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ABSTRACT: A novel copper-catalyzed stereodefined procedure for the selective synthesis of cyclopropyl bis(boronates) from 
terminal alkenes has been developed. Various aliphatic alkenes were transformed into the desired bis(boronate ester)-substituted 
cyclopropanes in moderate to good yields. Synthetic transformations of the resulting cyclopropyl bis(boronates) demonstrate their 
utility. A possible reaction mechanism is proposed. 
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Fig. 1. Synthesis of borocyclopropanes.

Stereodefined cyclopropanes are widely present in biologically 
active compounds that address multiple barriers during drug 
discovery, such as enhancing the potency, increasing 
metabolic stability, improving binding to the target, decreasing 
plasma clearance, etc.1 Hence, various cyclopropanes were 
incorporated into studies of pharmaceutically relevant 
compounds to modulate new drug’s activity and 
conformational rigidity.2 In general, 1,2,3-trisubstituted 
cyclopropane units are frequently found in biologically active 
natural products.3,4 Thus, the development of new strategies 
for preparing 1,2,3-trisubstituted cyclopropanes which contain 
a reactive synthetic handle that allows for rapid diversification 
to give more functionalized cyclopropanes is urgently needed. 
Boronate derivatives are suitable partners for cyclopropane to 
increase their functionality and complexity via Suzuki-
Miyaura cross-coupling reactions, amination, oxidation, etc. 
However, direct access to cyclopropyl boronates with high 
levels of diastereoselective is a formidable challenge. 
Typically, the known pathways to access cyclopropyl 
boronates proceed via Simmons-Smith reaction with 
boromethylzinc carbenoid,5-7 metal-catalyzed carbene 
cyclopropanation of vinyl boronates,8 borylative ring closure 
of allylic compounds,9-12 desymmetrizaion of cyclopropenes13 
and several others (Fig. 1, A).14 Based on their recognized 
importance, new procedures for their preparation from readily 
available substrates are always attractive.

Carbonylation has been considered as one of the most 
effective and economical pathways by which to increase the 
carbon chain length of organic compounds by employing CO 
as a cheap and abundant C1 source.15 Although carbonylation 
has experienced impressive progress during the past half 
century, a strategy for the synthesis of cyclopropane moieties 
has not been realized. One of the main reasons is that C≡O is 
the strongest chemical bond in nature, which requires 1076 KJ 
mol-1 energy at 298K to cleave the one σ and two π bonds.16a 
Another conundrum is that cyclopropanation process usually 
requires highly reactive metals to overcome the ring strain (28 
kcal mol-1),16b which is the opposite of the inhibitory influence 
of CO coordination to metals (CO coordinates to a metal and 
decrease its electron density).

Based on the potential utility of cyclopropyl boronates, a 
methodology to overcome the difficulties discussed above 
would be very attractive. In our recent studies on 
carbonylative transformations of organo boronates,17 we found 
that cyclopropyl boronates can be produced effectively from 
terminal alkenes and bis(pinacolato)diboron (B2pin2) in a 
copper-catalyzed process (Fig. 1, B). One molecule of carbon 
monoxide was reduced and the carbon incorporated to form a 
cyclopropane ring. Further synthetic transformations of the 
resulting cyclopropyl bis(boronates) were also realized.
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Fig. 2. Impact of ligands on the yield of carbonylative cyclopropanation. Reaction conditions: 1 (0.2 mmol), IPrCuCl (4 mol%), 
ligand (4 mol%), B2pin2 (2.5 equiv.), NaOEt (1.5 equiv.), CO (10 bar), DMAc (0.4 M), 60 oC, 12 h. Yields were determined by GC 
analysis using hexadecane as internal standard.

In order to study this transformation, but-3-en-1-
ylbenzene and bis(pinacolato)diboron (B2pin2) were selected 
as model substrates for detailed studies. Initially, by using 
IPr·CuCl (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazoline-2-
ylidene; see Fig. 2) and Xantphos (4,5-
bis(diphenylphosphino)-9,9-dimethylxanthene; Fig. 2, L1) as 
the catalyst system in dimethylacetamide (DMAc) with 
NaOtBu as the base under CO pressure (10 bar) at 60 oC, 
product 2 was obtained in 47% yield and identified as 2,2'-
((1R,2S,3r)-3-phenethylcyclopropane-1,2-diyl)bis(4,4,5,5-
tetramethyl-1,3,2-dioxaborolane). Subsequently, systematic 
optimization studies were carried out (for details see 
Supporting Information Tables S1-S9). No desired product 
was detected when toluene or 1,4-dioxane were used as the 
solvents. The amount of base and B2pin2 were also optimized. 
In combination with Xantphos, we found that similar yields of 
2 were obtained using CuCl or CuCl2 instead of IPr·CuCl as 
the catalyst precursor. Increasing the load of the phosphine 
ligand had no significant effect on the reaction outcome. In the 
testing of bases, the best result was achieved using 1.5 equiv. 
of NaOEt, which gave a 62% isolated yield. No target product 
was detected when NaOPh, Na2CO3, KOH, K3PO4, or Cs2CO3 
were employed as the base. Interestingly, a decreased yield 
was observed when the reaction temperature was increased to 
70 oC. Surprisingly, we still able to obtain a 52% yield of 2 
under 1 bar of CO. Various bidentate phosphine ligands were 
studied to examine ligand effects (Fig. 2). Xantphos (L1) and 
Sixantphos (L2) were found to be the best ligands for this 
transformation. Other ligands tested, including Xantphos-type 
and other chelating ligands, were all less effective (Fig. 2. L3-
L19). It is worth mentioning that the reaction is clean, in 
general, and the only byproduct detected during the whole 
optimization process was the mono borylated cyclopropane 
(4,4,5,5-tetramethyl-2-((1R,2R)-2-phenethylcyclopropyl)-
1,3,2-dioxaborolane).

