Convenient Microwave-Assisted Synthesis of 5-Functionalized 1,2,4-Triazolium Ylides Starting from N', N'-Disubstituted Carbohydrazonamides

Mehdi Khankischpur^[a] and Thomas Kurz*^[b]

Keywords: Ylides / Nitrogen heterocycles / Cyclization / Microwave-assisted synthesis

5-Functionalized 1,2,4-triazolium ylides have been prepared in good yields and in very short reaction times by reacting N',N'-disubstituted carbohydrazonamides with 1,1'-carbonylbis(1,2,4-triazole), 1,1'-thiocarbonyldiimidazole or diphenyl N-cyanimidocarbonate under microwave irradiation. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

The steadily increasing number of novel drug targets demands the rapid synthesis and modification of biologically active compounds. Of the methods used in drug design, microwave-assisted synthesis represents a promising method to meet these requirements.^[1] Microwave irradiation often leads to substantial reductions in reaction times and to high vields.^[1] In addition, several reactions that do not occur by conventional heating can be conducted under microwave irradiation. To the best of our knowledge the microwave-assisted synthesis of heterocyclic betaines has not been previously reported. Whereas syndnonimines, such as Molsidomine, are well-known nitric oxide donors, 1,1-dialkyl-5-oxo-1,2,4-triazolium ylides 3 have been described as herbicides and fungicides (Figure 1).^[2,3] Interestingly, only one publication refers to the related 5-thioxo- and 5-tosylimino derivatives.^[4] Relatively few synthetic strategies exist for the preparation of 1,1-dialkyl-5-oxo-1,2,4-triazolium ylides $3^{[3-6]}$ The known methods are multistep syntheses or require the use of phosgene.^[3-6] Commonly, the yields are only low-to-moderate and relatively long reaction times are necessary.^[4-6] 1,1-Dialkyl-5-oxo-1,2,4-triazolium ylides 3 have already been synthesized by the treatment of phenyl N-(chlorocarbonyl)-1-chlorocarbonimidate with 1,1-dialkylhydrazines (four examples) and by carbonylation of amidrazones with phosgene or chloroformates in the presence of a tertiary amine.^[4,6] Another strategy utilizes N-methoxycarbonyl-substituted thiocarbamates and 1,1-disubstituted hydrazines as starting materials, whereas Takahashi et al. synthesized two 1,1-dialkyl-5-oxo-1,2,4-triazolium ylides

[a] Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg E-mail: khanki@chemie.uni-hamburg.de

[b] Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255 Düsseldorf, Germany E-mail: Thomas.Kurz@uni-duesseldorf.de 3 by treating N-(α -chlorobenzylidene)carbamoyl chloride with 1,1-dimethylhydrazine.^[3,5] A literature search revealed that only one 1,1-dialkyl-5-thioxo-1,2,4-triazolium ylide 4 has previously been described. This compound was prepared in only 24% yield by the treatment of phenyl N^3 , N^3 dimethylcarbazimidate with thiophosgene in benzene.^[4] The reaction of N^3 , N^3 -dimethylcarbazimidate with N-(p-tolylsulfonyl)isocyanide dichloride furnished an N-tosylimino derivative in 60% yield.^[4] However, no synthetic protocol is given for the preparation. Interestingly, the related 5-cyanimino-functionalized 1,2,4-triazolium ylides 5 have not been described before. We now report the synthesis of various 5-functionalized 1,2,4-triazolium ylides 3-5 by the treatment of N', N'-disubstituted carbohydrazonamides 2 with diphenyl N-cyanimidocarbonate, 1,1'-carbonylbis-(1,2,4-triazole) and 1,1'-thiocarbonyldiimidazole under microwave irradiation.

Figure 1. Heterocyclic betaines Molsidomine and 3.

Results and Discussion

Substrates 2a-f were prepared according to a modified procedure starting from known imidate hydrochlorides 1 and 1,1-disubstituted hydrazines (Scheme 1).^[7] The microwave-assisted ring-closing reactions of the starting materials 2a-f were conducted in microwave pressure-tubes at 100 W in DCM at moderate temperatures (Table 1). Previously unreported 5-cyanoimino-functionalized 1,2,4-triazolium ylides **5a–f** were synthesized in good yields of 64–92%

FULL PAPER

within only 2–3 min by treatment of compounds 2a-f with 1.2 equiv. of diphenyl *N*-cyanimidocarbonate (Scheme 1).^[8] Compounds 5a-f are characterized by a strong C=N absorption band at 1641–1662 cm⁻¹ and a sharp band of the cyano group at 2189–2195 cm⁻¹. The X-ray crystal structure of compound 5b shows *E* configuration with regard to the C=N double bond (Figure 2).

