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ABSTRACT: [18F]-labeled aryl fluorides are widely used 
as radiotracers for positron emission tomography (PET) 
imaging. Aryl halides (ArX) are particularly attractive 
precursors to these radiotracers, as they are readily 
available, inexpensive, and stable. However, to date, the 
direct preparation of [18F]-aryl fluorides from aryl hal-
ides remains limited to SNAr reactions between highly 
activated ArX substrates and K18F. This report describes 
an aryl halide radiofluorination reaction in which the 
C(sp2)–18F bond is formed via a copper-mediated path-
way. Copper N-heterocyclic carbene complexes serve as 
mediators for this transformation, using aryl halide sub-
strates with directing groups at the ortho position. This 
reaction is applied to the radiofluorination of electroni-
cally diverse aryl halide derivatives, including the bioac-
tive molecules vismodegib and PH-089. 

     Late-stage methods for constructing 18F–(hetero)aryl 
bonds are highly valued for the synthesis of positron 
emission tomography (PET) radiotracers.1,2 Historically, 
18F-labeled aromatic substrates have most commonly 
been prepared via SNAr reactions between electron de-
ficient aryl halide precursors and K18F (Scheme 1A).3,4 
Aryl halides are particularly attractive radiofluorination 
precursors because they are abundant, stable, and syn-
thetically accessible. However, the substrate scope of 
SNAr (radio)fluorination reactions remains narrow, as 
resonance electron withdrawing substituents on the 
aromatic ring are required to stabilize Meisenheimer-
type intermediates.1,5 Furthermore, even with such 
highly activated substrates, SNAr pathways often require 
long reaction times and forcing conditions, which ren-
ders them ill-suited for many late-stage radiofluorina-
tion applications.6,7 As such, a key objective for the field 
is to develop complementary methods for the radio-

fluorination of (hetero)aryl–halides and pseudohal-
ides.8,9  
 
 
Scheme 1. Strategies for direct fluorination of aryl hal-
ides. 

 
     Our approach to this challenge has focused on devel-
oping Cu-mediated methods for C(sp2)–18F coupling re-
actions.1,2b Recent studies have shown that Cu salts 
such as Cu(OTf)2 and Cu(CH3CN)4PF6 mediate the nucle-
ophilic radiofluorination of aryl stannane,10 aryl boron,11  
diaryliodonium,12 and aryl C–H substrates13 with K18F. In 
these systems the key C(sp2)–18F bond is formed via re-
ductive elimination from an organometallic Cu(aryl)(18F-
fluoride) intermediate.11f,14 This organometallic pathway 
is mechanistically distinct from an SNAr reaction. As 
such, it enables the radiofluorination of a wide scope of 
electronically diverse aryl groups.  
     Despite this progress, analogous Cu mediators have 
proven ineffective at engaging aryl halide substrates in 
radiofluorination reactions. Two reports have docu-
mented the Cu-promoted nucleophilic 19F-fluorination 

K18FX 18F

A. Radiofluorination of ArX via SNAr pathway (ref. 3)

B. Liu’s directed 19F-fluorination of ArBr via organometallic pathway (ref. 16)
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of aryl halides (e.g., the work of Liu in Scheme 1B). 
However, both require superstoichiometric AgF as the 
fluoride source,15,16 and neither has proven translatable 
to radiolabeling with 18F– (vide infra). This report de-
scribes the use of N-heterocyclic carbene (NHC) Cu 
complexes as mediators for ligand-directed aryl halide 
radiofluorination (Scheme 1C). The discovery of this 
transformation in the context of 19F-fluorination and its 
subsequent translation to radiofluorination are de-
scribed in detail.   
     Our initial studies attempted to translate Liu’s 19F-
fluorination of 2-(2-bromophenyl)pyridine (Scheme 1B) 
to a radiolabeling protocol. However, as shown in eq. 1, 
under the standard conditions (with CuI(CH3CN)4PF6, 
Ag18F, and NBu4PF6 in CH3CN at 120 °C), no trace of 
product 1-18F was detected by radio-TLC or radio-HPLC 
after 0.5 h. Furthermore, no improvement was ob-
served upon variation of the 18F source, solvent, addi-
tives, or temperature (Table S7). We note that, in con-
trast to the 19F-fluorination, the radiofluorination reac-
tion requires the use of Ag18F as the limiting reagent at 
sub-micromolar concentrations. We hypothesize that 
this renders CuI(CH3CN)4PF6-mediated radiofluorination 
prohibitively slow relative to the decay of the radionu-
clide (t1/2 ~110 min).      