With optimized reaction conditions in hand, we examined 
the substrate scope of this process (Fig. 3). In general, 
moderate to good yields of the desired products were achieved 
with the aliphatic alkenes tested. Various ethers, esters, silane, 

thioether, amines, different ring- and heterocycle-substituted 
terminal alkenes are all suitable starting materials. Substrates 
containing another double bond are well tolerated and 
selectively transformed. For example, 4-vinylcyclohex-1-ene 
was transformed into the corresponding 2,2'-((1R,2S,3r)-3-
((S)-cyclohex-3-en-1-yl)cyclopropane-1,2-diyl)bis(4,4,5,5-
tetramethyl-1,3,2-dioxaborolane) 26 in 55% isolated yield. In 
addition to internal alkene groups, 1,1-disubstituted alkene 
groups are also tolerated, and the yields of the final products 
are even better (27, 28, 29, 32). However, the 
cyclopropanation reaction failed in the case of styrene, and 
only a trace amount of the desired product 31 was detected 
together with a significant amount of a hydroboration by-
product.18 More complex alkenes were successfully 
transformed under our standard conditions giving the target 
products in moderate yields (32, 33, 34).

In order to demonstrate further the synthetic value of this 
procedure, transformations of product 2 were carried out (Fig. 
4). Importantly, the cyclopropyl bis(boronate) 2 product was 
selectively activated at one C-B bond leaving the other one 
intact. Mono-Bpin-substituted cyclopropanes were produced 
in good yields in one step, including Suzuki-Miyaura 
coupling, bromination and protodeboronation (Fig. 4, 36, 38, 
37, 35).19 Furthermore, the mono-Bpin-substituted 
cyclopropane was further transformed into high-value 
products in excellent yields (Fig. 4, 39-43). Good 
stereoselectivity was observed in all of these cases. 

For better mechanistic understanding, several control 
experiments were performed (Fig. 5). Our labelling 
experiments confirmed that no intermolecular hydrogen 
transfer occurred, and only intramolecular hydrogen transfer 
was detected (Fig. 5, A and B). In the reaction without carbon 
monoxide, alkene borylation occurred and no cyclopropyl 
product was detected (Fig. 5, C). A ß-boryl ketone was 
prepared and tested under our standard conditions, and no 
cyclization product was detected, thus excluding the 
possibility that it functions as an intermediate (Fig. 5, D). 
Finally, a CuBpin complex was prepared in situ and used to 
produce an alkene insertion intermediate, and the target 
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product 2 was obtained in 28% yield after adding B2pin2 and 
CO gas (Fig. 5, E).
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purified products.

Based on the above information and related 
literature,20,21,22 a possible reaction pathway is proposed (Fig. 
6). Initially, the active LCuBpin complex IM1 is formed. 
Then, two catalytic pathways based on this CuBpin complex 
IM1 begin. In one cycle, IM1 coordinates CO, which 
produces LCu(C=O)Bpin intermediate IM7 after an insertion 
step. Then the bis(boryl) ketone intermediate IM8 is 
eliminated after reaction with B2pin2. In the other cycle, an 
alkene substate coordinates and inserts into the Cu-Bpin bond 
of complex IM1 to give alkyl copper intermediate IM2. 
Afterwards, the in situ produced acylboronate intermediate 
IM8 reacts with alkyl copper intermediate IM2 to give 
intermediate IM3 which will generate IM4 intermediate after 

intramolecular rearrangement. After a 1,3-copper shift,20 
intermediate IM5 is formed which eliminates cyclopropyl 
boronate as the final product and generates an LCuOBpin 
complex IM6. Finally, the LCuOBpin complex IM6 reacts 
with B2pin2 to close the catalytic cycle. 
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In summary, a novel copper-catalyzed stereodefined 
procedure for the selective synthesis of cyclopropyl 
bis(boronates) from terminal alkenes has been developed. 
Various aliphatic alkenes were transformed into the desired 
bis(boronate ester)-substituted cyclopropanes in moderate to 
good yields. Synthetic transformations of the cyclopropyl 
bis(boronate) products clearly demonstrate the utility of this 
process. Finally, a possible reaction pathway is proposed, and 
a detailed computational study of the mechanism is in 
progress.
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