Synthesis of Glucuronic, Mannuronic, and Galacturonic Acid-Derived Imidazoles as Inhibitors of Bovine Liver β -Glucuronidase

by Jagadish Pabba, Narinder Mohal, and Andrea Vasella*

Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, HCI, CH-8093 Zürich (phone: +41446325130)

The *gluco-*, *manno-*, and *galacto-*configured imidazopyridine-5-carboxylates 5-7, respectively, were synthesized and evaluated as inhibitors of bovine liver β -glucuronidase. The gluconolactam 15 was transformed into the *gluco-* and *manno-*imidazoles 5 and 6 in nine steps and in an overall yield of 9 and 12%, respectively. Oxidation and esterification of the selectively protected *gluco-* and *manno-*configured hydroxymethyl-imidazopyridines 23 and 25, respectively (both obtained from gluconolactam 15), provided the benzhydryl esters 24 and 26, respectively. Hydrogenolysis afforded the *gluco-*imidazopyridine-carboxylic acid 5 and the *manno-*isomer 6. Similarly, the hydroxymethyl-imidazopyridine 33, obtained from galactonolactam 27, was subjected to oxidation, esterification, and deprotection to afford the *galacto-*configured imidazopyridine-carboxylate 7 in ten steps from the galactonolactam 27 and in an overall yield of 13%. The *gluco-*configured imidazole 5 is the strongest known inhibitor of β -glucuronidases ($K_i = 12 \text{ nM}$), while the *manno-* and *galacto-*configured imidazoles 6 and 7 are micromolar inhibitors of bovine β -glucuronidase. The small difference between the inhibitory strength of the imidazopyridine-carboxylic acid 5 and the tetrazolopyridine-carboxylic acid 5, and the difference between the configurational selectivity of 5-7 as compared to the unselectivity of the corresponding lactams 3 and 4 are discussed.

Introduction. – Lactone-type inhibitors of retaining β -glycosidases possessing an annulated imidazole ring with a N-atom correctly located to mimic the glycosidic O-atom are stronger inhibitors¹) than the corresponding tetrazoles and triazoles²); they are also stronger inhibitors than the corresponding glyconolactams and hydroximolactams [3][6–14]. The strength of the inhibition by such N-heterocycles correlates with their basic properties and with the extent of their interaction with the catalytic acid of the glycosidases [2][10][11]. This correlation should also be valid for the inhibition of β -glucuronidases³), and imidazopyridine-5-carboxylates are expected to be stronger glycuronidase inhibitors than the corresponding known glycarolactam and tetrazolopyridine-5-carboxylates [17][18]. This expectation is also in agreement with the obser-

¹⁾ For reviews on glycosidase inhibitors, see [1][2].

^{2) 1,2,3-}Triazoles and imidazoles with an incorrectly located glycosidic heteroatom [3–5] are weak inhibitors of retaining β-glycosidases.

³) For other inhibitors of β-glucuronidases, see [15–17].

vation that β -glucuronidases, β -galactosidases, and β -mannosidases belong to the same family 2^4) of glycosidases.

We have recently reported the synthesis and evaluation of glycarolactams and tetrazolopyridine-5-carboxylates as inhibitors of bovine liver β -glucuronidase [17][18]. The tetrazolopyridine-5-carboxylate 1, glucaro-1,5-lactam 3, and galactaro-1,5-lactam 4 inhibit bovine liver β -glucuronidase to the same extent (K_i =25-32 nM), while the *galacto*-configured tetrazole 2 (K_i =6.3 μ M) is a *ca.* 200-fold weaker inhibitor of this enzyme than galactaro-1,5-lactam 4 [15][17]. We were, therefore, interested in the imidazopyridine-5-carboxylate 5, and in the *manno*- and *galacto*-configured analogues 6 and 7 to test the effect of the imidazole ring and of the configuration on the inhibition of bovine liver β -glucuronidase. We planned to prepare the *gluco*-configured imidazole 5 [17][18] either by annulating the imidazole ring to the glucaro-1,5-lactam 8 according to a known method [4][10], or by oxidising the selectively protected imidazole 23 that should be readily obtained from the gluconolactam 15 [4]. We expected the *manno*-configured isomer 6 as by-product of the synthesis of 5, while the *galacto*-configured imidazole 7 should be readily prepared from either the galactarolactam 14 or the galactonolactam 27 [17].

Results and Discussion. – We first attempted to synthesize the imidazopyridine-carboxylic acids 5–7 by annulating the imidazole ring to the glucaro-1,5-lactam 8 [17] and galactaro-1,5-lactam 14. Acetylation of 8 to 9, followed by thionation, yielded 79% of the thionolactam 10 (*Scheme 1*). However, treatment of 10 with aminoacetaldehyde dimethyl acetal in the presence of $Hg(OAc)_2$ [4] [10] led only to the 2,3,6-trisubstituted pyridine 11 by β-elimination of the AcO and of the BnO group; the desired amidine was not observed. Similar β-eliminations of uronic acid derivatives were first reported by *Kiss* [20]. They are also catalysed by lyases in the course of the degradation of some polysaccharides and glycosaminoglycans [21]. To suppress the facile elimination of the AcO group at C(4), we replaced it by a Et₃SiO (TESO) group. The silyl ether 12 indeed reacted with aminoacetaldehyde dimethyl acetal to provide a mixture of amidines 13. This mixture, however, decomposed upon mild treatment with TsOH·H₂O or BF₃·Et₂O. The known galacturonic acid-derived methoxymethyl acetal 14 [17] decomposed already upon treatment with *Lawesson*'s reagent; not surprisingly, β-elimination

⁴⁾ Glycosidases are classified into families based on their sequence similarities [19]. A regularly updated database is available on the internet (http://afmb.cnrs-mrs.fr/CAZY/index.html).

Scheme 1

$$CO_2Et$$
 NH
 CO_2Et
 NH
 CO_2Et
 NH
 NH

a) Ac₂O, pyridine. b) Lawesson's reagent, toluene, 80°; 79% (from 8). c) NH₂CH₂CH(OMe)₂, Hg(OAc)₂, THF, 0°; 56%. d) 1. Et₃SiCl, pyridine, 60°; 2. Lawesson's reagent, toluene, 80°; 48%. e) NH₂CH₂CH(OMe)₂, Hg(OAc)₂, THF, 0°.

of this galacturonate, possessing an axial leaving group at C(4), occurred particularly readily. It is known that aminoacetaldehyde dimethyl acetals substituted with an electron-withdrawing group are less reactive towards thionolactams than the unsubstituted analogue [22][23]. The scope of this method for the formation of imidazopyridines from thionolactams and aminoacetaldehyde dimethyl acetals thus depends sensibly on the nucleophilicity of the acetal and of the intermediate amidine.

In view of these results we planned to prepare the glycarolactam-derived imidazopyridine-carboxylic acids 5-7 by oxidation of the HOCH₂ group of the partially protected imidazoles 23, 25, and 33. Thionation of the gluconolactam-derived diacetate 15 [4] (Scheme 2) gave the thionolactam 16 (99%) that was condensed with aminoacetaldehyde dimethyl acetal in the presence of Hg(OAc), [4][10] to the corresponding amidines. Their cyclisation in the presence of TsOH·H₂O in wet toluene was accompanied by deacetylation. Silylation of the crude with ⁱPr₃SiOTf gave a 1:1 mixture (52%) of the monosilylated gluco- and manno-imidazopyridines 17 and 185), besides minor amounts of the disilyl ethers 19 (14%) and 20 (13%). The mixture 17/18 was O-benzylated, and the epimeric benzyl ethers were separated by chromatography to provide the gluco-configured tribenzyl ether 21 (37%) and its manno-isomer 22 (37%). Desilylation of 21 gave the primary alcohol 23 (91%). It was oxidised with Jones' reagent, and the crude product was esterified by treatment with diphenyl diazomethane (Ph₂CN₂) to yield 70% of the benzhydryl ester **24**. Hydrogenolytic deprotection of **24** provided the gluco-configured imidazopyridine-carboxylate 5 (80%). Similarly, the manno-configured imidazole 22 was desilylated to the alcohol 25 (94%), which was oxi-

⁵) The direction of numbering of imidazopyridines (cf. 17/18 in Scheme 2) is opposite to that of pyranosides. Thus, the sides above and below the plane of the imidazoles, as defined by clockwise and counterclockwise numbering, are interchanged relative to those defined by carbohydrate nomenclature.

a) Lawesson's reagent, toluene, 80°; 99%. *b*) 1. NH₂CH₂CH(OMe)₂, Hg(OAc)₂, THF; 2. TsOH·H₂O, toluene/H₂O 10:1, 64°; 3. ⁱPr₃SiOTf, 1*H*-imidazole, DMF; 52% of **17/18** (1:1), 14% of **19**, and 13% of **20**. *c*) BnBr, NaH, DMF; 37% of **21** and 37% of **22**. *d*) Bu₄NF·3 H₂O, THF; 91% of **23**; 94% of **25**. *e*) 1. *Jones*' oxidation; 2. Ph₂CN₂, acetone; 70% of **24**; 73% of **26**. *f*) H₂, 10% Pd/C, EtOH; 80% of **5**; 99% of **6**.

dised and transformed into the benzyhydryl ester **26** in 73% yield. Catalytic hydrogenolysis of **26** provided the *manno*-configured imidazopyridine-carboxylate **6** (99%).

