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ABSTRACT: We report that Mn(IV)-oxo porphyrin com-
plexes, MnIV(O)(TMP) (1) and MnIV(O)(TDCPP) (2), are ca-
pable of activating the C-H bonds of hydrocarbons, including 
unactivated alkanes such as cyclohexane, via an oxygen non-
rebound mechanism. Interestingly, 1 with an electron-rich 
porphyrin is more reactive than 2 with an electron-deficient 
porphyrin at a high temperature (e.g., 273 K). However, at a 
low temperature (e.g., 233 K), the reactivity of 1 and 2 is re-
versed, showing that 2 is more reactive than 1. To the best of 
our knowledge, the present study reports the first example of 
highly reactive Mn(IV)-oxo porphyrins and their temperature-
dependent reactivity in C-H bond activation reactions.  

High-valent metal-oxo porphyrins have been implicated as the 
key intermediates in the catalytic oxidation of organic sub-
strates by heme enzymes and metalloporphyrins.1 One exam-
ple is the iron(IV)-oxo porphyrin π-cation radical species, re-
ferred to as compound I (Cpd I), in cytochromes P450.2 In 
biomimetic studies, a number of iron(IV)-oxo porphyrin π-
cation radicals and their one-electron reduced iron(IV)-oxo 
porphyrins, referred to as compound II (Cpd II), have been 
synthesized and investigated in various oxidation reactions.3,4 
While the high reactivity of Cpd I models has been well estab-
lished in oxidation reactions, including a hydrogen atom (H-
atom) abstraction of hydrocarbon C-H bonds, Cpd II models 
were shown to be sluggish oxidants.3,4 In addition, the reactivi-
ty of Cpd I was shown to be affected significantly by the elec-
tronic nature of iron porphyrins; Cpd I with an electron-
deficient porphyrin is much more reactive than that with an 
electron-rich porphyrin.5 

Manganese porphyrins have also been used as catalysts in 
oxidation reactions.3b,6 Following the heme paradigm, Mn(V)-
oxo porphyrins have been proposed as the active oxidants 
responsible for the oxidation reactions.1a,1c,6 However, different 
from the Cpd I models, Mn(V)-oxo porphyrins have been less 
clearly explored in characterization and reactivity studies.7 
Similarly, the reactivity of Mn(IV)-oxo porphyrins has been 
rarely investigated due to their low reactivity.8 In contrast to 
the Mn(IV)-oxo porphyrins, however, Mn(IV)-oxo complexes 
with non-porphyrinic ligands have shown high reactivities in 
oxidation reactions.9  

Herein, we report for the first time highly reactive Mn(IV)-
oxo porphyrins in the C-H bond activation of hydrocarbons, 
including unactivated alkanes such as cyclohexane (Scheme 1). 

More interestingly, the Mn(IV)-oxo porphyrins show an unu-
sual reactivity dependence on the nature of the porphyrin lig-
ands and the reaction temperature; that is, a Mn(IV)-oxo 
complex bearing an electron-rich porphyrin, [MnIV(O)(TMP)] 
(1),10 is more reactive than a Mn(IV)-oxo complex bearing an 
electron-deficient porphyrin, [MnIV(O)(TDCPP)] (2),10 at a 
high temperature, whereas 2 becomes more reactive than 1 at 
a low temperature. Such a reversed reactivity of the Mn(IV)-
oxo porphyrins depending on reaction temperatures is of sig-
nificant interest in oxidation reactions by high-valent metal-
oxo intermediates. Other mechanistic aspects, such as the oxy-
gen non-rebound mechanism in Mn(IV)-oxo porphyrin system 
(Scheme 1), are discussed as well. 