R: imidazol-1-yl, 1,2,4-triazol-1-yl, phenoxy

Scheme 1. Synthesis of 1,2,4-triazolium ylides.

Table 1. Microwave synthesis of 1,2,4-triazolium ylides 3-5.^[a]

Entry	\mathbb{R}^1	R ²	R ³	Compound (% yield) ^[b]
1	cyclohexyl	-(CH ₂) ₂ O(CH ₂) ₂ -		3a (82)
2	3,4-(CH ₃ O) ₂ -C ₆ H ₃ CH ₂	CH ₃	CH_3	3b (87)
3	3,4-Cl ₂ -C ₆ H ₃ CH ₂	-(CH ₂) ₅		3c (89)
4	4-Cl-C ₆ H ₄ CH ₂	CH ₃	CH ₃	3d (84)
5	4-Cl-C ₆ H ₄ CH ₂	-(CH2)2NCH3(CH2)2-		3e (90)
6	2-thienylmethyl	-(CH ₂) ₂ O(CH ₂) ₂ -		3f (81)
7	cyclohexyl	$-(CH_2)_2$	$O(CH_2)_2-$	4a (69)
8	3,4-(CH ₃ O) ₂ -C ₆ H ₃ CH ₂	CH ₃	CH ₃	4b (86)
9	3,4-Cl ₂ -C ₆ H ₃ CH ₂	-(CH ₂) ₅		4c (77)
10	4-Cl-C ₆ H ₄ CH ₂	CH_3	CH_3	4d (76)
11	$4-Cl-C_6H_4CH_2$	$-(CH_2)_2NG_2$	$CH_3(CH_2)_2-$	4e (78)
12	2-thienylmethyl	-(CH ₂) ₂ O(CH ₂) ₂ -		4f (74)
13	cyclohexyl	-(CH ₂) ₂ O(CH ₂) ₂ -		5a (92)
14	3,4-(CH ₃ O) ₂ -C ₆ H ₃ CH ₂	CH ₃	CH ₃	5b (82)
15	3,4-Cl ₂ -C ₆ H ₃ CH ₂	-(CH ₂) ₅ -		5c (86)
16	4-Cl-C ₆ H ₄ CH ₂	CH ₃	CH ₃	5d (75)
17	4-Cl-C ₆ H ₄ CH ₂	$-(CH_2)_2NG$	$CH_3(CH_2)_2-$	5e (87)
18	2-thienylmethyl	-(CH ₂) ₂	O(CH ₂) ₂ -	5f (64)

[a] Microwave-assisted synthesis of compounds **3–5** was carried out by using a CEM Corporation Focused Microwave System, Model Discover. Parameters for the synthesis of compounds **3–5**: Discover mode; power: 100 W; ramp time: 1 min; hold time 2–3 min; temperature: 50 °C; pressure: 4 bar; PowerMax cooling. [b] Isolated yields.

Figure 2. X-ray crystal structure of compound 5b.

Next, amidrazones **2a–f** were treated with 1.2 equiv. of 1,1'-carbonylbis(1,2,4-triazole) and 1,1'-thiocarbonyldiimidazole, respectively to afford 1,2,4-triazolium ylides **3a– f** and **4a–f**, again within only 2–3 min and in high yields (Scheme 1, Table 1). Completion of the carbonylation reaction was monitored by IR spectroscopy and was accompanied by the appearance of a strong C=O absorption band at 1767–1774 cm⁻¹. In all cases a simple work up procedure followed by recrystallization from appropriate solvents furnished compounds **3–5** as analytically pure and solid products. The structures of all novel compounds were elucidated by ¹H and ¹³C NMR, IR spectroscopy and elemental analysis (see the Exp. Sect.).