The *galacto*-configured selectively *O*-benzylated imidazopyridine **33** was prepared from the partially benzylated galactono-1,5-lactam **27** [17] (*Scheme 3*). Acetylation of **27** to the diacetate **28** (99%), treatment with *Lawesson*'s reagent to afford the thionolactam **29** (85%), and annulation of the imidazole ring as described for **16** provided the dihydroxyimidazopyridine **30**. Regioselective silylation of **30** to **31** (84%), followed by *O*-benzylation, provided the tribenzyl ether **32** (66%) that was desilylated to yield 85% of the desired primary alcohol **33**. It was similarly oxidized as described for **23** and **25**, and the resulting acid was transformed into the benzhydryl ester **34** that was obtained in 34% yield besides unreacted alcohol **33**⁶) (18%). Hydrogenolysis of **34** gave the fully deprotected p-galacto-imidazopyridine-carboxylate **7** (98%).

The structure of the 2,3,6-trisubstituted pyridine **11** was deduced from 1 H-NMR ds at 6.89 (H–C(4)) and 7.42 (H–C(5)) ppm with a J(4,5) = 8.0 Hz. Formation of the benzhydryl esters **24**, **26**, and **34** is evidenced by the 13 C s (C=O) at 166.90 (**24**), 167.12 (**26**), and 166.35 ppm (**34**), the 13 C-NMR d (Ph₂CH) at 75.25 (**24**), 77.91 (**26**), and 78.39 ppm (**34**), the 14 H-NMR s (Ph₂CH) at 6.74 (**24**), 6.79 (**26**), and 6.98 ppm (**34**), the disappearance of H_2 C-C(5) 14 H-signals, and a strong C=O IR band (see *Exper. Part*). The *gluco-*

⁶⁾ Longer duration of the oxidation led to unidentified side products.

a) Ac₂O, pyridine; 99%. b) Lawesson's reagent, toluene, 80° ; 85%. c) 1. NH₂CH₂CH(OMe)₂, Hg(OAc)₂, THF, 0° ; 2. TsOH·H₂O, toluene/H₂O 12:3, 75° . d) 'Bu(Me)₂SiCl, Et₃N, 4-(dimethylamino)pyridine (DMAP), DMF; 84% from **29**. e) BnBr, NaH, DMF; 66%. f) Bu₄NF·3 H₂O, THF, 0° ; 85%. g) 1. CrO₃, 1M H₂SO₄, acetone; 2. Ph₂CN₂, acetone; 34% of **34**, and 18% of **33**. h) H₂ (6 bar), 10% Pd/C, MeOH/H₂O 2:1; 98%.

configured imidazopyridine **24** adopts predominantly the 7H_6 conformation in CDCl₃ as evidenced by J(5,6)=3.0, J(6,7)=5.1, and J(7,8)=3.3 Hz. The 6H_7 conformer of **24** is destabilised by the steric interaction between the substituents at C(5) and C(6). The coupling constants of the *manno*-imidazopyridine **26** could not be determined due to signal overlap, and we tentatively assigned the 7H_6 conformation to **26** by analogy to the *gluco*-configured **24**. The *galacto*-configured imidazopyridine **34** exists as a *ca*. 1:3 mixture of 7H_6 and 6H_7 conformers as evidenced by J(5,6)=4.7, J(6,7)=1.9, and J(7,8)=8.1 Hz (*Table 3* in *Exper. Part* and modelling with MM3*). Similar to their tetrazolopyridine analogues [17], the deprotected imidazopyridine-carboxylic acids **5**–**7** adopt the 6H_7 conformation in D₂O (for J(H,H)) see *Table 3* in *Exper. Part*).

Enzymatic Tests and Discussion. – The imidazopyridine-carboxylic acids **5**–**7** were tested as inhibitors of bovine liver β -glucuronidase (acetate buffer, 30°, pH 5.0) with 4-nitrophenyl β -D-glucuronide as substrate. The inhibition data (K_i) and the pK values of the inhibitors are summarized in *Table 1*.

Table 1. Comparison of the K_i Values [μM] of the Inhibition of β -Glucuronidase from Bovine Liver by the Imidazoles $\mathbf{5}$, $\mathbf{6}$, and $\mathbf{7}$, and the Tetrazoles $\mathbf{1}$ and $\mathbf{2}$ at pH 5.0 and 5.7

	рН	Imidazoles			Tetrazoles		
		5	6	7	1	2	
pK_{HA}		6.5	6.6	6.6	2.53a)	2.52a)	
$K_{\rm i}$	5.0	0.012 $(\alpha = 2.4)$	14.0 (non-competitive)	6.7 ($\alpha = 1.3$)	0.025^{a}) $(\alpha = 1.9)$	6.3^{a}) $(\alpha = 5.4)$	
	5.7	0.007b)	5.85 ^b)	3.25 ^b)	,	,	

 $^{^{\}rm a})$ Data taken from [17]. $^{\rm b})$ IC50/2 in $\mu \rm M$.

The *gluco*-imidazopyridine-carboxylic acid $\mathbf{5}$ (K_i =12 nm) inhibits β -glucuronidase from bovine liver only two times more strongly than the corresponding tetrazole $\mathbf{1}$. The *galacto*-isomer $\mathbf{7}$ (K_i =6.7 µm) is a much weaker inhibitor of this glucuronidase. However, there is again only a small difference between the inhibition by the (*galacto*) imidazopyridine $\mathbf{7}$ and the corresponding tetrazolopyridine $\mathbf{2}$ (6.3 µm). The configurational selectivity of the inhibition by the *gluco*-imidazopyridine $\mathbf{5}$ is further demonstrated by a K_i value of 14 µm for the *manno*-imidazopyridine $\mathbf{6}$ that is three orders of magnitude weaker than $\mathbf{5}$, similarly as the *galacto*-isomer $\mathbf{7}$.

Increasing the pH of the assay from 5.0 and 5.77 improves the inhibition by each one of the imidazopyridines 5–7 ca. twofold ($Table\ 1$). This rather slight increase of the inhibition suggests that 5–7 exist largely as zwitterions at these pH values ($Schemes\ 2$ and 3). This is in keeping with the p K_{HA} values⁸) for 5 (6.5), 6 (6.6), and 7 (6.6). Although only somewhat stronger than the corresponding tetrazolopyridine 1, the gluco-imidazopyridine 5 is the strongest known inhibitor of β -glucuronidases.

The strong configurational dependence of the inhibition of bovine liver β -glucuronidase by the imidazopyridines **5**–**7** and by the tetrazolopyridines **1** and **2** contrasts surprisingly with the absence of a dependence on the configuration at C(4) of the inhibition by the glucaro-1,5-lactam **3**⁹) and galactaro-1,5-lactam **4** ($K_i \approx 30 \text{ nm}$) [17]; it is rationalised by the higher flexibility of the lactams. Such a difference between the configurational selectivity of azoles and lactams is not observed for family-1 glucosidases [4][9][10][25][26], while the configurational selectivity of these types of inhibitors for glycosidases belonging to other families is not known. The different configurational selectivities for lactams and azoles suggest that the restriction of flexibility may increase the selectivity both of inhibitors mimicking the reactive intermediate and those mimicking the reactive conformation of the substrate [27].

Both bovine liver β -glucuronidase and $E.\ coli\ \beta$ -galactosidase belong to family 2. Similar to the inhibition of bovine liver β -glucuronidase, the inhibition of $E.\ coli\ \beta$ -galactosidase is sensitive to the configuration at C(4). The *galacto*-imidazopyridine **36** is a very strong inhibitor of $E.\ coli\ \beta$ -galactosidase, while the *gluco*-isomer **35** is inactive (*Fig.*) [9]; this configurational selectivity appears to be a characteristic feature of glycosidases of family 2.

The above mentioned small difference between the inhibition of bovine liver β -glucuronidase by the tetrazolopyridine **1** and the imidazopyridine **5** contrasts with the large difference between the inhibition of glucosidases of family 1 by analogous imidazo- and tetrazolopyridines. Thus, the β -glucosidases from sweet almonds and from *Caldocellum saccharolyticum* are inhibited *ca.* 1500- and 3000-fold more strongly by the *gluco*-configured imidazopyridine **35** [10] (*Fig.*) than by the tetrazolopyridine **37** [4]. This difference was explained by the much stronger interaction of the imidazole with the catalytic acid of the enzyme. The similar inhibition of bovine liver β -glucuronidase by the tetrazolopyridine **1** and the imidazopyridine **5** suggests that the interaction of **5** with the catalytic acid of the enzyme is impaired by the protonation of the imi-

⁷⁾ The pH optimum of the related rat liver β-glucuronidase is 5.1 [24]; hydrolysis of the substrate was very slow above pH 5.7.

⁸⁾ A single inflection of the titration curve was observed between pH values 2.0 and 7.0.

⁹) The inhibition by mannaro-1,5-lactams and the corresponding tetrazoles is not known.

Figure. Inhibition (K_i in μM) of β -Galactosidase from E. coli by the Imidazoles 35 and 36 [9][28] and of β -Glucosidases from Sweet Almonds and Caldocellum saccharolyticum by the Imidazole 35 and the Tetrazole 37 [4][10]

dazole in its zwitterionic form. We assume that **1** interacts with both the catalytic acid and the catalytic nucleophile, while the zwitterionic form of **5** does not interact with the catalytic acid, but particularly strongly with the catalytic nucleophile. In agreement with this rationalisation, the interaction of the tetrazolopyridine **37** with the catalytic acid and the catalytic nucleophile of a β -glucosidase was indeed estimated as ca. 2 kcal/mol each, cooperativity increasing the effect, while the interaction of the protonated imidazopyridine **35** with the catalytic nucleophile was estimated as ca. 6 kcal/mol [2].