The reaction of [MnIII(TMP)Cl] with 5 equiv of 1-(tert-
butylsulfonyl)-2-iodosylbenzene (sPhIO) in CH2Cl2 or acetone 
at –10 oC resulted in the change of the Soret band from 478 
nm to 415 nm with clean isosbestic points (Figure 1a). The 
metastable intermediate (t1/2 ~30 min at –10 oC), denoted as 1, 
was characterized using various spectroscopic techniques: CSI-
MS10 spectrum of 1 exhibited a prominent ion peak at a mass-
to-charge ratio (m/z) of 851.4, corresponding to [Mn(O)(TMP)] 
(calcd m/z = 851.4), which shifted to m/z of 853.4 (i.e., 
[Mn(18O)(TMP)]) upon 18O-substitution (Figure 1a, inset). The 
X-band EPR10 spectrum of 1 showed signals at geff = 4.3, 3.7, 
and 2.0, suggesting a high-spin S = 3/2 MnIV species (Support-
ing Information, Figures S1a and S1b).8,9 The rRaman10 spec-
trum of 1 displayed one isotopically sensitive band at 803 cm–1, 
which shifted to 767 cm–1 upon 18O-substitution (Figure 1b). 
The observed isotopic shift of –36 cm–1 is in good agreement 
with the calculated value (–36 cm–1) for a diatomic Mn-O 

Scheme 1. Structures of Mn(IV)-Oxo Porphyrins,  
MnIV(O)(TMP) (1) and MnIV(O)(TDCPP) (2), and 
Their Reaction with Cyclohexane in CH2X2 
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bond oscillator. Further, the rRaman data suggest double 
bond character for the Mn-O bond.8a,11  

Similarly, addition of 5 equiv of sPhIO to a solution of 
[MnIII(TDCPP)Cl] in CH2Cl2 or acetone at –10 oC afforded a 
new intermediate (t1/2 ~150 min at –10 oC), denoted as 2. 2 
was characterized with UV-vis, CSI-MS, EPR, and rRaman 
(Figures S1 – S4). Based on the results of the spectroscopic 
characterization, we were able to assign 1 and 2 as 
[MnIV(O)(TMP)] and [MnIV(O)(TDCPP)], respectively.12  

We then investigated the reactivities of 1 and 2 in the C-H 
activation of hydrocarbons. Addition of ethylbenzene to a 
CH2Cl2 solution containing 1 (Figure 2a) or 2 (Figure S5b) at –
10 oC afforded clean spectral changes with isosbestic points. 
The first-order rate constants, determined by pseudo-first-
order fitting for the decay of 1 and 2 (Figure S5), increased 
linearly with increasing ethylbenzene concentration, giving 
second-order rate constants of 7.5 × 10–2 M–1 s–1 for 1 and 2.0 
× 10–2 M–1 s–1 for 2 at –10 oC (Figure 2a, inset). It is of interest 
to note that 1 bearing an electron-rich porphyrin is more reac-
tive than 2 bearing an electron-deficient porphyrin (vide infra). 
KIE10 values of 11 and 12 were obtained in the oxidation of 
ethylbenzene by 1 and 2, respectively (Figure S6). 

The C-H activation reactivity of 1 was also investigated us-
ing other substrates, such as CHD,10 indene, fluorene, cumene, 
toluene, cyclooctane, and cyclohexane (Figures S7 and S8), 
and a good linear correlation between the BDEs10 of the sub-
strates and the reaction rate constants was observed (Figure 
2b). It should be noted that 1 is capable of activating strong C-
H bonds of unactivated alkanes such as cyclohexane (BDE = 
99.3 kcal mol–1). Further, by comparing the k2 values of 1 and 
other MnIV(O) complexes (e.g., [MnIV(O)(Bn-TPEN)]2+,10 

which is one of the most reactive nonheme Mn(IV)-oxo com-
plexes),9c we conclude that 1 is the most reactive MnIV(O) 
complex reported so far in heme and nonheme Mn(IV)-oxo 
systems.13 Based on the large KIE value and the linear correla-
tion between the BDEs of substrates and the rate constants, we 
conclude that a H-atom abstraction from substrate C-H bonds 
by the Mn(IV)-oxo porphyrin species is the rate-determining 
step (r.d.s.) in the C-H bond activation reactions (Scheme 2).  

