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ABSTRACT: We have developed a formal [4+1]
approach to pyrrolidines from readily available unac-
tivated terminal alkenes as 4-carbon partners. The
reaction provides a rapid construction of various
pyrrolidine containing structures, especially for the
diastereoselective synthesis of spiro-pyrrolidines. Mecha-
nistic investigation suggests a Rh(III)-catalyzed intermo-
lecular aziridination of the alkene and subsequent acid-
promoted ring expansion for the pyrrolidine formation.

Pyrrolidine is a prevalent structural unit in pharmaceuticals,
biologically active natural products and materials.1

Consequently, significant efforts have been devoted to the
development of efficient routes to pyrrolidines. Early examples
can be traced back to the classical Hofmann−Löffler−Freytag
reaction in the 19th century.2 Given the ubiquity of the
heterocycle, a myriad of cyclization methods have been
developed for its assembly involving nearly every reaction
class.3

Convergent synthetic strategies involving two or three
unique components has also received great attention. Among
potential reaction partners, olefins are perhaps the most
abundant, general and desirable. The [3+2] cycloaddition
between azomethine ylides and alkenes represents a well-
studied method among them (Scheme 1).4 Other recent
examples also include the reaction of β-amino aldehydes,
protected cinnamyl amines and aziridines with various types of
alkenes as two-carbon sources.5 Strategies utilizing alkenes as
three-carbon coupling partners are relatively rare and often
require prefunctionalization. For example, 2-((trimethylsilyl)-
methyl) allyl acetate has been reported as a three-carbon
source for the formal [3+2] cycloaddition with imines
(Scheme 1).6 Most recently, a visible light-mediated photo-
redox catalyzed synthesis of spiropyrrolidines was reported
using homoallylic amines as 3-carbon/1-nitrogen sources with
aliphatic ketones as 1-carbon partners.7 The use of alkenes as
4-carbon partners is unknown. Herein, we report a Rh(III)-
catalyzed formal [4+1] approach to pyrrolidines from α-olefins
as 4-carbon sources and hydroxylamine derivatives as nitrogen
sources.
Recently, we reported a branch-selective allylic amination of

simple α-olefins using Ir(III) catalysis.8 During the course of
this work, we noted that heptamethylindenyl (Ind*) Rh(III)
catalyst9 delivers the pyrrolidine side product (3aa) and linear
allylic amination product (4) in low yield from 1-hexene (1a)
and N-pivalolyloxy tosylamide (2a) (Table 1, entry 1).

Inspired by this preliminary result and the rapid access to
pyrrolidines, we sought to optimize the transformation.
Although desired product could be formed by Rh(III) alone,
we found that the yield of pyrrolidine (3aa) is greatly
improved by prestirring the reaction mixture until full
consumption of 1-hexene (1a) and then subjecting the
reaction mixture with AgOTf at 80 °C (entry 2).
Systematic examination of acid additives revealed that

Sc(OTf)3 is more effective than AgOTf, promoting the
cyclization even at room temperature (entry 3; for detailed
information, see SI). Eventually, TfOH was chosen as optimal,
delivering 66% yield of desired 2-ethyl-1-tosylpyrrolidine (3aa)
(entry 4). The electron-deficient heptamethylindenyl (Ind*)
ligand on the Rh(III) catalyst is crucial with the more common
[Cp*RhCl2]2 providing product in a much lower yield (entry
5).10 Moreover, other nitrene precursors11 such as dioxazolone
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Scheme 1. Intermolecular Synthetic Approaches for
Pyrrolidine Using Alkenes as Coupling Partners
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or tosyl azide (entry 6, 7) lead to no pyrrolidine product
formation.
We next sought to examine the scope of this method with

various terminal alkenes (Scheme 2). The reaction proceeds

smoothly with alkenes containing substituents at C4 and C5
positions, giving desired products (3aa−3da) in good yield.
Interestingly, in the case of 4,4-dimethyl-1-pentene (1e) where
the C4 position is blocked, one of the methyl groups migrates
to the C3 position, forming 2,2,3-trimethyl-1-tosylpyrrolidine
(3ea) selectively. Additionally, a variety of functional groups
such as −Br, −OAc, −OTs, −NPhth, −CONR2 and −CO2R

are tolerated when located far from the reaction center,12

providing corresponding products (3fa−3ka) in moderate to
good yield.
In consideration of the importance of spirocyclic pyrroli-

dines among pharmaceuticals, we tested synthetic utility of this
method for the synthesis of spiro-pyrrolidines with a variety of
allyl cyclohexane substrates (Scheme 3). Allyl cyclohexane (1l)

was successfully converted to the 1-tosyl-1-azaspiro[4.5]decane
(3la) product in excellent yield. A conformational bias in the
cyclohexane ring (4-tert-butyl, 4-phenyl, 3-methyl and 3-
trifluoromethyl) produced corresponding spiro-pyrrolidine
products with excellent diastereoselectivity (3na, 3oa, 3pa
and 3qa). It is also worth noting that >20:1 diastereoselectiv-
ities are achieved regardless of trans/cis ratio of the starting
cyclohexane. The relative stereochemistry of 3na and 3pa was
unambiguously determined by X-ray crystallography. Interest-
ingly, the reaction with 2-allyl adamantane (1r) causes a 1,2-
hydride shift before cyclization, leading to the formation of an
unprecedented structure 3ra. A similar hydride shift event was
also observed with 1-allyl-2-methylcyclohexane (1s), giving rise
to 6,6-fused bicyclic, decahydroquinoline (3sa). Moreover,
naphthyl sulfonyl group was introduced as an alternative tosyl
protecting group due to its milder deprotection conditions
(3nb).13 Last, regiodivergent synthesis of pyrrolidine-based