We thank the *Swiss National Foundation* and *F. Hoffmann La Roche*, Basel, for generous support, *M. Schneider* and *P. Kälin* for the pK_{HA} determination, and Dr. *B. Bernet* for checking the manuscript.

Experimental Part

General. See [17].

6-Ethyl 4-O-Acetyl-5-amino-2,3-di-O-benzyl-5-deoxy-D-glucarate-1,5-thiolactam (10). A soln. of 8 (20 mg, 0.05 mmol) in pyridine (2 ml) and Ac₂O (1 ml) was kept for 2 h and evaporated. A soln. of the residue (i.e., 9) and Lawesson's reagent (20 mg, 0.05 mmol) in toluene (2 ml) was heated to 80°, and stirred for 30 min. Normal workup (AcOEt/H₂O) and FC (AcOEt/hexane 1:4) gave 10 (18 mg, 79%). $R_{\rm f}$ (AcOEt/cyclohexane 1:4) 0.46. ¹H-NMR (300 MHz, CDCl₃): 8.34 (br. s, NH); 7.38–7.26 (m, 10 arom. H); 5.33 (dd, J=8.1, 3.0, H−C(4)); 4.90 (d, J=11.5, PhCH); 4.68 (d, J=11.8, PhCH); 4.60 (d, J=12.4, PhCH); 4.55 (d, J=11.8, PhCH); 4.48 (d, J≈3.0, H−C(2)); 4.43 (dd, J=8.1, 2.1, H−C(5)); 4.21 (d, d=7.2, MeCH₂O); 3.84 (d, d=3.1, H−C(3)); 2.05 (d, AcO); 1.25 (d, d=7.2, d=7.2.

Ethyl 5-(Benzyloxy)-6-[(2,2-dimethoxyethyl)amino]pyridine-2-carboxylate (11). A soln. of 10 (18 mg, 0.04 mmol) in THF (3 ml) was cooled to 0°, treated with Hg(OAc)₂ (64 mg, 0.04 mmol) and H₂NCH₂CH(OMe)₂ (22 μl, 0.2 mmol), stirred for 2 h, diluted with Et₂O (5 ml), filtered through *Celite*, and evaporated. FC (AcOEt/cyclohexane 1:4) gave 11 (8 mg, 56%). $R_{\rm f}$ (AcOEt/cyclohexane 1:1) 0.50. ¹H-NMR (300 MHz, CDCl₃): 7.42 (d, J=8.0, H-C(5)); 7.39-7.37 (m, 5 arom. H); 6.89 (d, J=8.0, H-C(4)); 5.29 (t, J=5.8, NH); 5.12 (t, PhCH₂); 4.56 (t, J=5.4, OCHO); 4.35 (t, J=7.2, MeCH₂O); 3.71 (t, J=5.4, NHCH₂); 3.44 (t, 2 MeO); 1.38 (t, J=7.2, t

6-Ethyl 5-Amino-2,3-di-O-benzyl-5-deoxy-4-O-(triethylsilyl)-D-glucarate-1,5-thiolactam (12). A soln. of 8 (35 mg, 0.09 mmol) and Et₃SiCl (75 μl, 0.44 mmol) in pyridine (2 ml) was heated to 60°, stirred for 2 h, cooled to 25°, and evaporated. A soln. of the crude (45 mg) in toluene (2 ml) was treated with *Lawesson*'s reagent (35 mg, 0.09 mmol), heated to 80°, and stirred for 30 min. Normal workup (AcOEt/H₂O)

and FC (AcOEt/hexane 1:4) gave 12^{10}) (22 mg, 48%). R_f (AcOEt/cyclohexane 1:4) 0.62. ¹H-NMR (300 MHz, CDCl₃): 8.24 (br. s, NH); 7.41–7.23 (m, 10 arom. H); 4.93 (d, J=11.5, PhCH); 4.71 (d, J=11.8, PhCH); 4.57 (d, J=11.2, PhCH); 4.51 (br. d, J \approx 2.8, H–C(2)); 4.39 (d, J =11.2, PhCH); 4.36–4.29 (hidden signal, H–C(5)); 4.29 (q, J=7.2, MeCH₂O); 4.13 (dd, J=7.5, 3.1, H–C(4)); 3.75 (t, J=3.1, H–C(3)); 1.30 (t, J=7.2, MeCH₂O); 0.91 (t, J=8.1, (MeCH₂)₃Si); 0.57 (q, J=7.8, (MeCH₂)₃Si).

2,6-Di-O-acetyl-5-amino-3,4-di-O-benzyl-5-deoxy-D-glucono-1,5-thiolactam (16). A soln. of 15 (988 mg, 2.24 mmol) and Lawesson's reagent (580 mg, 1.43 mmol) in toluene (6 ml) was heated to 80°, and stirred for 45 min. Normal workup (AcOEt/H₂O/brine) and FC (AcOEt/hexane 3:7) gave 16 (1.1 g, 99%). Light-yellow solid. $R_{\rm f}$ (AcOEt/hexane 3:7) 0.12. M.p.: $123-124^{\circ}$. $[a]_{\rm D}^{125}=+133.7$ (c=0.44, CHCl₃). IR (CHCl₃): 3361w, 2962w, 2914w, 1742s, 1513s, 1455w, 1371m, 1311w, 1263m, 1241s, 1070s, 1044m, 1026m, 808w. 1 H-NMR (300 MHz, CDCl₃): 8.06 (br. d, J=12.6, NH); 7.38-7.24 (m, 10 arom. H); 5.60 (d, J=8.1, H-C(2)); 4.80 (d, J=11.4, PhCH); 4.77 (br. s, PhCH₂); 4.56 (d, J=11.1, PhCH); 4.36 (dd, J=12.0, 4.5, H-C(6)); 3.95 (t, J=7.8, H-C(3)); 3.93 (dd, J=12.0, 3.0, H'-C(6)); 3.73 (t, J=8.1, H-C(4)); 3.69-3.67 (m, H-C(5)); 2.11, 2.06 (2s, 2 AcO). 13 C-NMR (75 MHz, CDCl₃): 198.55 (s, C=S); 170.00, 169.93 (2s, 2 C=O); 137.43, 136.89 (2s); 128.68 (2d); 128.58 (2d); 128.51 (2d); 128.38 (d); 128.09 (3d); 79.67 (d, C(3)); 75.99, 75.89 (2d, C(2), C(4)); 74.36 (t, 2 PhCH₂); 62.77 (t, C(6)); 57.72 (d, C(5)); 21.13, 20.79 (2q, 2 Me). HR-MALDI-MS: 480.1443 ($[M+Na]^+$, $C_{24}H_{27}NNaO_6S^+$; calc. 480.1451). Anal. calc. for $C_{24}H_{27}N_2O_6S$ (457.55): C 63.00, H 5.95, N 3.06; found: C 62.81, H 6.01, N 3.06.

Preparation of the Imidazopyridines **17–20**. A soln. of **16** (944 mg, 2.06 mmol) in THF (4 ml) was treated with Hg(OAc)₂ (1.26 g, 3.97 mmol) and NH₂CH₂CH(OMe)₂ (1.1 ml, 10.2 mmol), and stirred for 45 min. The mixture was treated with H₂O (5 ml), extracted with AcOEt (3×50 ml), washed with H₂O (25 ml), sat. aq. NaHCO₃ soln. (10 ml), dried (Na₂SO₄), and evaporated. A soln. of the residue (942 mg) in toluene/H₂O 10:1 (20.2 ml) was treated with TsOH·H₂O (880 mg, 4.58 mmol), stirred at 64° for 19 h, treated with sat. aq. NaHCO₃ soln. (5 ml), and extracted with AcOEt (2×50 ml). The combined org. layers were washed with brine, dried (Na₂SO₄), and evaporated. A soln. of the residue (320 mg, 0.86 mmol) in DMF (2 ml) was cooled to 3°, treated with 1*H*-imidazole (168 mg, 0.1 mmol) and $^{\rm i}$ Pr₃SiOTf (0.197 ml, 0.105 mmol), warmed to 25°, and stirred for 18 h. Normal workup (AcOEt/H₂O/brine) and FC (AcOEt/hexane 1:4 → 1:1) gave **19** (81 mg, 14%), **20** (74 mg, 13%) and an inseparable 1:1 mixture of **17** and **18** (234 mg, 52%).