Product analysis for the reaction of 1 and toluene in 
CH2Cl2 under an Ar atmosphere revealed that [MnIII(TMP)]+ 
was formed as the decay product of 1 (Figure S10). Interesting-
ly, we also found that benzyl chloride was the major organic 
product (82%) with a small amount of benzaldehyde (3%) 
(Scheme 2). In the reaction of 1 and cyclohexane, chlorocy-
clohexane was formed as the sole product (41%) (Scheme 2). 
In order to find out the source of Cl in the chlorinated prod-
ucts, we carried out the reactions in CH2Br2 instead of CH2Cl2. 
In the reactions of 1 with toluene and cyclohexane in CH2Br2, 
we obtained brominated products, such as benzyl bromide 
(72%) and bromocyclohexane (34%), respectively (Scheme 
2).14 These results demonstrate unambiguously that the solvent, 
CH2Cl2, was the source of Cl in the chlorinated products, but 
not the axial ligand (Cl–) of the starting MnIII(TMP)Cl complex. 
Further, when the reaction of 1 and toluene was performed in 
CH2Cl2 in the air, benzaldehyde was the major product (51%) 
with small amounts of benzyl alcohol (10%) and benzyl chlo-
ride (4%) (Scheme 2). Based on these results, we propose that 
the C-H activation reaction of the Mn(IV)-oxo porphyrins 
occurs via an oxygen non-rebound mechanism (Scheme 2), as 
reported in the C-H bond activation reactions of nonheme 
Mn(IV)-oxo complexes.15  

 
Figure 1. (a) UV-vis spectral changes showing the formation of 1 
(blue line) in the reaction of [MnIII(TMP)Cl] (0.10 mM, red line) 
and sPhIO (0.50 mM) in CH2Cl2 at –10 oC. Insets show the CSI-
MS spectra of 1-16O (left panel) and 1-18O (right panel). (b) 
rRaman spectra of 1-16O (blue line) and 1-18O (red line). Inset 
shows the difference spectrum of 1-16O and 1-18O.  

 
Figure 2. (a) UV-Vis spectral changes showing the reaction of 1 
(0.10 mM, red line) and ethylbenzene (0.35 M) in CH2Cl2 at –10 
oC. Inset shows the plots of kobs against ethylbenzene concentra-
tion to determine k2 values of 1 (red circles) and 2 (blue squares). 
(b) Plot of log k2’ (k2’ = k2/number of equivalent target C-H bonds) 
against the substrate C-H BDEs.  
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As mentioned above, the reactivity of 1 is greater than that 
of 2.16 This result is in contrary to the previously reported re-
activities of iron-oxo porphyrins, in which an iron-oxo bearing 
an electron-deficient porphyrin (e.g., TDCPP) is a stronger 
oxidant than that bearing an electron-rich porphyrin (e.g., 
TMP).5b It should be noted that most of the reactivity studies 
with metal-oxo complexes were conducted at a lower tempera-
ture (e.g., –40 oC) due to their thermal instability.1a,1c,5b Since 
our reactivity studies were performed at a relatively high tem-
perature (i.e., –10 oC), the reactivity of 1 and 2 was further 
investigated at a wide range of temperatures, such as from 0 
oC to –60 oC, using CHD as a substrate. Interestingly, we 
found that the reactivity of 1 and 2 was reversed as the reac-
tion temperature lowered. That is, 1 was more reactive than 2 
at temperatures above –20 oC, but the reactivity was reversed 
and 2 became more reactive than 1 at –30 oC (Figure 3a; Ta-
ble S1). Such a reversed reactivity was also observed in the 
reactions of indene with 1 and 2, showing the cross point at –
15 oC (Table S2 and Figure S12). This result indicates that the 
cross point for the reversed reactivity in the C-H activation 
reactions depends on the substrates. To the best of our 
knowledge, this is the first time to observe the reversed reactiv-
ity of high-valent metal-oxo species depending on reaction 
temperatures. 

