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Dedicated to Professor Ronald Raines in celebration of his 60th birthday

Abstract: Herein we report a practical two-step synthetic route to α-

arylpyrrolidines consisting of Suzuki-Miyaura cross-coupling and 

enantioselective copper-catalyzed intramolecular hydroamination 

reactions. The excellent stereoselectivity and broad scope for the 

transformation of substrates with pharmaceutically relevant 

heteroarenes render this method a practical and versatile approach 

for pyrrolidine synthesis. Additionally, this intramolecular 

hydroamination strategy facilitates the asymmetric synthesis of 

tetrahydroisoquinolines and medium ring dibenzo-fused nitrogen 

heterocycles.  

Saturated nitrogen heterocycles are among the most prevalent 

structural subunits in medicinal agents[1] and bioactive alkaloids[2]. 

In particular, enantioenriched α-aryl-substituted pyrrolidines are a 

common class of therapeutics[3], as well as useful chiral controllers[4] 

in asymmetric catalysis. For example, the recent emergence of 

enantiopure α-arylpyrrolidines in treatments for hepatitis C[5] and 

mantle cell lymphoma[6] highlights their value in this regard (Figure 

1, A). The predominance of α-heteroaryl substituents in these 

pyrrolidine substructures is due, in part, to the well-known 

therapeutic and physicochemical properties provided by these 

fragments.[7] Therefore, the development of synthetic routes that are 

capable of incorporating diverse heteroaryl substituents into 

stereodefined α-arylpyrrolidines is of great interest.  

    The asymmetric synthesis of α-arylpyrrolidines has been the 

subject of considerable effort.[9] Important strategies to accomplish 

this include directed C–H arylation,[9a] hydrogenation of cyclic 

enamines,[9c] [3+2] cycloaddition,[9g] arylation/cyclization 

cascades[9i] and reductive cyclization reactions[9j]. Further, based on 

the carbamate-directed asymmetric lithiation method pioneered by 

Hoppe[10] and Beak[11], Campos and colleagues at Merck developed 

the first enantioselective α-arylation of N-Boc-pyrrolidines. Their 

impressive protocol featured a (–)-sparteine-mediated[12] 

asymmetric α-lithiation and the subsequent transmetallation with 

ZnCl2, followed by a Negishi coupling with an aryl bromide (Figure 

1, B-a).[13] In 2018, Zhang disclosed an elegant enantioselective 

cobalt-catalyzed radical cyclization of preformed N-

tosylhydrazones to furnish α-arylpyrrolidines (Figure 1, B-b).[14] To 

date, these two reports are the only catalytic examples that enable 

the installation of heteroaryl substituents with precise 

stereochemical control at the α-position of pyrrolidines. While the 

industrial manufacture of enantioenriched α-arylpyrrolidine 

compounds typically relies on chiral pool synthesis from proline via  

 

 
Figure 1. A) Recent examples of pharmaceuticals bearing enantiopure α-

heteroarylpyrrolidines. B) Current synthetic approaches to enantiopure α-

heteroarylpyrrolidines. C) Our protocol features Pd-catalyzed Suzuki-Miyaura 

coupling and enantioselective Cu-catalyzed intramolecular hydroamination. Boc 

= tert-butyloxycarbonyl; rt = room temperature; cat. = catalytic; FG = functional 

groups; TS = toluenesulfonyl; pin = pinacolato; piv = pivalate; Bn = benzyl. 

substrate-controlled asymmetric induction,[15] more versatile and 

catalytic methods that are amenable to the preparation of molecules 

with drug-like structural features would be useful for early-stage 

drug research development. 

    In 2013, Hirano and Miura[16] and our laboratory[17] reported the 

enantioselective copper-catalyzed hydroamination of olefins, in 

which C–N bonds are formed by the reaction of chiral alkylcopper(I)  
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Table 1. Optimization of Enantiopure α-Arylpyrrolidine Synthesis[a] 

 
[a] 1aa, R1 = phenyl; 1ab, R1 = 4-dimethylaminophenyl; 1ac, R1 = tert-butyl. 

Reaction conditions: 0.20 mmol 1 (1.0 equiv), Cu(OAc)2 (4.0 mol%), chiral 

bisphosphine ligands (4.4 mol%), diethoxy(methyl)silane (2.5 equiv), THF (0.40 

mL), see details in the Supplementary Information. [b] Yields were determined 

by 1H NMR using 1,2-dibromoethane as an internal standard. [c] Enantiomeric 

ratio (er) was determined by supercritical fluid chromatography (SFC). [d] With 

4.4 mol% Ph3P. [e] With 2.2 mol% Ph3P. THF = tetrahydrofuran; er = 

enantiomeric ratio.  

species (generated in situ through the hydrocupration of olefins) 

with an electrophilic aminating reagent. Many variants of the 

intermolecular hydroamination reactions have since been 

reported,[18] including a regioselective, intramolecular reaction used 

to synthesize chiral aziridines.[19] We decided to see whether this 

chemistry could be utilized for the preparation of other 

enantiomerically enriched nitrogen heterocycles. Herein, we report 

a versatile two-step synthesis of enantioenriched α-arylpyrrolidines 

that is compatible with a broad range of heteroaryl substituents 

(Figure 1, C). Furthermore, we describe the asymmetric synthesis of 

enantiopure benzo-fused nitrogen heterocycles bearing six- to nine-

membered rings.   