Data of (5R,6R,7S,8S)-6,7-Bis(benzyloxy)-5,6,7,8-tetrahydro-8-(triisopropylsilyloxy)-5-[(triisopropylsilyloxy)methyl]imidazo[1,2-a]pyridine (19). Colourless oil. $R_{\rm f}$ (AcOEt/hexane 1:4) 0.29. $[a]_{\rm D}^{25} = +46.9 \ (c=1.25, {\rm CHCl_3})$. IR (CHCl₃): 3160w, 3090w, 3067w, 2945s, 2892s, 2867s, 1682w, 1534w, 1496w, 1463m, 1384w, 1365w, 1319w, 1290w, 1262w, 1094s, 1067s, 1028w, 1014m, 996m, 909m, 883m, 843s. 1 H-NMR (300 MHz, CDCl₃): see Table 2; additionally, $7.41-7.27 \ (m, 10 \ {\rm arom. H})$; $7.22 \ (d, J=0.9)$, $7.01 \ (d, J=1.5) \ (H-C(2), H-C(3))$; $4.74 \ (d, J=11.7, {\rm PhC}H)$; $4.65 \ (d, J=11.4, {\rm PhC}H)$; $4.58 \ (d, J=12.0, {\rm PhC}H)$; $4.44 \ (d, J=11.7, {\rm PhC}H)$; $1.17-0.97 \ (m, 2 \ ({\rm Me_2CH})_3{\rm Si})$. $^{13}{\rm C}$ -NMR (75 MHz, CDCl₃): see Table 2; additionally, 137.68, $137.62 \ (2s)$; $128.38 \ (2d)$; $128.56 \ (2d)$; $127.92 \ (3d)$; $127.84 \ (d)$; $127.72 \ (2d)$; $127.67 \ (d, {\rm C(2)})$; $117.54 \ (d, {\rm C(3)})$; 72.14, $72.09 \ (2t, 2 {\rm PhCH_2})$; 18.26, 18.12, $18.05 \ (3q, 2 \ ({\rm Me_2CH})_3{\rm Si})$; 12.58, $12.5 \ (2d, 2 \ ({\rm Me_2CH})_3{\rm Si})$. HR-MALDI-MS: $693.4464 \ ([M+H]^+, {\rm C}_{40}{\rm H}_{65}{\rm N_2O_4}{\rm Si}_2^+$; calc. 693.4477).

Data of (5R,6R,7S,8R)-6,7-Bis(benzyloxy)-5,6,7,8-tetrahydro-8-(triisopropylsilyloxy)-5-[(triisopropylsilyloxy)methyl]imidazo[1,2-a]pyridine (20). Colourless oil. $R_{\rm f}$ (AcOEt/hexane 1:4) 0.19. $[a]_{\rm D}^{25}=-21.5$ (c=0.62, CHCl₃). IR (CHCl₃): 3158w, 2945s, 2892s, 2867s, 1496w, 1463m, 1384w, 1367w, 1316w, 1273w, 1134m, 1099s, 1072m, 1051w, 1014m, 997m, 910s, 884m, 836s. 1 H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.41–7.27 (m, 10 arom. H); 7.19, 6.98 (2d, J=1.2, H–C(2), H–C(3)); 4.97 (d, J=11.4, PhCH); 4.85 (d, J=11.7, PhCH); 4.73 (d, J=11.1, PhCH); 4.67 (d, J=11.4, PhCH); 1.21–0.96 (m, 2 (Me₂CH)₃Si)). 13 C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 137.96,

¹⁰⁾ The thionolactam 12 was transformed to the amidine 13 by treating with H₂NCH₂CH(OMe)₂ and Hg(OAc)₂.

19 20 21 23 25 31 32 33 H-C(5)4.32 4.00 4.18 - 4.104.09 - 4.014.09 4.05 4.15 4.34 4.42 4.09 - 4.01HC-C(5)4.18 3.85 4.18 - 4.104.05 3.98 4.19 4.13 4.14 - 4.06H'C-C(5) 3.98 3.93 3.79 3.70 3.96 3.89 4.02 3.95 4.03 H-C(6)3.64 4.18 - 4.103.87 4.19 4.30 4.35 4.51 4.38 4.45 H-C(7)4.11 3.80 3.84 3.88 4.12 3.96 3.97 4.08 4.12 H-C(8)5.11 5.24 4.74 4.81 4.75 4.81 4.84 4.80 4.76 J(5,CH) 2.7 2.7 a) a) 3.0 4.4 2.8 3.6 4.1 J(5,CH') 7.5 8.4 6.0 7.2 7.2 6.0 6.5 8.1 10.7 J(CH,CH') 10.8 10.2 10.5 10.5 12.0 11.7 10.0 10.9 11.8 J(5,6)7.2 a) 7.2 7.2 6.9 6.3 8.1 4.4 5.6 J(6,7)2.7 9.3 7.5 9.3 7.5 9.3 2.2 1.9 1.6 3.3 J(7,8)2.4 5.7 3.3 5.7 3.0 5.6 4.4 3.9 C(5)59.37 62.18 60.09 62.10 59.39 61.68 58.66 59.70 58.04 $CH_2-C(5)$ 63.34 65.84 63.66 64.99 60.85 63.35 64.24 64.15 62.18 78.40 74.22b) 74.01 74.13b) 70.96 C(6)73.29 74.11 67.67 71.64 82.36 C(7)82.03 81.71 80.34 81.49 80.03 80.57 77.73 76.46 75.70b) C(8)66.31 64.28 75.65^b) 67.92 68.23 72.80 73.67 73.54 145.24 144.87 143.86 142.84 144.01 143.15 143.31 141.86 142.51 C(8a)

Table 2. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz], and ¹³C-NMR Chemical Shifts [ppm] of the Protected Imidazoles 19–23, 25, and 31–33 in CDCl₃

137.85 (2s); 128.56 (2d), 128.49 (d); 128.39 (2d); 128.27 (2d); 127.87 (d); 127.70 (2d); 127.58 (d, C(2)); 119.55 (d, C(3)); 74.72, 72.04 (2t, 2 PhCH₂); 18.32, 18.13, 18.12 (3q, 2 (Me_2 CH)₃Si); 12.64, 11.89 (2d, 2 (Me_2 CH)₃Si). HR-MALDI-MS: 693.4464 ([M+H] $^+$, C₄₀H₆₅N₂O₄Si $_2^+$; calc. 693.4477).

Data of (5R,6R,7S,8S)- and (5R,6R,7S,8R)-6,7-Bis(benzyloxy)-5,6,7,8-tetrahydro-5-[(triisopropylsi-lyloxy)methyl]imidazo[1,2-a]pyridin-8-ol (**17** and **18**, resp.). Colourless oil. *R*_f (AcOEt/hexane 1:1) 0.48. IR (CHCl₃): 3067w, 3031w, 3012w, 2945s, 2892s, 2868s, 1603w, 1496w, 1455m, 1363w, 1309w, 1268w, 1166w, 1110s, 1066w, 1028m, 882m. ¹H-NMR (300 MHz, CDCl₃; **17/18** 1:1): 7.41-7.27 (*m*, 20 arom. H); 7.18, 7.13, 7.03 (2 H) (3*d*, *J* = 1.2, H-C(2), H-C(3)); 5.36 (*d*, *J* = 3.3, H-C(8) of **18**); 5.18 (*d*, *J* = 11.4), 5.12 (*d*, *J* = 11.7), 5.04 (*d*, *J* = 11.4), 4.97 (*d*, *J* = 11.4) (2 PhCH₂); 4.85 (*d*, *J* = 6.9, H-C(8) of **17**); 4.87 (*d*, *J* = 11.4), 4.77 (*d*, *J* = 11.4), 4.74 (*d*, *J* = 11.4), 4.67 (*d*, *J* = 11.7) (2 PhCH₂); 4.26 (*dd*, *J* = 11.7, 4.5), 4.17-4.04 (*m*), 4.01-3.84 (*m*) (H-C(5), H-C(6), H-C(7), H₂C-C(5)); 1.14-0.90 (*m*, (Me₂CH)₃Si). ¹³C-NMR (75 MHz, CDCl₃; **17/18** 1:1): 147.58, 146.55 (2*s*, C=N); 138.88, 138.42, 138.35, 138.16 (4*s*); 129.19-128.05 (several *d*, including C(2)); 118.86, 117.55 (2*d*, C(3)); 83.38, 79.99 (2*d*, C(7)); 75.42, 75.34, 75.13, 75.01 (4*t*, 2 PhCH₂); 73.85, 72.00 (2*d*, C(6)); 67.56, 62.40 (2*d*, C(8)); 65.49, 63.99 (2*t*, CH₂-C(5)); 61.60, 61.19 (2*d*, C(5)); 18.30 (*q*, (Me₂CH)₃Si); 12.14, 12.09 (2*d*, (Me₂CH)₃Si).

Benzylation of 17/18. A soln. of 17/18 1:1 (282 mg, 0.53 mmol) in DMF (5 ml) was cooled to 0° , treated with NaH (50% suspension in oil, 100 mg, 8.33 mmol) and BnBr (0.1 ml), stirred for 16 h, treated with MeOH (1 ml), and evaporated. Normal workup (AcOEt/H₂O/brine) and FC (AcOEt/hexane 1:4) gave 21 (123 mg, 37%) and 22 (125 mg, 37%).

Data of (5R,6R,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydro-5-[(triisopropylsilyloxy)methyl]-imidazo[1,2-a]pyridine (**21**). Light-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.64. $[a]_{\rm D}^{\rm D5}$ + 63.6 (c = 1.35, CHCl₃). IR (CHCl₃): 3067w, 3032w, 3010w, 2946s, 2868s, 1603w, 1496w, 1455m, 1363m, 1332w, 1220w, 1091s, 1028m, 882w. ¹H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.47–7.26 (m, 15 arom. H); 7.21 (d, J = 1.2), 7.13 (d, J = 1.5) (H–C(2), H–C(3)); 5.26 (d, J = 11.8, PhCH); 4.93 (d, J = 11.7, 2 PhCH); 4.85 (d, J = 11.1, PhCH); 4.60 (d, J = 11.1, 2 PhCH); 1.10–0.99 (m, (Me₂CH)₃Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 138.26, 137.80, 137.62 (3s); 129.23 (d, C(2));

^a) Not assigned. ^b) Assignments may be interchanged

128.40 – 127.49 (several d); 117.68 (d, C(3)); 74.28, 74.18 (3t, 3 PhCH₂); 18.12 (g, (Me_2 CH)₃Si); 12.01 (d, (Me_2 CH)₃Si). HR-MALDI-MS: 627.3602 ([M + Na]⁺, C₃₈H₅₁N₂O₄Si⁺; calc. 627.3613). Anal. calc. for C₃₈H₅₀N₂O₄Si (626.34): C 72.93, H 8.00, N 4.53; found: C 72.80, H 8.04, N 4.47.