In order to elucidate the reversed reactivity of 1 and 2 at 
different temperatures, the activation enthalpies (ΔH⧧) and 
entropies (ΔS⧧) of 1 and 2 were determined from the Eyring 
plots. As shown in Figure 3a, the ΔH⧧ values in the C-H acti-
vation reactions of 1 and 2 with CHD were determined to be 
10 and 6.1 kcal mol–1, respectively; the lower activation en-
thalpy value for 2 was expected because of the higher oxidiz-
ing power of 2 bearing an electron-deficient porphyrin.5 How-
ever, interestingly, the ΔS⧧ value of 1 was less negative than 
that of 2, such as –19 vs –35 cal K–1 mol–1 for 1 and 2, respec-
tively (Figure 3a). Then, according to the Gibbs free energy 
equation (eq 1),  

ΔG‡ = ΔH‡ – TΔS‡ (1) 
the ΔG⧧ values of 1 and 2 are determined by their ΔS⧧ values 
depending on temperatures. For example, although the ΔH⧧ of 
1 is larger than that of 2, the –TΔS⧧ value of 1 would be small-
er than that of 2 at high temperatures. As a result, the overall 
ΔG⧧ of 1 is compensated and becomes smaller than that of 2 at 
higher temperatures (e.g., > –20 oC), illustrating the higher 
reactivity of 1. In contrast, at low temperatures (e.g., < –30 oC), 
the –TΔS⧧ value is not large enough to compensate the greater 
ΔH⧧ of 1; therefore, ΔG⧧ of 1 becomes larger, giving a less 
reactivity of 1. This phenomenon is called the “enthal-
py−entropy compensation effect”,17 which is ubiquitous in 
various fields, such as micellization,18 microemulsion,19 and 

solution thermodynamics.20 Moreover, it has been discussed by 
Fujii, van Eldik, and their co-workers that the oxidation reac-
tions of Cpd I and Cpd II models can be controlled by the 
large contribution of the entropy term (i.e., –TΔS⧧) to the free 
energy of activation.21,22  

We also investigated the electron-transfer (ET) reactions 
with 1 and 2. In the ET reactions, the ΔS⧧ value is generally 
close to zero owing to the structureless transition state; there-
fore, the ET reaction is determined solely by the ΔH⧧ value.23 
Indeed, in the ET reactions of dibromoferrocene by 1 and 2,24 
the ΔS⧧ values are close to zero (Figure 3b; Table S3). In addi-
tion, the ΔH⧧ value of 2 is smaller than that of 1 (Figure 3b). 
Therefore, since ΔG⧧ of 2 is always smaller than that of 1, 2 is 
always more reactive than 1 irrespective of the reaction tem-
peratures (e.g., 0 oC ~ –60 oC). This result confirms that the 
reversed electronic effect shown in the C-H bond activation by 
1 and 2 results from the enthalpy−entropy compensation ef-
fect. 

In summary, we have reported for the first time that 
MnIV(O) porphyrins are capable of activating the C-H bonds 
of hydrocarbons, affording halogenated products in halogen-
containing solvents. We have also reported the first example 
showing the reversed reactivity of MnIV(O) porphyrins depend-
ing on reaction conditions. Our future studies will be focused 
on understanding the involvement of the highly reactive 
MnIV(O) porphyrin in catalytic oxidation reactions6 and the 
enthalpy−entropy compensation effect in oxidation reactions 
by other metal-oxo intermediates in heme and nonheme sys-
tems.  

ASSOCIATED CONTENT  
Supporting Information 
The Supporting Information is available free of charge via the 
Internet at http://pubs.acs.org.  

Scheme 2. Proposed Mechanism for the C-H Bond 
Activation Reaction by MnIV-Oxo Porphyrin 

 

 
Figure 3. Eyring plots for (a) the C-H activation of CHD and (b) 
the electron-transfer reaction of dibromoferrocene by 1 (red cir-
cles) and 2 (blue squares).  
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