthesis 1976, 722.

^[4] H. O. House, Modern Synthetic Reactions, W. A. Benjamin, Menlo Park, 1972.

^[5] J. d'Angelo, Tetrahedron 1976, 32, 2979.

^[6] R. D. Walkup, Tetrahedron Lett. 1987, 28, 511.

^[7] T. Büschen, W. Dietz, U. Klingebiel, M. Noltemeyer, Y. Schwerdtfeger, Z. Naturforsch. 2007, 62b, 1358.

^[8] E. Hengge, H.-D. Pletka, Monatsh. Chem. 1973, 104, 1071.

^[9] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.