Data of (5R,6R,7S,8R)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydro-5-[(triisopropylsilyloxy)methyl]-imidazo[1,2-a]pyridine (22). Colourless oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.39. $[a]_{\rm D}^{25}=-40.1$ (c=1.35, CHCl₃). IR (CHCl₃): 3068w, 2945s, 2868s, 1604w, 1496w, 1455m, 1366w, 1269w, 1108s, 1027m, 915w, 882m. 1 H-NMR (300 MHz, CDCl₃): see Table 2; additionally, 7.47–7.27 (m, 15 arom. H); 7.24 (d, J=1.2), 7.08 (d, J=1.5) (H–C(2), H–C(3)); 5.07 (d, J=11.8, PhCH); 4.76 (d, J=11.4, PhCH); 4.73 (d, J=11.1, PhCH); 4.69 (d, J=12.0, PhCH); 4.67 (d, J=12.0, PhCH); 4.57 (d, J=12.0, PhCH); 1.06–0.97 (m, (Me₂CH)₃Si). 13 C-NMR (75 MHz, CDCl₃): see Table 2; additionally, 138.16, 138.10, 137.89 (3s); 128.47 (d, C(2)); 128.43–127.56 (several d); 119.52 (d, C(3)); 75.00, 71.59, 70.32 (3t, 3 PhCH₂); 17.94 (d, (d₂CH)₃Si); 11.79 (d, (Me₂CH)₃Si). HR-MALDI-MS: 627.3622 ([d₂H+H]+, C_{3g}H₅₁N₂-O₄Si+; calc. 627.3613). Anal. calc. for C_{3g}H₅₀N₂O₄Si (626.91): C 73.29, H 8.05, N 4.62; found: C 72.80, H 8.04, N 4.47.

(5R,6R,78,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-methanol (23). A soln. of 21 (123 mg, 0.196 mmol) in THF (2 ml) was cooled to 0°, treated with Bu₄NF·3 H₂O (89 mg, 0.28 mmol), and stirred for 1.5 h. Evaporation and FC (AcOEt/hexane 1:1 → AcOEt → MeOH/AcOEt 1:9) gave 23 (84 mg, 91%). Colourless solid. $R_{\rm f}$ (AcOEt/hexane 4:1) 0.17. M.p. 144–146°. [α]²⁵ = +68.2 (c=0.72, CHCl₃). IR (CHCl₃): 3410w, 3067w, 2963w, 2892w, 2867s, 1604w, 1496w, 1483w, 1454w, 1362w, 1262w, 1090s, 1070s, 1028w. ¹H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.42–7.27 (m, 15 arom. H); 7.14 (d, J=1.8), 7.05 (d, J=1.5) (H−C(2), H−C(3)); 5.17 (d, J=11.4, PhCd); 4.89 (d, J=11.7, 2 PhCd); 4.83 (d, J=11.4, PhCd); 4.70 (d, J=11.1, PhCd); 4.62 (d, J=11.4, PhCd); 2.05 (br. s, OH). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 138.04, 137.61, 137.52 (3s); 129.25 (d, C(2); 128.45–127.55 (several d); 116.98 (d, C(3)); 74.12, 74.06, 72.79 (3t, 3 PhCH₂). HR-MALDI-MS: 471.2287 ([M+H]⁺, C₂₉H₃₁N₂O₄⁺; calc. 471.2278). Anal. calc. for C₂₉H₃₀N₂O₄ (470.55): C 74.02, H 6.43, N 5.95; found: C 74.04, H 6.55, N 5.90.

(5R,6R,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-Diphenylmethyl carboxylate (24). A soln. of 23 (65 mg, 0.138 mmol) in acetone (10 ml) was treated with Jones' reagent (0.25 ml, 0.7M aq. soln.), stirred for 1 h, treated with PrOH, and evaporated. A soln. of the residue in H₂O (5 ml) was extracted with AcOEt (3×50 ml). The combined org. layers were washed with brine (5 ml), dried (Na₂SO₄), and evaporated. A soln. of the residue in acetone (5 ml) was treated with Ph₂CN₂ (85 mg, 0.44 mmol) and stirred for 1 h. Evaporation and FC (AcOEt/hexane 1:4) gave 24 (63 mg, 70%). Colourless oil. R_f (AcOEt/hexane 2:3) 0.42. $[\alpha]_D^{25} = +49.3$ (c = 2.2, CHCl₃). IR (CHCl₃): 3063w, 3032m, 3013w, 2966w, 2866w, 1738s, 1602m, 1496m, 1454w, 1265s, 1213s, 1087s, 1003m, 909w, 821w. ¹H-NMR (300 MHz, CDCl₃): see *Table 3*; additionally, 7.38–7.18 (m, 24 arom. H, H–C(3)); 6.96 (br. dd, J=7.8, 1.5, 1 arom. H); 6.84 (d, J=1.2, H-C(2)); 6.74 (s, Ph₂CH); 5.12 (d, J=12.0, PhCH); 4.97 (irrad. at $4.50 \rightarrow s$); 4.84 (d, J=12.0, PhCH); 4.72 (d, J=12.0, PhCH); 4.52 (d, J=12.0, PhCH); 4.50 (irrad. at $4.97 \rightarrow d$, J=5.1); 4.19 (d, J=12.3, PhCH); 4.10 (d, J=12.3, PhCH); 4.07 (irrad. at $4.50 \rightarrow d$, J=3.3). ¹³C-NMR (75 MHz, CDCl₃): see *Table 3*; additionally, 139.43, 139.28, 138.28, 137.10, 135.03 (5s); 129.22 (d, C(2)); 128.57-126.98 (several d); 119.79 (d, C(3)); 75.25 (d, Ph_2CH); 72.47 (t, $PhCH_2$); 72.26 (t, $PhCH_2$). HR-MALDI-MS: 651.3 ($[M+H]^+$, $C_{42}H_{39}N_2NaO_5^+$; calc. 651.2853)

(5R,6R,78,8S)-5,6,7,8-Tetrahydro-6,7,8-trihydroxyimidazo[1,2-a]pyridine-5-carboxylic Acid (5). A soln. of **24** (48 mg, 0.74 mmol) in EtOH (5 ml) was treated with 10% Pd/C (30 mg), stirred under H₂ for 48 h, and filtered through *Celite* (washing with 5 ml of EtOH). After evaporation, the solid residue was washed several times with hot AcOEt. A soln. of the solid in H₂O was lyophilised to give **5** (13 mg, 80%). Colourless powder. $R_{\rm f}$ (AcOEt/MeOH/AcOH 7:2.8:2) 0.45. M.p. 238–244° (dec.). p $K_{\rm HA}$ =6.5. [α] $_{\rm D}^{25}$ = -13.9 (c=0.1, MeOH). IR (ATR): 3211m, 3148m, 2921m, 1617m, 1599m, 1530m, 1387m, 1297m, 1167m, 1083m, 1057m, 1011m, 879m. ¹H-NMR (300 MHz, D₂O): see *Table 3*; additionally, 7.41 (d, J=2.1), 7.25 (d, J=2.4) (H–C(2), H–C(3)). ¹³C-NMR (75 MHz, D₂O): see *Table 3*; additionally, 121.97, 120.31 (2d, C(2), C(3)).

(5R,6R,7S,8R)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-methanol (25). A soln. of 22 (125 mg, 0.199 mmol) in THF (2.5 ml) was cooled to 0°, treated with Bu₄NF·3 H₂O (95 mg,

Table 3. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz], and ¹³C-NMR Chemical Shifts [ppm] of the Protected Imidazoles **24**, **26**, and **34** in $CDCl_3$ and of the Deprotected Imidazoles **5**, **6**, and **7** in D_2O

	24	26	34	5	6	7
H-C(5)	4.69	4.83-4.81	4.75	4.61	5.08	4.88
H-C(6)	4.07	4.83 - 4.81	4.02	3.89a)	4.20	4.65
H-C(7)	4.50	3.89 - 3.85	4.59	4.21a)	4.78	4.00
H-C(8)	4.97	4.83 - 4.81	4.97	4.80	4.80	5.01
J(5,6)	3.0	b)	4.7	6.6	4.2	3.1
J(6,7)	5.1	b)	1.9	7.8	5.1	2.3
J(7,8)	3.3	b)	8.1	6.6	1.5	9.0
C=O	166.90	167.12	166.35	171.93	170.20	171.39
C(5)	60.40	61.49	58.45	62.04	62.25	63.69
C(6)	74.88c)	76.67°)	72.59	69.84	67.70	64.44
C(7)	78.54	78.88	78.48 ^c)	72.20	69.96	72.00
C(8)	70.01	68.88	75.52	65.65	62.62	69.30
C(8a)	142.64	143.52	143.95	144.05	144.13	144.65

a) Assignments may be interchanged. b) Not assigned. c) Assignments may be interchanged with the d of Ph₂CH (24: 75.25, 26: 77.91, 34: 78.39 ppm).