Conclusions

In conclusion, we have developed an efficient, fast and convenient method for the microwave-assisted preparation of various 5-functionalized 1,2,4-triazolium ylides. The synthesis of 5-cyanoimino-functionalized 1,2,4-triazolium ylides (5) has not been reported before. The first comprehensive method for the synthesis of 1,1-dialkyl-5-thioxo-1,2,4-triazolium ylides 4 has been described. Phosgene and thiophosgene have been successfully replaced by 1,1'-carbonylbis(1,2,4-triazole) and 1,1'-thiocarbonyldiimidazole in the synthesis of the 1,2,4-triazolium ylides 3 and 4, respectively.

Experimental Section

General: Melting points: Electrothermal 9100 melting-point apparatus, uncorrected values. IR: ATI Genesis Series FT-IR spectrometer; KBr pellets unless otherwise stated. NMR: Bruker AMX 400 spectrometer (400 MHz for ¹H; 100 MHz for ¹³C). NMR spectra were recorded in [D₆]DMSO solution with tetramethylsilane as the internal standard. Elemental analysis: Heraeus CHN-O-Rapid instrument. Microwave-assisted synthesis: CEM microwave model Discover. Thin-layer chromatography (TLC): Kieselgel 60 F₂₅₄ (Macherey–Nagel) sheets; column chromatography: Kieselgel 60. Imidate hydrochlorides used for the synthesis of **2a–f** were prepared starting from the corresponding nitriles in accord with the standard Pinner synthesis.^[7]

CCDC-662796 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Synthesis of N', N'-Disubstituted Carbohydrazonamides: Substrates **2a**–f were synthesized by a modified literature procedure.^[7] The appropriate N', N'-disubstituted hydrazine (18 mmol) was added dropwise to a suspension of the imidate hydrochloride salt (15 mmol) in dry dichloromethane (20 mL) and the reaction mixture was stirred at room temperature for 8 h. Afterwards, the solvent was evaporated and the remaining residue was quenched with an ice-cooled, saturated aqueous solution of potassium carbonate (15 mL). The mixture was extracted with ethyl acetate (2 × 30 mL) and the combined organic layers were dried with Na₂SO₄, filtered and concentrated in vacuo. The remaining residues were crystallized from Et₂O/hexane to afford **2a–f** as solid compounds.

Recrystallization from EtOAc/hexane provided analytically pure products.

N'-(Morpholin-4-yl)cyclohexanecarboimidamide (2a): Colourless solid; yield 60% (1.9 g), m.p. 116.3 °C. ¹H NMR: δ = 1.11–1.96 (m, 11 H, cyclohexyl, C₆H₁₁), 2.43 (s, 4 H, 3,5-H), 3.63 (s, 4 H, 2,6-H), 5.72 (s, 2 H, NH₂) ppm. ¹³C NMR: δ = 25.96 (cyclohexyl, C-1), 26.14 (cyclohexyl, C-2,6), 30.46 (cyclohexyl, C-3,5), 42.27 (cyclohexyl, C-4), 54.87 (C-3,5), 66.21 (C-2,6), 163.04 (C=N) ppm. IR: \tilde{v} = 3408 (NH₂), 1610 (C=N) cm⁻¹. C₁₁H₂₁N₃O (211.31): calcd. C 62.53, H 10.02, N 19.89; found C 62.39, H 9.98, N 19.53.

(1*Z*)-2-(3,4-Dimethoxyphenyl)-*N'*,*N'*-dimethylethanehydrazonamide (2b): Colourless solid; yield 65% (2.3 g), m.p. 68.1 °C. ¹H NMR: δ = 2.26 [s, 6 H, N(CH₃)₂], 3.16 (s, 2 H, 2-H), 3.71 [d, ³J_{H,H} = 2.54 Hz, 6 H, 3,4-(CH₃O)₂-Ph], 5.76 (s, 2 H, NH₂), 6.77–6.86 (m, 2 H, 5',6'-H), 6.92 (d, ³J_{H,H} = 1.78 Hz, 1 H, 2'-H) ppm. ¹³C NMR: δ = 39.06 (C-2), 46.84 [N(CH₃)₂], 55.64, 55.88 [3,4-(CH₃O)₂-Ph], 112.07, 112.61, 120.73 (C-2', C-5', C-6'), 130.89, 147.66, 148.78 (C-1', C-3', C-4'), 158.25 (C-1) ppm. IR: $\tilde{\nu}$ = 3318 (NH₂), 1639 (C=N) cm⁻¹. C₁₂H₁₉N₃O₂ (237.30): calcd. C 60.74, H 8.07, N 17.71; found C 60.69, H 8.15, N 17.33.