 
     Literature reports suggest that aryl-bromide bond 
activation (via oxidative addition at CuI) is likely the slow 
step in this transformation.16,17 We reasoned that the 
introduction of a strongly electron donating NHC ligand 
at the CuI center would accelerate this key step.18,19 Fur-
thermore, since (NHC)CuI(F) complexes can be generat-
ed directly from KF,20 this approach should eliminate the 
requirement for excess AgF. Finally, sterically bulky NHC 
ligands are known to stabilize CuI–fluoride complexes to 
dimerization or disproportionation,19,21 which are likely 
competing decomposition pathways for the Cu media-
tor.22  
    To test this hypothesis, we initially examined the reac-
tivity of a series of (NHC)CuI(19F) complexes with 2-(2-
bromophenyl)pyridine (Scheme 2A). As summarized in 
Table S3, the yield of fluorinated product 1-19F varied 
from 3–65% as a function of the structure of the NHC 
ligand,19,23 with 1,3-bis-(2,6-diisopropylphenyl)imidazol-
2-ylidine (IPr) affording the optimal result. Notably, 
(IPr)CuI(19F) (A-19F) is available in nearly quantitative 
yield from the reaction of (IPr)CuI(OTf) (A-OTf) with K19F 
(Scheme 2A),20 thus precluding the requirement for Ag 
salts in this transformation. Importantly, control studies 
revealed that other group 11 metal salts including 

CuI(CH3CN)4PF6/KF,  CuF2,24 or AgF afforded ≤3% of 1-19F 
under otherwise identical conditions (Table S4). Fur-
thermore, no reaction was observed between the aryl 
bromide substrate and K19F under these conditions in 
the absence of copper.  
     A time study with A-19F shows that the fluorination 
reaction is complete within 2 h at 140 °C and affords 
40% yield after just 30 min (Scheme 2B). This suggests 
the feasibility of achieving radiofluorination with this 
system. Finally, a preliminary survey of substrates re-
vealed that A-19F-mediated fluorination has a signifi-
cantly enhanced scope versus that of Liu’s 
CuI(CH3CN)4PF6/Ag19F system (Scheme 1B). For instance, 
the sterically hindered pyridine substrate 2-(2-
(bromo)phenyl)-6-methylpyridine was unreactive under 
Liu’s conditions, but affords 2-19F in 34% yield with A-19F 
as the Cu mediator (Scheme 2C). Similarly, the oxazoline 
and imine substrates were unreactive under Liu’s condi-
tions, but afford 30% and 37% yield of 3-19F and 4-19F, 
respectively, using A-19F.25    
Scheme 2. NHC-Cu-mediated 19F-fluorination of aryl 
bromides  

 
(A) Conditions: A-OTf (0.006 mmol, 1 equiv), KF (1.5 
equiv), DMF (0.01 M), 140 °C for 30 min, then aryl bro-
mide (0.006 mmol), 140 °C for 21 h. (B) Conditions: A-
19F (0.01 mmol, 1 equiv), aryl bromide (1 equiv), DMF 
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(0.015 M), 140 °C for 21 h. (C) Conditions: A-19F (0.006 
mmol, 1 equiv), aryl bromide (1 equiv), DMF (0.01 M), 
140 °C for 21 h. Yields determined by 19F NMR spectro-
scopic analysis of crude reaction mixtures.  
      We next focused on translating these preliminary 
results to radiofluorination. The reaction of (IPr)CuI(OTf) 
(A-OTf) with 2-(2-bromophenyl)pyridine and K18F for 30 
min at 140 °C in DMF afforded 1-18F in 10% radiochemi-
cal conversion (RCC) as determined by radio-TLC and 
radio-HPLC (Table 1, entry 1).26,27 The reaction was op-
timized by exploring additives that have been shown to 
enhance yields in other Cu-mediated C(sp2)–18F cou-
pling reactions (e.g., phase transfer reagents, nitrogen 
heterocycles, Table 1, entries 2–5).1,11a,13,28 Of the sur-
veyed additives, 1 equiv of 4-dimethylaminopyridine 
(DMAP) relative to the aryl bromide precursor proved 
optimal, affording 1-18F in 65% RCC.   
Table 1. Cu-mediated radiofluorination of aryl halides.   

 
entry Additive RCC (%) 
1 none 10 
2 Kryptofix 26 
3 pyridine 23 
4 DBU 30 
5 DMAP 65 