0.30 mmol), and stirred for 1 h. Evaporation and FC (AcOEt/hexane 1:1 \rightarrow AcOEt \rightarrow MeOH/AcOEt 1:9) gave **25** (88 mg, 94%). Colourless solid. $R_{\rm f}$ (AcOEt/hexane 4:1) 0.08. $[a]_{\rm D}^{25} = -80.6$ (c = 0.48, CHCl₃). IR (CHCl₃): 3397w, 3067w, 2941m, 2877w, 1603w, 1496m, 1454m, 1365m, 1263m, 1126s, 1090s, 1070s, 1027m, 912w. ¹H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.42–7.27 (m, 15 arom. H); 7.12 (d, J = 1.5), 7.01 (d, J = 1.5) (H–C(2), H–C(3)); 5.02 (d, J = 11.4, PhCH); 4.75 (d, J = 11.7, PhCH); 4.71 (d, J = 10.8, PhCH); 4.68 (d, J = 12.0, PhCH); 4.66 (d, J = 12.0, PhCH); 4.56 (d, J = 11.7, PhCH); 3.35 (br. s, OH). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 137.95, 137.83, 137.67 (3s); 129.15 (d, C(2); 128.38–127.55 (several d); 118.73 (d, C(3)); 74.84, 71.76, 70.76 (3t, 3 PhCH₂). HR-MALDI-MS: 471.2287 ([M + H] $^+$, $C_{29}H_{31}N_{2}O_{4}^+$; calc. 471.2278). Anal. calc. for $C_{29}H_{30}N_{2}O_{4} \cdot 0.25$ H₂O (475.06): C 73.32, H 6.47, N 5.90; found: C 74.04, H 6.26, N 5.85.

Diphenylmethyl (5R,6R,7S,8R)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-carboxylate (26). A soln. of 25 (61 mg, 0.129 mmol) in acetone (10 ml) was treated with Jones' reagent (0.15 ml, 0.7m aq. soln.), stirred for 1 h, treated with PrOH, and evaporated. A soln. of the residue in H₂O (5 ml) was extracted with AcOEt (3×50 ml). The combined org. layers were washed with brine (5 ml), dried, and evaporated. A soln. of the residue in acetone (5 ml) was treated with Ph₂CN₂ (100 mg, 0.51 mmol) and stirred for 1 h. Evaporation and FC (AcOEt/hexane 1:4) gave 26 (61 mg, 73%). Light-yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.55. $[\alpha]_{\rm f}^{\rm 25} = -56.7$ (c=2.35, CHCl₃). IR (CHCl₃): 3066w, 3033w, 3012w, 2947w, 2873w, 1746s, 1602w, 1496m, 1454m, 1360m, 1264s, 1110s, 1090s, 1003m, 975m, 909s. ¹H-NMR (300 MHz, CDCl₃): see Table 3; additionally, 7.39–7.18 (m, 25 arom. H); 7.15 (d, J=1.2), 6.89 (d, J=1.5) (H–C(2), H–C(3)); 6.79 (s, Ph₂CH); 4.78 (d, J=11.4, PhCH); 4.72 (d, J=12.3, PhCH); 4.60 (d, J=12.0, PhCH); 4.59 (d, J=11.4, PhCH); 4.50 (d, J=12.3, PhCH); 4.45 (d, J=12.3, PhCH). ¹³C-NMR (75 MHz, CDCl₃): see Table 3; additionally, 139.24, 139.02, 137.85, 137.49, 135.30 (5s); 129.22 (d, C(2)); 128.51–126.94 (several d); 119.75 (d, C(3)); 77.91 (d, Ph₂CH); 73.78, 72.06, 71.11 (3t, 3 PhCH₂). HR-MALDI-MS: 651.2854 ([M+H]+, C₄₂H₃₉N₂NaO₅+; calc. 651.2853).

(5R,6R,7S,8R)-5,6,7,8-Tetrahydro-6,7,8-trihydroxyimidazo[1,2-a]pyridine-5-carboxylic Acid (6). A soln. of **26** (44 mg, 0.61 mmol) in EtOH (5 ml) was treated with 10% Pd/C (28 mg), stirred under H_2 for 48 h, and filtered through *Celite* (washing with 5 ml of EtOH). After evaporation, the solid residue was washed several times with hot AcOEt. A soln. of the solid in H_2 O was lyophilised to give **6** (16 mg, 99%). Colourless powder. R_f (AcOEt/MeOH/AcOH 7:2.8:2) 0.10. p K_{HA} =6.6. [a] $_{DS}^{DS}$ = -20.6 (c=0.85, MeOH). IR (ATR): 3219m, 3149m, 2933m, 1728m, 1612m, 1594m, 1527m, 1386m, 1297m,

1169s, 1056s, 966m, 874m. 1 H-NMR (300 MHz, D₂O): see *Table 3*; additionally, 7.38 (d, J = 1.8), 7.31 (d, J = 1.8) (H–C(2), H–C(3)). 13 C-NMR (75 MHz, CDCl₃): see *Table 3*; additionally, 123.03, 119.27 (2d, C(2), C(3)).

4,6-Di-O-acetyl-5-amino-2,3-di-O-benzyl-5-deoxy-D-galactono-1,5-lactam (28). A soln. of 27 (1.0 g, 2.79 mmol) in pyridine (10 ml) was cooled to 0° , treated with Ac₂O (4 ml), stirred for 6 h, and evaporated to afford 28 (1.23 g, 99%). Colourless oil. A small sample was purified by FC (AcOEt/cyclohexane 1:4). $R_{\rm f}$ (AcOEt/cyclohexane 2:1) 0.21. $[a]_{\rm D}^{15} = +112.3$ (c=1.05, CHCl₃). IR (ATR): 3208w, 3106w, 3063w, 3029w, 2981w, 2933w, 2873w, 1736s, 1707w, 1677s, 1496w, 1454w, 1418w, 1364m, 1310w, 1228s, 1174w, 1119m, 1099s, 1064m, 1045m, 1028m, 955w, 913w, 826w. 1 H-NMR (300 MHz, CDCl₃): 7.42-7.26 (m, 10 arom. H); 6.90 (br. s, NH); 5.69 (dt, J=2.8, 1.2, H-C(4)); 5.16 (d, J=10.9, PhCH); 4.79 (d, J=11.2, PhCH); 4.72 (d, J=11.5, PhCH); 4.55 (d, J=11.5, PhCH); 4.23 (dd, J=11.2, 5.0, H-C(6)); 4.14 (d, J=9.0, H-C(2)); 3.97 (dd, J=10.9, 8.4, H'-C(6)); 3.87 (dd, J=9.3, 2.5, H-C(3)); 3.81 (ddd, J=11.2, 5.0, 2.8 H-C(5)); 2.12, 2.09 (2s, 2 AcO). 13 C-NMR (75 MHz, CDCl₃): 171.04, 170.27, 169.73 (3s, 3 C=O); 137.82, 137.13 (2s); 128.31 (2d); 128.18 (2d); 128.09 (2d); 127.90 (2d); 127 81 (d); 127.65 (d); 77.70 (d, C(3)); 76.47 (d, C(2)); 75.63, 72.02 (2t, 2 PhCH₂); 65.61 (d, C(4)); 63.45 (t, C(6)); 51.24 (d, C(5)); 20.83, 20.78 (2q, 2 Me). HR-MALDI-MS: 464.1674 (100, $[M+Na]^+$, $C_{24}H_{27}NNaO_{7}^+$; calc. 464.1680).

2,6-Di-O-acetyl-5-amino-2,3-di-O-benzyl-5-deoxy-D-galactono-1,5-thiolactam (29). A soln. of 28 (660 mg, 1.49 mmol) in toluene (12 ml) was treated with Lawesson's reagent (605 mg, 1.49 mmol), heated to 80° for 30 min, cooled to 25°, and treated with NaHCO₃ (125 mg, 1.29 mmol). FC (AcOEt/cyclohexane 1:4) gave 29 (580 mg, 85%). Yellow foam. $R_{\rm f}$ (AcOEt/cyclohexane 1:1) 0.55. $[a]_{\rm D}^{25}$ = +172.9 (c = 1.03, CHCl₃). IR (KBr): 3468w, 3170w, 3031m, 2929w, 2870w, 1956w, 1877w, 1749s, 1555m, 1530m, 1497m, 1370m, 1324m, 1226s, 1178w, 1102s, 1078m, 1056m, 1018m, 945w, 917w. ¹H-NMR (300 MHz, CDCl₃): 8.14 (br. s, NH); 7.45−7.23 (m, 10 arom. H); 5.62 (br. s, H−C(4)); 5.25 (d, J = 10.6, PhCH); 4.81 (d, J = 10.6, PhCH); 4.57 (d, J = 11.8, PhCH); 4.51 (d, J = 11.8, PhCH); 4.32 (dd, J = 11.2, 3.7, H−C(6)); 4.28 (d, J = 7.5, irrad. at 3.82 → s, H−C(2)); 4.05 (dd, J = 11.2, 9.0, H′−C(6)); 3.87 (ddd, J ≈ 9.0, 4.0, 2.5 H−C(5)); 3.82 (dd, J = 7.2, 2.5, H−C(3)); 2.12, 2.11 (2s, 2 AcO). ¹³C-NMR (75 MHz, CDCl₃): 202.04 (s, C=S); 170.58, 170.07 (2s, 2 C=O); 137.83, 137.31 (2s); 128.89 (2d); 128.70 (2d); 128.60 (2d); 128.22 (4d); 80.33 (d, C(2)); 76.82 (d, C(3)); 75.98, 72.46 (2t, 2 PhCH₂); 65.92 (d, C(4)); 63.81 (t, C(6)); 55.16 (d, C(5)); 20.99 (q, 2 Me). HR-MALDI-MS: 458.1634 (100, [M +H]⁺, C₂d+R₂NO₆S⁺; calc. 458.1632). Anal. calc. for C₂4H₂₇NO₆S (457.16): C 63.00, H 5.95, N 3.06; found: C 62.79, H 5.96, N 3.08.