(1*Z*)-2-(3,4-Dichlorophenyl)-*N*'-(piperidin-1-yl)ethanimidamide (2c): Colourless solid; yield 61% (2.6 g), m.p. 126.0 °C. ¹H NMR: δ = 1.35 (s, 2 H, piperidine, 4-H), 1.53–1.59 (m, 4 H, piperidine, 3,5-H), 2.44 (s, 4 H, piperidine 2,6-H), 3.29 (s, 2 H, 2-H), 6.03 (br. s, 2 H, NH₂), 7.27–7.29 (m, 1 H, 6'-H), 7.54–7.56 (m, 2 H, 2',5'-H) ppm. ¹³C NMR: δ = 24.02 (piperidine, C-4), 25.51 (piperidine, C-3,5), 38.20 (C-2), 55.51 (piperidine, C-2,6), 129.21, 130.61, 130.82 (C-6', C-5', C-2'), 130.94, 134.68 (C-3', C-4', C-1'), 157.51 (C-1) ppm. IR: \tilde{v} = 3379 (NH₂), 1628 (C=N) cm⁻¹. C₁₃H₁₇Cl₂N₃ (286.21): calcd. C 54.56, H 5.99, N 14.68; found C 54.24, H 6.05, N 14.62.

(1*Z*)-2-(4-Chlorophenyl)-*N'*,*N'*-dimethylethanehydrazonamide (2d): Colourless solid; yield 62% (2.0 g), m.p. 136.0 °C. ¹H NMR: δ = 2.25 [s, 6 H, N(CH₃)₂], 3.23 (s, 2 H, 2-H), 5.86 (s, 2 H, NH₂), 7.29– 7.35 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 38.78 (C-2), 46.81 [N(CH₃)₂], 128.39, 130.63 (C-3',5', C-2',6'), 131.18, 137.64 (C-4', C-1'), 157.65 (C-1) ppm. IR: \tilde{v} = 3287 (NH₂), 1653 (C=N) cm⁻¹. C₁₀H₁₄ClN₃ (211.70): calcd. C 56.74, H 6.67, N 19.85; found C 56.64, H 6.70, N 19.73.

(1*Z*)-2-(4-Chlorophenyl)-*N'*-(4-methylpiperazin-1-yl)ethanimidamide (2e): Colourless solid; yield 62% (2.5 g), m.p. 146.5 °C. ¹H NMR: δ = 2.14 (s, 4 H, 4-Me-piperazine, 3,5-H), 2.40 (br. s, 4 H, 4-Mepiperazine, 2,6-H), 3.25 (s, 2 H, 2-H), 3.37 (s, 3 H, NC*H*₃), 5.87 (s, 2 H, NH₂), 7.29–7.35 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 38.75 (C-2), 46.01 (NCH₃), 53.97 (4-Me-piperazine, C-3,5), 54.68 (4-Mepiperazine, C-2,6), 128.40, 130.62 (C-3',5', C-2',6'), 131.20, 137.59 (C-4', C-1'), 158.04 (C-1) ppm. IR: \hat{v} = 3375 (NH₂), 1634 (C=N) cm⁻¹. C₁₃H₁₉ClN₄ (266.78): calcd. C 58.53, H 7.18, N 21.00; found C 58.24, H 7.27, N 20.79.

(1*Z*)-*N*'-**Morpholin-4-yl-2-(2-thienyl)ethanimidamide (2f):** Pale-yellow solid; yield 56% (1.9 g), m.p. 87.0 °C. ¹H NMR: δ = 2.50 (s, 4 H, morpholine, 3,5-H), 3.46 (s, 2 H, 2-H), 3.65 (s, 4 H, morpholine, 2,6-H), 5.97 (s, 2 H, NH₂), 6.92 (d, ³J_{H,H} = 3.56 Hz, 2 H, 3',4'-H), 7.31 (t, ³J_{H,H} = 3.30 Hz, 1 H, 5'-H) ppm. ¹³C NMR: δ = 34.17 (C-2), 54.75 (morpholine, C-3,5), 66.14 (morpholine, C-2,6), 124.76, 125.94, 126.92 (C-5', C-4', C-3'), 140.83 (C-2'), 157.89 (C-1) ppm. IR: \tilde{v} = 3421 (NH₂), 1622 (C=N) cm⁻¹. C₁₀H₁₅N₃OS (225.31): calcd. C 53.31, H 6.71, N 18.65; found C 53.45, H 6.73, N 18.34.