Initially, hydroxylamine benzoate 1aa was evaluated as a model 

substrate in the copper-catalyzed hydroamination reaction. Upon 

subjecting 1aa to a THF solution of CuH catalyst (formed from 

Cu(OAc)2, (S)-DTBM-SEGPHOS (L1), and diethoxy(methyl)silane 

(DEMS)) at ambient temperature, the desired pyrrolidine product 

2a[20] was obtained in 78% yield with 97.5:2.5 er (Table 1, entry 1). 

A significant quantity of a byproduct, derived from the reductive 

cleavage of the N–O bond of the substrate, was observed. To 

minimize this undesired process, the reactivity of the N–O bond in 

the electrophilic amine source was varied through modification of 

the hydroxylamine ester.[21] While the use of electron-rich p-(N,N-

dimethylamino)benzoate 1ab provided 2a in higher yield (entry 2), 

employing pivalate 1ac further improved both yield and 

enantioselectivity (entry 3). We next investigated the use of various 

chiral bisphosphine ligands and found that (R,R)-Ph-BPE (L3) 

offered the best reactivity and enantioselectivity (entry 5-7).[22] The 

use of other ligands such as (R,R)-iPr-DUPHOS (L2) and (S)-

DTBM-BIPHEP (L6) was less successful (entries 4 and 10). 

Switching from phenyl to isopropryl or ethyl substituents on the 

phospholane backbone led to a significant attenuation of reactivity 

(entries 8 and 9).  

    Having optimized the intramolecular C–N bond-forming step, we 

evaluated several routes for the preparation of the hydroxylamine 

pivalate substrates. It was important that the selected method can 

easily: (1) incorporate a range of heteroaryl substituents, and (2) start 

from a common building block that can be prepared on a large scale. 

The most efficient strategy was determined to entail a Suzuki-

Miyaura cross-coupling of a vinylboronate ester precursor 3. This 

was prepared by the Zr-catalyzed syn-hydroboration of the terminal 

alkyne,[23] which left the N–O bond intact. Intermediate 3 was used 

in cross-coupling reactions with a wide range of aryl bromides 

(Table 2, left column, 1ac, 1b-o). [24] Although oxidative addition of 

N–O bonds has been noted in other palladium-catalyzed cross-

coupling reactions,[25] the corresponding hydroxylamine pivalates 

were successfully obtained. Among the heteroaryl bromides tested, 

a pyrazole (1f), pyrimidines (1g, 1h), azaindoles (1i, 1j), a furan (1k), 

and a pyridine (1l) gave higher yields than a thiazole (1m) or 

imidazoles (1n, 1o).[8b, 26]  

    Like the Pd-catalyzed cross coupling reaction, the subsequent 

enantioselective copper-catalyzed intramolecular hydroamination 

proved to be tolerant of a wide range of functional groups and α-

heteroaryl substituents.[27] Good yields (62–83%) and excellent 

enantioselectivities (97.5: 2.5–99.5: 0.5 er) were obtained for most 

α-arylpyrrolidine products (Table 2, right column, 2a-l). Two 

exceptions were substrates bearing an N-Boc indole (2e) or an N-Ts 

azaindole (2j), for which moderate yields were observed, along with 

a slight increase in the quantity of substrate lost to reduction of the 

N–O bonds. The absolute stereochemistry of pyrrolidine product 2l 

was determined as R by single crystal X-ray crystallography (see the 

SI for details). While the conversion of five-membered azoles such 

as a thiazole (2m) and imidazoles (2n, 2o) was comparable to that 

of other examples, significant erosion of the enantioselectivity was 

observed.[28] In these cases, we found that the use of L3 and 

dimethoxy(methyl)silane (DMMS) not only improved the 

enantioselectivity, but also led to higher yields.[29]  

    Our efforts next focused on exploring the asymmetric synthesis of 

nitrogen heterocycles with other ring sizes. In comparison with α-

arylpyrrolidines, the synthesis of four- and six-membered nitrogen 

heterocycles proceeded slowly.[30] For example, the synthesis of α-

phenylpiperidine 5 resulted in a lower yield (Scheme 1, A) than the 

corresponding α-phenylpyrrolidine 2a (45% vs 95 %).[31] Varying a 

number of reaction parameters (ligand, solvent, temperature and 

concentration) did not further improve the results. Aiming to 

facilitate the cyclization process, we introduced a geometric 

constraint into the linear carbon chain of the starting material by 

introducing an aryl group between the olefin and the hydroxylamine-

O-pivalate-containing side chain. This modification restored the 

high reactivity in the catalytic event, providing chiral 

tetraisohydroquinoline 7 in excellent yield and enantioselectivity 

(86% yield, 99.5: 0.5 er, Scheme 1, B). 