(5R,6S,7S,8S)-7,8-Bis(benzyloxy)-5-{[(tert-butyl)dimethylsilyloxy]methyl}-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-6-ol (31). A soln. of 29 (580 mg, 1.27 mmol) in THF (12 ml) was cooled to 0°, treated with Hg(OAc)₂ (444 mg, 1.39 mmol) and H₂NCH₂CH(OMe)₂ (0.75 ml, 6.34 mmol), stirred for 2 h, diluted with Et2O (50 ml), filtered through Celite, and evaporated. A soln. of the residue in toluene/ H_2O 12:3 (15 ml) was treated with TsOH· H_2O (1.45 g, 7.6 mmol) and stirred at 75° for 24 h. The mixture was diluted with AcOEt (50 ml) and washed with sat. K2CO3 soln. The aq. layer was extracted with AcOEt (2×50 ml). The combined org. layers were dried (Na₂SO₄), filtered, and evaporated. A soln. of the residue (i.e., 30) in DMF (10 ml) was treated with Et₃N (0.73 ml, 2.53 mmol). DMAP (31 mg, 0.253 mmol), and 'Bu(Me)₂SiCl (190 mg, 1.27 mmol), and stirred for 16 h. Normal workup (AcOEt/H₂O) and FC (AcOEt/cyclohexane 1:2) afforded 31 (300 mg, 84%). $R_{\rm f}$ (AcOEt/cyclohexane 1:1) 0.39. $[\alpha]_{D}^{25} = +55.3$ (c=1.04, CHCl₃). IR (ATR): 3513-3164w (br.), 3087w, 3032w, 2928w, 2856w, 1470w, 1454w, 1389w, 1360w, 1305w, 1252m, 1210w, 1131w, 1075s, 1027m, 1005m, 936w, 834s. ¹H-NMR (300 MHz, CDCl₃): see Table 2; additionally, 7.43–7.25 (m, 10 arom. H); 7.12, 7.10 (2d, J=1.2, H–C(2), H-C(3)); 5.15 (d, J=11.5, PhCH); 4.87 (d, J=10.9, PhCH); 4.84 (irrad. at $3.97 \rightarrow s$); 4.75 (d, J=11.8, PhCH); 4.66 (d, J=11.5, PhCH); 4.51 (irrad. at 3.97 \rightarrow br. d, J=3.7, addition of CD₃OD \rightarrow dd, J=4.0, 2.2); 3.97 (irrad. at 4.84 \rightarrow d, J=2.2); 3.47 (br. s, exchange with CD₃OD, HO-C(6)); 0.91 (s, t-Bu); 0.08, 0.05 (2s, Me₂Si). 13 C-NMR (75 MHz, CDCl₃): see $Table\ 2$; additionally, 138.18, 137.57 (2s); 129.07 (d, C(2)); 128.40 (2d); 128.23 (2d); 127.99 (2d); 127.86 (d); 127.72 (2d); 127.50 (d); 117.87 (d, C(3)); 72.89, 72.56 (2t, 2 PhCH₂); 25.94 (q, Me_3 C); 18.28 (s, Me_3 C); -5.31, -5.41 (2q, Me_2 Si). HR-MALDI-MS: 495.2666 (100, $[M+H]^+$, $C_{28}H_{39}N_2O_4Si^+$; calc. 495.2674). Anal. calc. for $C_{28}H_{38}N_2O_4Si$ (494.26): C 67.98, H 7.74, N 5.66; found: C 67.94, H 7.72, N 5.66.

(5R,6S,7S,8S)-6,7,8-Tris(benzyloxy)-5-[[(tert-butyl)dimethylsilyloxy]methyl]-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (32). A soln. of 31 (422 mg, 0.85 mmol) in DMF (6 ml) was cooled to 0°, treated with

NaH (60% suspension in oil, 68 mg, 1.71 mmol), stirred for 10 min, treated with BnBr (0.11 ml, 0.935 mmol), stirred for 4 h, treated with MeOH (1 ml), and stirred for 30 min. Normal workup (AcOEt/NaHCO₃ soln.) and FC (AcOEt/cyclohexane 1:2) afforded **32** (330 mg, 66%). $R_{\rm f}$ (AcOEt/cyclohexane 1:2) 0.39. $[a]_{\rm D}^{25} = +73.7$ (c=1.24, CHCl₃). IR (ATR): 3059w, 3030w, 2951w, 2927w, 2884w, 2855w, 1949w, 1872w, 1808w, 1605w, 1496w, 1470m, 1454m, 1389w, 1359w, 1307w, 1255m, 1207w, 1076s, 1066s, 1027m, 1005m, 919w, 835s. ¹H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.37–7.26 (m, 15 arom. H); 7.17, 7.08 (2d, J=1.5, H–C(2), H–C(3)); 4.99 (d, J=11.8, PhCH); 4.60 (irrad. at 4.08 \rightarrow s); 4.78 (d, J=11.8, PhCH); 4.38 (irrad. at 4.08 \rightarrow d, J=5.6); 4.34 (irrad. at 3.95 \rightarrow dd, J=5.6, 3.1); 4.13 (irrad. at 3.95 \rightarrow d, J=5.6); 4.08 (irrad. at 4.80 \rightarrow d, J=1.6); 0.91 (s, t-Bu); 0.02, 0.01 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 138.20, 137.81, 137.63 (3s); 128.69 (d, C(2)); 128.41–127.50 (several d); 119.41 (d, C(3)); 72.85, 72.38, 71.87 (3t, 3 PhCH₂); 26.07 (q, d), d(3); 18.38 (s, Me₃C); -5.19, -5.34 (2q, Me₂Si). HR-MALDI-MS: 585.3135 (100, [d)+H]⁺, C₃₅H₄₅N₂O₄Si⁺; calc. 585.3143). Anal. calc. for C₃₅H₄₄N₂O₄Si (584.31): C 71.88, H 7.58, N 4.79; found: C 71.78, H 7.60, N 4.79.

(5R,6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-methanol (33). A soln. of 32 (330 mg, 0.56 mmol) in THF (6 ml) was cooled to 0°, treated with 1M Bu₄NF·3 H₂O in THF (0.62 ml) and stirred for 1 h. Normal workup (AcOEt/NaHCO₃soln.) and FC (AcOEt/cyclohexane 2:1 \rightarrow AcOEt) afforded 33 (225 mg, 85%). $R_{\rm f}$ (AcOEt/cyclohexane 2:1) 0.15. $[\alpha]_{\rm D}^{\rm 25} = +45.5$ (c=1.01, CHCl₃). IR (KBr): 3412m (br.), 3159m, 3085m, 3059m, 3030m, 2922m, 2866m, 1953w, 1875w, 1810w, 1732w, 1606w, 1521w, 1496m, 1482m, 1453s, 1356m, 1306m, 1260m, 1208m, 1130s, 1094s, 1054s, 1027s, 914w, 844w, 820w. ¹H-NMR (300 MHz, CDCl₃): see *Table* 2; additionally, 7.38–7.25 (m, 15 arom. H); 7.10 (d, J=1.1, H-C(2)); 7.06 (d, J=1.4, H-C(3)); 4.88 (d, J=11.8, PhCH); 4.76 (irrad. at 4.12 \rightarrow s); 4.71 (d, J=12.1, PhCH); 4.45 (irrad. at 4.12 \rightarrow d, J=6.3); 4.12 (irrad. at 4.76 \rightarrow d, J=1.9); 3.41 (br. s, exchange with CD₃OD, HOCH₂-C(5)). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 2; additionally, 138.28, 137.58, 137.30 (3s); 129.79 (d, C(2)); 128.81–127.88 (several d); 118.90 (d, C(3)); 73.24, 72.41, 71.85 (3t, 3 PhCH₂). HR-MALDI-MS: 471.2271 (100, [M+H]⁺, C₂₉H₃₁N₂O₄⁺; calc. 471.2278). Anal. calc. for C₂₉H₃₀N₂O₄ (470.22): C 74.02, H 6.43, N 5.95; found: C 73.76, H 6.60, N 5.99.