Microwave-Assisted Synthesis of Compounds 3a–f. General Procedure: Compounds 2a–f (2 mmol) dissolved in dry dichloromethane (5 mL) and 1,1'-carbonylbis(1,2,4-triazole) (394 mg, 2.4 mmol) were added to a 10-mL microwave glass pressure-tube equipped with a magnetic stirrer bar. The tube was closed with a silicon septum and the reaction mixture was subjected to microwave irradiation for 2–3 min. The reaction mixture was cooled to room temperature and transferred to a round-bottomed flask. The solvent was evaporated, ethyl acetate (20 mL) was added and the mixture was washed with a saturated aqueous solution of sodium hydrogen carbonate (3×5 mL). The organic layer was dried with Na₂SO₄, filtered, and the solvent was evaporated. The remaining residue was crystallized from Et₂O/hexane. Recrystallization from THF/hexane provided compounds **3a**–f as analytically pure solids. Microwave parameters for compounds **3a**–f: Discover mode; power: 100 W; ramp time: 1 min; hold time: 2–3 min; temperature: 50 °C; pressure: 4 bar; PowerMax cooling mode.

2-Cyclohexyl-4-oxo-8-oxa-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (3a): Colourless solid; yield 82% (389 mg), m.p. 115.0 °C. ¹H NMR: δ = 1.18–1.83 (m, 10 H, cyclohexyl, C₅H₁₀), 2.32–2.39 (m, 1 H, cyclohexyl, CH), 2.80–2.83 (d, ³J_{H,H} = 12.46 Hz, 2 H, morpholine, 3-H), 3.36–3.43 (m, 2 H, morpholine, 5-H), 3.93–4.04 (m, 4 H, morpholine, 2,6-H) ppm. ¹³C NMR: δ = 25.34 (cyclohexyl, C-3,5), 25.85 (cyclohexyl, C-4), 29.56 (cyclohexyl, C-2,6), 39.22 (cyclohexyl, C-1), 55.66 (C-7,9), 62.37 (C-6,10), 170.39 (C-2), 187.29 (C-4) ppm. IR: \tilde{v} = 1773 (C=O) cm⁻¹. C₁₂H₁₉N₃O₂ (237.30): calcd. C 60.74, H 8.07, N 17.71; found C 60.56, H 8.30, N 17.63. Hold time: 2.5 min.

3-(3,4-Dimethoxybenzyl)-1,1-dimethyl-5-oxo-1,5-dihydro-1,2,4-triazol-1-ium-4-ide (3b): Colourless solid; yield 87% (458 mg), m.p. 87.4 °C. ¹H NMR: δ = 2.96 [s, 6 H, N(CH₃)₂], 3.56 [s, 2 H, 3,4-(CH₃O)₂-PhCH₂], 3.72 [d, ³J_{H,H} = 1.79 Hz, 6 H, 3,4-(CH₃O)₂-Ph], 6.78–6.80 (m, 1 H, 2'-H), 6.86–6.88 (m, 2 H, 5',6'-H) ppm. ¹³C NMR: δ = 35.58 [3,4-(CH₃O)₂-PhCH₂], 47.66 [N(CH₃)₂], 55.41, 55.52 [3,4-(CH₃O)₂-Ph], 111.86, 112.90, 121.02 (C-5', C-2', C-6'), 127.85, 147.65, 148.55 (C-1', C-4', C-3'), 170.01 (C-3), 181.88 (C-5) ppm. IR: \tilde{v} = 1773 (C=O) cm⁻¹. C₁₃H₁₇N₃O₃ (263.30): calcd. C 59.30, H 6.51, N 15.96; found C 59.12, H 6.62, N 15.65. Hold time: 2 min.