    Successful construction of the enantioenriched 

tetraisohydroquinoline led us to examine dibenzo-fused nitrogen 

heterocycles with medium ring sizes,[32] as many compounds with 
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Table 2. Scope of Enantiopure α-Arylpyrrolidines[a, b] 

 

[a] Unless noted, standard reaction conditions of the Suzuki-Miyaura coupling: 1.50-2.50 mmol arylbromides (1.0 equiv), 3 (1.3 equiv), SPhos-G3 (5.0 mol%), K2CO3 

(3.0 eqiuv), THF/H2O = 3/1 (0.30 M), 60 °C, see the SI for details. [b] Unless noted, standard reaction conditions of the intramolecular hydroamination: 0.50 mmol 

1a-o (1.0 equiv), Cu(OAc)2 (4.0 mol%), (S)-DTBM-SEGPHOS (4.4 mol%), DEMS (2.5 equiv), THF (1.0 mL), see the SI for details. Isolated yields are reported as 

the average of two runs. er was determined by SFC.  [c] dioxane/H2O = 3/1 (0.30 M), 80 °C. [d] Cu(OAc)2 (8.0 mol%), (R,R)-Ph-BPE (8.8 mol%), DMMS (2.5 equiv). 

[e] (R,R)-Ph-BPE (4.4 mol%), DMMS (2.5 equiv). 

these structural elements are found in pharmaceuticals and bioactive 

alkaloids (Scheme 2, A).[33] Our approach to access the core 

structural scaffolds requires either a four- or a five-step     synthetic 

sequence, all of which culminated with the enantioselective Cu-

catalyzed intramolecular hydroamination. For instance, oxazonine 

10 was prepared in five steps in excellent yield and 

enantioselectivity, starting from salicylaldehyde (Scheme 2, B). 

Similar efficiency and selectivity were observed in the synthesis of 

azepine 11 and oxazocine 12 (Scheme 2, C). [34]   

In conclusion, we have developed a practical two-step synthetic 

route to enantiopure α-arylpyrrolidines comprising Suzuki-Miyaura 

cross-coupling and enantioselective copper-catalyzed 

intramolecular hydroamination reactions. This approach provides an 

efficient method to prepare pyrrolidines bearing pharmaceutically 

relevant α-heteroaryl substituents including pyrazoles, pyrimidines, 

azaindoles, pyridines, furans, thiazoles and fused imidazoles with 

high levels of enantiomeric purity under very mild conditions. 

Moreover, we applied this intramolecular hydroamination strategy 

to asymmetric syntheses of six- to nine-membered benzo-fused 

nitrogen heterocycles. While (S)-DTBM-SEGPHOS worked well 

for most α-arylpyrrolidines, (R,R)-Ph-BPE provided better results 

for substrates containing five-membered azoles as well as for the 

synthesis of medium ring benzo-fused nitrogen heterocycles.  
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Scheme 1. Synthesis of Enantiopure α-Arylpiperidine and 

Tetraisohydroquinoline[a] 

 

[a] Isolated yields are reported as the average of two runs. Reaction conditions: 

0.50 mmol 4 or 6 (1.0 equiv), Cu(OAc)2 (4.0 mol%), (R,R)-Ph-BPE (4.4 mol%), 

DMMS (2.5 equiv), THF (1.0 mL), see the SI for details. [b] No product was 

observed using (S)-DTBM-SEGPHOS as the ligand. 

Scheme 2. Synthesis of Enantiopure Dibenzo-fused Nitrogen Heterocycles[a] 

 

[a] Isolated yields are reported as the average of two runs. Reaction conditions: 

0.50 mmol 4 or 6 (1.0 equiv), Cu(OAc)2 (4.0 mol%), (R,R)-Ph-BPE (4.4 mol%), 

DMMS (2.5 equiv), THF (1.0 mL), see the SI for details. [b] See SI for detailed 

synthetic sequences of azepine and oxazocine analogs. PG = protecting groups. 
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Layout 2: 

COMMUNICATION 

Here, it is shown that an enantioselective copper-catalyzed intramolecular 

hydroamination reaction can be used jointly with the Suzuki-Miyaura cross-coupling 

to yield a diverse array of α-arylpyrrolidine scaffolds that contain pharmaceutically 

relevant heteroarenes with excellent enantiomeric purity under very mild conditions. 

Further, this intramolecular hydroamination strategy is applicable to the asymmetric 

syntheses of six- to nine-membered benzo-fused nitrogen heterocycles.  
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