Diphenylmethyl (5R,6S,7S,8S)-6,7,8-Tris(benzyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-carboxylate (34). A soln. of 33 (95 mg, 0.2 mmol) in acetone (5 ml) was treated with a soln. of CrO₃ (101 mg, 1.01 mmol) in 1M H₂SO₄ (0.9 ml) and stirred for 24 h. The mixture was diluted with AcOEt (20 ml) and washed with H_2O . The aq. layer was extracted with AcOEt (2×20 ml), and the combined org. layers were dried (Na₂SO₄), filtered, and evaporated. A soln. of the crude in acetone (5 ml) was treated with Ph_2CN_2 (59 mg, 0.3 mmol), stirred for 2 h, and evaporated at 35°. FC (AcOEt/cyclohexane 1:2 \rightarrow AcOEt) gave 34 (45 mg, 34%) and 33 (17 mg, 18%). R_f (AcOEt/cyclohexane 1:2) 0.34. $[\alpha]_D^{15} = +51.2$ $(c = 0.80, \text{CHCl}_3)$. IR (KBr): 3062w, 3030w, 2924w, 2869w, 1953w, 1883w, 1808w, 1746s, 1603w, 1586w, 1495m, 1453m, 1355w, 1310w, 1276m, 1247m, 1193m, 1172s, 1079s, 1027m, 977s, 911w, 847w. ¹H-NMR (300 MHz, CDCl₃): see *Table 3*; additionally, 7.33–7.24 (*m*, 21 arom. H); 7.21–7.18 (*m*, 2 arom. H); 7.13 (dd, J=5.3, 1.9, 2 arom. H); 7.08 (d, J=1.6, H-C(2)); 6.98 (s, Ph_2CH) ; 6.69 (d, J=1.2, H-C(3)); 4.88 (d, J=11.8, PhCH); 4.67 (d, J=11.8, PhCH); 4.59 (irrad. at $4.02 \rightarrow d$, J=8.1); 4.57 (d, J=12.1, PhCH); 4.51 (d, J=12.1, PhCH); 4.41 (d, J=11.5, PhCH); 4.36 (d, J=11.8, PhCH); 4.02 (irrad. at 4.75 \rightarrow d, J=1.9, irrad. at $4.59 \rightarrow$ d, J=4.4). ¹³C-NMR (75 MHz, CDCl₃): see Table 3; additionally, 139.40, 139.31, 138.04, 137.66, 137.29 (5s); 129.42 (d, C(2)); 128.40-126.75 (several d); 119.86 (d, C(3)); 78.39 (d, Ph_2CH) ; 73.40, 73.02, 72.89 (3t, 3 PhCH₂). HR-MALDI-MS: 651.2865(100, $[M+H]^+$, $C_{42}H_{39}N_2O_5^+$; calc. 651.2854). Anal. calc. for $C_{42}H_{38}N_2O_5$ (650.76): C 77.52, H 5.89, N 4.30; found: C 77.70, H 5.93, N

(5R,6S,7S,8S)-6,7,8-Trihydroxy-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-5-carboxylic Acid (7). A suspension of **34** (40 mg, 0.06 mmol) and 10% Pd/C in MeOH/H₂O 2:1 was hydrogenated (6 bar) for 2 days, filtered through *Celite*, evaporated, dissolved in H₂O (5 ml), and washed with AcOEt (4×). The aq. layer was lyophillised and dried (P₂O₅) to yield **7** (13 mg, 98%). p K_{HA} =6.6. [a] $_{D}^{D5}$ = -79.7 (c=0.71, H₂O). IR (KBr): 3410s (br.), 2923m, 2857m, 2778w, 1631s, 1524w, 1491w, 1390m, 1313m, 1267w, 1235w, 1171w, 1102m, 907w, 860w, 831w. ¹H-NMR (300 MHz, D₂O): see *Table 3*; additionally,

7.37, 7.34 (2 br. s, H–C(2), H–C(3)). 13 C-NMR (75 MHz, D₂O): see *Table 3*; additionally, 122.39, 121.02 (2d, C(2), C(3)). ESI-MS (neg. mode): 213.3 (100, [M-H] $^-$). Anal. calc. for C $_8$ H $_{10}$ N $_2$ O $_5 \cdot 1.05$ H $_2$ O (232.97): C 41.22, H 5.23, N 12.02; found: C 41.05, H 4.76, N 11.60.

REFERENCES

- B. Winchester, Biochem. Soc. Trans. 1992, 20, 699; R. J. Molyneux, Phytochem. Anal. 1993, 4, 193;
 N. Asano, R. J. Nash, R. J. Molyneux, G. W. J. Fleet, Tetrahedron: Asymmetry 2000, 11, 1645;
 N. Asano, J. Enzym. Inhib. 2000, 15, 215;
 V. H. Lillelund, H. H. Jensen, X. F. Liang, M. Bols, Chem. Rev. 2002, 102, 515;
 A. Vasella, G. J. Davies, M. Böhm, Curr. Opin. Chem. Biol. 2002, 6, 619.
- [2] T. D. Heightman, A. Vasella, Angew. Chem., Int. Ed. 1999, 38, 750.
- [3] T. D. Heightman, M. Locatelli, A. Vasella, Helv. Chim. Acta 1996, 79, 2190.
- [4] N. Panday, M. Meyyappan, A. Vasella, Helv. Chim. Acta 2000, 83, 513.
- [5] T. Tschamber, H. Siendt, A. Boiron, F. Gessier, D. Deredas, A. Frankowski, S. Picasso, H. Steiner, A.-M. Aubertin, J. Streith, Eur. J. Org. Chem. 2001, 1335.
- [6] P. Ermert, A. Vasella, Helv. Chim. Acta 1991, 74, 2043.
- [7] P. Ermert, A. Vasella, M. Weber, K. Rupitz, S. G. Withers, Carbohydr. Res. 1993, 250, 113.
- [8] T. D. Heightman, P. Ermert, D. Klein, A. Vasella, Helv. Chim. Acta 1995, 78, 514.
- [9] K. Tatsuta, S. Miura, S. Ohta, H. Gunji, J. Antibiot. 1995, 48, 286.
- [10] T. Granier, N. Panday, A. Vasella, Helv. Chim. Acta 1997, 80, 979.
- [11] T. Granier, F. Gaiser, L. Hintermann, A. Vasella, Helv. Chim. Acta 1997, 80, 1443.
- [12] M. K. Tong, G. Papandreou, B. Ganem, J. Am. Chem. Soc. 1990, 112, 6137.
- [13] G. Papandreou, M. K. Tong, B. Ganem, J. Am. Chem. Soc. 1993, 115, 11682.
- [14] R. Hoos, A. Vasella, K. Rupitz, S. G. Withers, Carbohydr. Res. 1997, 298, 291.
- [15] T. Niwa, T. Tsuruoka, S. Inouye, Y. Naito, T. Koeda, T. Niida, J. Biochem. (Tokyo) 1972, 72, 207.
- [16] I. Cenci di Bello, P. Dorling, L. Fellows, B. Winchester, FEBS Lett. 1984, 176, 61; T. Satoh, Y. Nishimura, S. Kondo, T. Takeuchi, M. Azetaka, H. Fukuyasu, Y. Iizuka, S. Ohuchi, S. Shibahara, J. Antibiot. 1996, 49, 321; Y. Ichikawa, Y. Igarashi, M. Ichikawa, Y. Suhara, J. Am. Chem. Soc. 1998, 120, 3007; Y. Nishimura, E. Shitara, H. Adachi, M. Toyoshima, M. Nakajima, Y. Okami, T. Takeuchi, J. Org. Chem. 2000, 65, 2; H. H. Jensen, A. Jensen, R. G. Hazell, M. Bols, J. Chem. Soc., Perkin Trans. 1 2002, 1190; Y. Nishimura, Curr. Top. Med. Chem. 2003, 3, 575.
- [17] J. Pabba, B. P. Rempel, S. G. Withers, A. Vasella, Helv. Chim. Acta 2006, 4, 635.
- [18] J. Pabba, A. Vasella, Tetrahedron Lett. 2005, 46, 3619.
- [19] P. M. Coutinho, B. Henrissat, in 'Recent Advances in Carbohydrate Bioengineering', Eds. H. J. Gilbert, G. Davies, B. Henrissat, B. Svensson, Royal Society of Chemistry, Cambridge, 1999, p. 3.
- [20] J. Kiss, F. Burkhard, Helv. Chim. Acta 1969, 52, 2622; J. Kiss, Carbohydr. Res. 1969, 10, 328; J. Kiss, Chimia 1970, 24, 273; J. Kiss, Adv. Carbohydr. Chem. Biochem. 1974, 29, 229.
- [21] I. W. Sutherland, FEMS Microbiol. Rev. 1995, 16, 323; P. Michaud, A. Da Costa, B. Courtois, J. Courtois, Crit. Rev. Biotechnol. 2003, 23, 233; V. L. Y. Yip, S. G. Withers, Org. Biomol. Chem. 2004, 2, 2707.
- [22] M. Terinek, A. Vasella, Helv. Chim. Acta 2004, 87, 719.
- [23] M. Terinek, A. Vasella, Helv. Chim. Acta 2004, 87, 3035.
- [24] C. C. Wang, O. Touster, J. Biol. Chem. 1972, 247, 2644.
- [25] Y. Nishimura, H. Adachi, T. Satoh, E. Shitara, H. Nakamura, F. Kojima, T. Takeuchi, J. Org. Chem. 2000, 65, 4871.
- [26] H. Sohoel, X. F. Liang, M. Bols, J. Chem. Soc., Perkin Trans. 1 2001, 1584.
- [27] E. Lorthiois, M. Meyyappan, A. Vasella, *Chem. Commun.* 2000, 1829; M. Böhm, E. Lorthiois, M. Meyyappan, A. Vasella, *Helv. Chim. Acta* 2003, 86, 3787; M. Böhm, E. Lorthiois, M. Meyyappan, A. Vasella, *Helv. Chim. Acta* 2003, 86, 3818; M. Böhm, A. Vasella, *Helv. Chim. Acta* 2004, 87, 2566; S. Buser, A. Vasella, *Helv. Chim. Acta* 2005, 88, 3151.
- [28] T. D. Heightman, Dissertation No. 12696, ETH Zürich, 1998.