Conditions: aryl bromide (0.005 mmol, 1 equiv), A-OTf 
(1 equiv), additive (1 equiv), K18F, DMF (0.015 M), N2 

atmosphere, 140 °C, 30 min.27 RCC determined by radio-
TLC (n ≥ 2).  
     With these optimized conditions in hand, we next 
explored the scope of the A-OTf-mediated radiofluori-
nation of aryl halides. As shown in Figure 1, the chloro-, 
bromo-, and iodo-2-phenylpyridine precursors all react-
ed to afford 1-18F in RCCs ranging from 10–65%. In con-
trast, no 19F/18F exchange was detected with 1-19F under 
these conditions. It is currently unclear why 1-I affords 
lower yield than 1-Br; however, this observation is in 
line with Liu’s results for the Cu-catalyzed [19F]-
fluorination of halophenylpyridines.16 Substitution on 
either the pyridine or aryl ring was tolerated to afford 
products such as 2-18F, 6-18F, and 7-18F. Other nitrogen-
donors, including oxazoline, pyrazole, cyclohexyl imine, 
and mesityl imine, served as effective directing groups, 
affording 3-18F, 8-18F, 4-18F, and 9-18F, respectively. The 
scope of cyclohexyl imine derivatives was most thor-
oughly explored, as this directing group is straightfor-
ward to install and remove starting from readily availa-
ble benzyaldehyde derivatives. Various substitution pat-

terns on the (hetero)arene ring were well tolerated, 
affording compounds 10–16-18F in RCCs ranging from 
16–74%. An intramolecular competition reaction be-
tween an ortho-chloride and bromide resulted in selec-
tive radiofluorination of the bromide to form 13-18F. 
This selectivity is consistent with that expected for a 
metal-mediated activation of a C(sp2)–X bond.29   
     Importantly, a variety of control reactions were con-
ducted in these systems. First, the 4-substituted aryl 
bromides in the pyridine and cyclohexyl imine series 
were subjected to the reaction conditions. These are 
electronically similar, but do not benefit from the direct-
ing effect. As shown in Figure 1, these substrates did not 
afford detectable 17-18F or 18-18F under the optimized 
conditions.30 In addition, all of these reactions were 
conducted in the absence of Cu to test for background 
SNAr reactivity. As shown in Table S12, ≤1% of com-
pounds 1–16-18F were detected under these conditions. 
Finally, substituting simple CuI or CuII salts for 
(IPr)CuI(OTf) afforded yields of ≤5% for representative 
substrates (Table S11), underscoring the central role of 
the NHC ligand in these transformations. 
Figure 1. Substrate scope of Cu-mediated radiofluorina-
tion of aryl halides. 
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Conditions: aryl halide (0.005 mmol, 1 equiv), A-OTf (1 
equiv), DMAP (1 equiv), K18F, DMF (0.015 M), N2 atmos-
phere, 140 °C for 30 min.27 RCC determined by radio-
TLC (n ≥ 3). aReaction conducted at 160 °C. 
      18F-analogues of several bioactive molecules could 
also be accessed using this approach. In a first example, 
the bromide analogue of vismodegib (19-Br), a basal 
cell carcinoma treatment,31 underwent radiofluorina-
tion to afford 19-18F (Scheme 3). In a second example, 
18F-labeled  PH-089 (20-18F in Scheme 3), an MK-2 inhib-
itor,32 was synthesized in 5% RCC from the chloride pre-
cursor.   
  
Scheme 3. Radiofluorination of bioactive molecules. 

 
    A final set of studies focused on automating the radi-
osynthesis of 1-18F using a TRACERLab FXFN synthesis 
module. Initial automated studies using 241.1 mCi (8.93 
x 109 Bq) of K18F gave 57 ± 8 % radiochemical yield (RCY; 
n = 2), demonstrating the compatibility of the method 
with automation. Further investigations coupled auto-
mated synthesis with semi-preparative HPLC purifica-
tion to afford 1-18F in 14.3 ± 3.2% RCY (decay-corrected; 
119.9 mCi ± 28; n = 2) with good molar activity (1614 ± 
353 Ci/mmol; n = 2) and radiochemical purity. While 
unoptimized, this result demonstrates the potential of 
this method for PET applications.  
    In conclusion, we have developed a Cu-mediated pro-
tocol for the 19F- and 18F-fluorination of diverse aryl hal-
ide substrates. Strategic design of the Cu mediator was 
necessary to achieve the reaction rates/yields required 
for efficient radiofluorination, and an NHC-ligated Cu 
complex ultimately proved optimal in this system. A 
wide scope of nitrogen-containing directing groups and 
substituted aryl halide derivatives underwent 18F-
fluorination, and the reaction proved effective for the 
synthesis of biologically relevant molecules such as 19-
18F and 20-18F. More broadly, this work demonstrates 
that NHC-type ligands enable new C(sp2)–F coupling 
reactions at Cu. As such, this work opens up opportuni-
ties for designing next-generation Cu mediators for the 
radiofluorination of currently inert substrates (e.g., aryl 
halides that lack a directing group).  

ASSOCIATED CONTENT. Supporting Information. A list-
ing of the contents of each file supplied as Supporting 
Information should be included.  
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