2-(3,4-Dichlorobenzyl)-4-oxo-1,3,5-triazaspiro[**4.5**]dec-1-en-5-ium-3-ide (3c): Colourless solid; yield 89% (556 mg), m.p. 116.0 °C. ¹H NMR: δ = 1.51–2.00 (m, 6 H, 7,8,9-H), 2.86–2.89 (m, 2 H, 6-H), 3.23–3.30 (m, 2 H, 10-H), 3.73 (s, 2 H, 3,4-Cl₂-PhC*H*₂), 7.30–7.33 (m, 1 H, 2'-H), 7.56–7.61 (m, 2 H, 5',6'-H) ppm. ¹³C NMR: δ = 20.76 (C-8), 21.02 (C-7,9), 35.00 (3,4-Cl₂-PhC*H*₂), 56.61 (C-6,10), 129.34 (C-4'), 129.52, 130.35 (C-6', C-5'), 130.71 (C-3'), 131.14 (C-2'), 136.88 (C-1'), 171.04 (C-2), 181.48 (C-4) ppm. IR: \tilde{v} = 1774 (C=O) cm⁻¹. C₁₄H₁₅Cl₂N₃O (312.20): calcd. C 53.86, H 4.84, N 13.46; found C 53.87, H 4.90, N 13.26. Hold time: 2 min.

3-(4-Chlorobenzyl)-1,1-dimethyl-5-oxo-1,5-dihydro-1,2,4-triazol-1ium-4-ide (3d): Colourless solid; yield 84% (524 mg), m.p. 131.5 °C. ¹H NMR: δ = 2.96 [s, 6 H, N(CH₃)₂], 3.66 (s, 2 H, 4-Cl-PhCH₂), 7.31–7.38 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 35.70 (4-Cl-PhCH₂), 48.08 [N(CH₃)₂], 128.61 (C-3', C-5'), 131.41 (C-2', C-6'), 131.74, 134.95 (C-1', C-4'), 170.38 (C-3), 181.83 (C-5) ppm. IR: \tilde{v} = 1771 (C=O) cm⁻¹. C₁₁H₁₂ClN₃O (237.69): calcd. C 55.59, H 5.09, N 17.68; found C 55.41, H 5.45, N 17.31. Hold time: 2 min.

2-(4-Chlorobenzyl)-8-methyl-4-oxo-1,3,5,8-tetraazaspiro[4.5]dec-1en-5-ium-3-ide (3e): Colourless solid; yield 90% (527 mg), m.p. 196.2 °C. ¹H NMR: δ = 2.29 (s, 3 H, NC*H*₃), 2.54–2.61 (m, 2 H, 6-H), 2.88–2.91 (m, 4 H, 7,9-H), 3.30–3.39 (m, 2 H, 10-H), 3.69 (s, 2 H, 4-Cl-PhC*H*₂), 7.32–7.38 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 35.43 (NC*H*₃), 45.14 (4-Cl-PhC*H*₂), 49.57 (C-7,9), 55.83 (C-6,10), 128.23 (C-3',5'), 130.88 (C-2',6'), 131.35 (C-1'), 134.65 (C-4'),

FULL PAPER

170.23 (C-2), 182.02 (C-4) ppm. IR: $\tilde{v} = 1774$ (C=O) cm⁻¹. C₁₄H₁₇ClN₄O (292.77): calcd. C 57.44, H 5.85, N 19.14; found C 57.25, H 6.18, N 18.82. Hold time: 2.5 min.

4-Oxo-2-(2-thienylmethyl)-8-oxa-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (3f): Pale-brown solid; yield 81 % (407 mg), m.p. 111.0 °C. ¹H NMR: δ = 2.87–2.90 (m, 2 H, 6-H), 3.40–3.47 (m, 2 H, 10-H), 3.94 (s, 2 H, 2-thienyl-CH₂), 3.98–4.06 (m, 4 H, 7,9-H), 6.95–7.01 (m, 2 H, 3',4'-H), 7.39–7.40 (m, 1 H, 5'-H) ppm. ¹³C NMR: δ = 30.80 (2-thienyl-CH₂), 55.24 (C-7,9), 61.97 (C-6,10), 125.21, 126.64, 126.75 (C-5', C-4', C-3'), 136.85 (C-1'), 169.75 (C-2), 181.95 (C-4) ppm. IR: \tilde{v} = 1767 (C=O) cm⁻¹. C₁₁H₁₃N₃O₂S (251.31): calcd. C 52.57, H 5.21, N 16.72; found C 52.38, H 5.31, N 16.57. Hold time: 3 min.