Table 1. Reaction Optimizationa

entry nitrene source additive
yield of 3aa

(%)b
yield of 4
(%)b

lc Ts-NH-OPiv (2a) − 15 15
2 Ts-NH-OPiv (2a) AgOTf 0 (50)d −
3 Ts-NH-OPiv (2a) Sc(OTf)3 45 (58)d −
4 Ts-NH-OPiv (2a) TfOH 66 −
5e Ts-NH-OPiv (2a) TfOH 15 −
6 3-Phenyl-1,4,2-dioxazol-

5-one
TfOH 0 −

7 Ts-N3 TfOH 0 −
aReactions were conducted on a 0.1 mmol scale using 1a (1.0 equiv).
Additive was added after 24 h. bDetermined by analysis of 1H nuclear
magnetic resonance (NMR) of the unpurified reaction mixture.
cReaction was conducted at 40 °C with 1 equiv of 2a, with
[Ind*RhCl2]2/AgOTf as the catalyst precursor. dTemperature
increased to 80 °C after addition of the additive. e[Cp*RhCl2]2 was
used.

Scheme 2. Alkene Substrate Scope

aReaction conducted at 40 °C.

Scheme 3. Allyl Cyclohexane Substrate Scope

aFrom 1n (3.1:1 dr). bFrom 1o (2.8:1 dr). cFrom 1p (3.0:1 dr).
dFrom 1q (3.8:1 dr). eFrom 1s (1.6:1 dr). fReaction conducted at 4
°C.
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spirocycle (3la) and fused bicyclic compound (5la) was
achieved from allyl cyclohexane (1l) with exquisite selectivity
by simply changing reaction temperature.
To obtain mechanistic insights, we first conducted the

reaction with 1-hexene (1a) using the standard reaction
conditions without the sequential treatment of TfOH. N-Tosyl
aziridine 6aa was isolated in quantitative yield. The
aziridination of unactivated alkenes catalyzed by Ind*Rh(III)
is unprecedented, although it is a well-explored research area.14

Further subjecting the resulting aziridine to TfOH leads to
pyrrolidine product in 75% yield (3aa) (Scheme 4a).5c,15

These results suggest that the Rh(III)-catalyzed intermolecular
aziridination of the alkene and subsequent acid-promoted ring
expansion is likely responsible for the reaction mechanism.
In order to investigate the reaction mechanism, allylic and

homoallylic tosyl amides (4 and 7) were subjected to TfOH
(Scheme 4b). Allylic amine (4) does not lead to pyrrolidine
product, while a quantitative yield was achieved from
homoallylic amine (7).16 Furthermore, we continued to test
the mechanism with C1 to C4 deuterated alkenes (Scheme
4c). In the case of C3 deuterated aziridine (6ca-C3-d2),
extensive deuterium incorporation is observed at the C2
position. In addition, significant erosion of deuterium is
observed in the case of 6ca-C4-d2.
Taken together, these experiments suggest a plausible

reaction mechanism (Scheme 5). N-Pivalolyloxy tosylamide
(2a) first coordinates to the Rh(III) catalyst and undergoes
Rh-nitrene formation (II).17 Alkene aziridination proceeds

subsequently to form N-tosyl aziridine (6aa). It is also possible
that the aziridine (6aa) is formed through the alkene migratory
insertion of intermediate I, followed by a concerted C−N bond
formation and N−O bond cleavage. Upon treatment with
triflic acid, aziridine ring expansion is initiated by 1,2-hydride
shift, followed by a combination of 1,2-hydride shift and
elimination/protonation pathways, and eventually quenches
the carbocation at C4 position to form the pyrrolidine product
(3aa). The possible intervention of homoallylic amide VI
explains the modest loss of deuteration in the deuterium
labeling experiments noted above.
In summary, we have developed a Rh(III)-catalyzed formal

[4+1] synthesis of pyrrolidines from readily available
unactivated alkenes. Mechanistic studies show that the reaction
proceeds through a Rh(III)-catalyzed aziridination of the
alkene and subsequent ring expansion from aziridine to
pyrrolidine promoted by the acid. This method offers a new
strategy for pyrrolidine synthesis by employing a simple alkene
as a four-carbon source. With this method, various types of
pyrrolidines, especially spiro-pyrrolidines, were rapidly con-
structed. Further efforts at elucidating the mechanism and
expanding this chemistry are currently underway.
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