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Abstract—Synthesis of 4-arylidenecyclohexane-1,3-dione derivatives was carried out from the Baylis–Hillman acetates. The
potential utility of the prepared compounds for the synthesis of cyclohexanedione oxime ether herbicides was examined. © 2003
Elsevier Science Ltd. All rights reserved.

Cyclohexane-1,3-dione derivatives play an important
role in organic synthesis due to their usefulness in the
preparation of many biologically important com-
pounds.1 Many herbicides having cyclohexane-1,3-
dione backbone such as tralkoxydim, sethoxydim or
clethodim are well known.1 Many methods have been
published for the preparation of cyclohexane-1,3-dione
moiety.2 However, synthesis of cyclohexane-1,3-dione
derivatives with double bonds at the exo-position was
not reported in the literature (Scheme 1).3

Chamakh and Amri have reported the synthesis of
4-arylidene-2-cyclohexen-1-ones from Baylis–Hillman
acetate in ethanol via the tandem three-step process,
allylic substitution, deacetylation and cyclization.4a

Recently, we have published an interesting result from
the same reaction, which was carried out in N,N-
dimethylformamide to afford 2-hydroxyacetophen-
ones.5 As a continuous work, we intended to prepare
2,4-dihydroxyacetophenone derivative II in order to
prepare multifunctional oxotocopherol-type antioxidant
III (vide infra, see Scheme 2).6

As shown in Scheme 1, the reaction of the Baylis–Hill-
man acetate 1a, derived from ethyl acrylate, and 2,4-
pentanedione (2a) in the presence of potassium
carbonate in ethanol at room temperature afforded the
corresponding allylic substitution product 3a and some

deacetylated 4a as a mixture.4,5 One of the acetyl group
was removed by simply elevating the reaction tempera-
ture as previously reported.4a Whereas, the reaction of
1a and 2a in DMF in the presence of K2CO3 gave
allylic substitution product 3a without deacetylation in
good yield (82%) as expected.5 However, as shown in
Scheme 2, conversion of 3a into cyclohexane-1,3-dione
derivative I or resorcinol derivative II with various
bases was failed. Intractable mixtures of products were
observed on TLC. Whereas, the deacetylated com-
pound 4a can be converted into the corresponding
4-benzylidenecyclohexane-1,3-dione (5a) in moderate
yield (71%) by using lithium hexamethyldisilizide (LiH-
MDS) in THF. Thus, we wish to report herein the
preparation of 4-arylidenecyclohexane-1,3-dione deriva-
tives for the first time. The results from 2,4-pentane-
dione (2a, entries 1–4) and 3-methyl-2,4-pentanedione
(2b, entry 5) are summarized in Table 1.

The similar reaction of the Baylis–Hillman acetate 1f,
derived from methyl vinyl ketone, with diethyl mal-
onate (2c) gave the similar substitution product 3f.
However, the following decarbethoxylation of 3f was
more difficult than the deacetylation for the above
mentioned compounds (for 4a–e). Thus, in these cases
(for 4f and 4g) we used the method involving the use of
DMAP in refluxing xylene, which was used successfully
in our previous paper.7 The cyclization reaction of 4f
with LiHMDS gave 5a in a similar yield (entry 6).

As shown in Scheme 1, the reaction mechanism can be
postulated as follows. The reaction of the Baylis–Hill-
man acetates 1 and �-diketone or malonate esters 2
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Scheme 1.

Scheme 2.

afforded the corresponding allylic substitution products
3. From these compounds we could prepare the desired
starting materials 4 either (i) by simply heating in
ethanol in the presence of K2CO3, or (ii) by the DMAP
catalyzed thermal decarbethoxylation. Finally, treat-
ment of 4 with LiHMDS (THF, 0°C to rt) afforded the
desired 4-arylidenecyclohexane-1,3-diones 5.

As shown in Scheme 3, 4-benzylidenecyclohexane-1,3-
dione (5a) could be converted into O-acetylated deriva-
tive 6 in good yield (95%). The structure of 6 was
confirmed by NOE as shown. Migration of the acetyl
group to carbon from oxygen was performed by

DMAP as previously reported in a similar system to
give 7 in 42% yield.8 Synthesis of the potential oxime
ether herbicide 8 was carried out with O-ethylhydroxyl-
amine hydrochloride in 92% yield.9 Further transforma-
tion of 7 into other oxime ether herbicides and the
study on their herbicidal activity are underway.
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Table 1. Synthesis of 4-arylidenecyclohexane-1,3-diones 5

Scheme 3.
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