Microwave-Assisted Synthesis of Compounds 4a-f. General Procedure: Compounds 2a-f (2 mmol) dissolved in dry dichloromethane (5 mL) and 1,1'-thiocarbonyldiimidazole (428 mg, 2.4 mmol) were added to a 10 mL glass pressure microwave tube equipped with a magnetic stirrer bar. The tube was closed with a silicon septum and the reaction mixture was subjected to microwave irradiation for 2-3 min. The reaction mixture was cooled to room temperature and transferred to a round-bottomed flask. The solvent was evaporated, ethyl acetate (20 mL) was added and the mixture was washed with 1 M hydrochloric acid $(3 \times 5 \text{ mL})$. The organic layer was dried with Na₂SO₄, filtered and the solvent was evaporated. The remaining residues were purified by filtration through a short silica gel column (3 cm) with EtOAc/hexane (1:1) as eluent. Crystallization from EtOAc/hexane provided 4a-f as analytically pure solids. Microwave parameters for compounds 4a-f: Discover mode; power: 100 W; ramp time: 1 min; hold time: 2-3 min; temperature: 50 °C; pressure: 4 bar; PowerMax cooling mode.

2-Cyclohexyl-4-thioxo-8-oxa-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (4a): Colourless solid; yield 69% (350 mg), m.p. 120.9 °C. ¹H NMR: δ = 1.17–1.91 (m, 10 H, cyclohexyl, C₅H₁₀), 2.53–2.60 (m, 1 H, cyclohexyl, CH), 2.80 (br. s, 2 H, 6-H), 3.71 (br. s, 2 H, 10-H), 4.06 (s, 4 H, 7,9-H) ppm. ¹³C NMR: δ = 24.81 (cyclohexyl, C-3,5), 25.37 (cyclohexyl, C-4), 29.08 (C-2,6), 59.13 (C-7,9), 62.48 (C-6,10), 184.74 (C-2), 197.96 (C-4) ppm. IR: \tilde{v} = 2928, 2854, 1544 cm⁻¹. C₁₂H₁₉N₃OS (253.37): calcd. C 56.89, H 7.56, N 16.58; found C 56.84, H 7.69, N 16.51. Hold time: 3 min.

3-(3,4-Dimethoxybenzyl)-1,1-dimethyl-5-thioxo-1,5-dihydro-1,2,4-triazol-1-ium-4-ide (4b): Colourless solid; yield 86% (480 mg), m.p. 136.0 °C. ¹H NMR: δ = 3.10 [s, 6 H, N(*CH*₃)₂], 3.73 [d, *J* = 2.03 Hz, 6 H, 3,4-(*CH*₃O)₂-Ph], 3.76 [s, 2 H, 3,4-(*CH*₃O)₂-Ph*CH*₂], 6.80–6.83 (m, 1 H, 6'-H), 6.88–6.90 (m, 2 H, 5',2'-H) ppm. ¹³C NMR: δ = 34.56 [3,4-(*CH*₃O)₂-Ph*CH*₂], 51.68 [N(*CH*₃)₂], 55.89 [3,4-(*CH*₃O)₂-Ph], 112.26, 113.39, 121.61 (C-5', C-2', C-6'), 127.52 (C-1'), 148.18, 149.00 (C-4', C-3'), 180.32 (C-3), 198.45 (C-5) ppm. IR: \tilde{v} = 1517, 1478, 1261 cm⁻¹. C₁₃H₁₇N₃O₂S (279.36): calcd. C 55.89, H 6.13, N 15.04; found C 55.55, H 6.14, N 14.92. Hold time: 2.5 min.

2-(3,4-Dichlorobenzyl)-4-thioxo-1,3,5-triazaspiro[4.5]dec-1-en-5ium-3-ide (4c): Pale-yellow solid; yield 77% (505 mg), m.p. 139.0 °C. ¹H NMR: δ = 1.52–2.06 (m, 6 H, 7,8,9-H), 2.82 (d, *J* = 11.80 Hz, 2 H, 6-H), 3.56 (t, *J* = 12.80 Hz, 2 H, 10-H), 3.93 (s, 2 H, 3,4-Cl₂-PhCH₂), 7.32–7.35 (m, 1 H, 6'-H), 7.59 (d, *J* = 8.29 Hz, 1 H, 2'-H), 7.64 (d, *J* = 2.01 Hz, 1 H, 5'-H) ppm. ¹³C NMR: δ = 20.71 (C-8), 21.70 (C-7,9), 33.67 (3,4-Cl₂-PhCH₂), 61.00 (C-6,10), 129.60 (C-4'), 129.71, 130.46 (C-6', C-5'), 130.82 (C-3'), 131.33 (C-2'), 136.25 (C-1'), 179.48 (C-2), 194.60 (C-4) ppm. IR: \tilde{v} = 2953, 1557, 1442, 1334 cm⁻¹. C₁₄H₁₅Cl₂N₃S (328.27): calcd. C 51.23, H 4.61, N 12.80; found C 51.11, H 4.79, N 12.66. Hold time: 2.5 min.

3-(4-Chlorobenzyl)-1,1-dimethyl-5-thioxo-1,5-dihydro-1,2,4-triazol-1-ium-4-ide (4d): Pale-yellow solid; yield 76% (386 mg), m.p.

138.9 °C. ¹H NMR: δ = 3.10 [s, 6 H, N(CH₃)₂], 3.86 (s, 2 H, 4-Cl-PhCH₂), 7.33–7.40 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 33.90 (4-Cl-PhCH₂), 51.32 [N(CH₃)₂], 128.33, 131.16 (C-3',5', C-2',6'), 131.59, 133.96 (C-1', C-4'), 179.54 (C-3), 198.17 (C-5) ppm. IR: $\tilde{\nu}$ = 2953, 1557, 1442, 1334 cm⁻¹. C₁₁H₁₂ClN₃S (253.76): calcd. C 52.07, H 4.77, N 16.56; found C 51.83, H 4.84, N 16.41. Hold time: 3 min.

2-(4-Chlorobenzyl)-8-methyl-4-thioxo-1,3,5,8-tetraazaspiro[4.5]dec-1-en-5-ium-3-ide (4e): Colourless solid; yield 78% (482 mg), m.p. 209.5 °C. ¹H NMR: δ = 2.32 (s, 3 H, NC*H*₃), 2.66 (s, 2 H, 6-H), 2.84–2.97 (m, 4 H, 7,9-H), 3.70 (s, 2 H, 10-H), 3.89 (s, 2 H, 4-Cl-PhCH₂), 7.34–7.40 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 34.44 (4-Cl-Ph*C*H₂), 45.41 (N*C*H₃), 50.50 (C-7,9), 60.19 (C-6,10), 128.76, 131.49 (C-3',5', C-2',6'), 131.98, 134.43 (C-1', C-4'), 180.41 (C-2), 199.04 (C-4) ppm. IR: $\tilde{\nu}$ = 1560, 1458, 1340 cm⁻¹. C₁₄H₁₇ClN₄S (308.84): calcd. C 54.45, H 5.55, N 18.14; found C 54.13, H 5.65, N 17.97. Hold time: 2.5 min.

2-(2-Thienylmethyl)-4-thioxo-8-oxa-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (4f): Orange-brown solid; yield 74% (396 mg), m.p. 136.0 °C. ¹H NMR: δ = 2.86 (br. s, 2 H, 6-H), 3.72 (br. s, 2 H, 10-H), 4.07 (s, 4 H, 7,9-H), 4.14 (s, 2 H, 2-thienyl-CH₂), 6.98–7.00 (m, 1 H, 3'-H), 7.03–7.04 (m, 1 H, 4'-H), 7.42–7.44 (m, 1 H, 5'-H) ppm. ¹³C NMR: δ = 29.42 (2-thienyl-CH₂), 59.15 (C-7,9), 62.46 (C-6,10), 125.50, 126.91, 127.05 (C-5', C-4', C-3'), 136.10 (C-2'), 179.97 (C-2), 198.25 (C-4) ppm. IR: \tilde{v} = 1555, 1456, 1331 cm⁻¹. C₁₁H₁₃N₃OS₂ (267.37): calcd. C 49.41, H 4.90, N 15.72; found C 49.06, H 5.01, N 15.47. Hold time: 3 min.

Microwave-Assisted Synthesis of Compounds 5a-f. General Procedure: Compounds 2a-f (2 mmol) dissolved in dry dichloromethane (5 mL) and diphenyl N-cyanimidocarbonate (572 mg, 2.4 mmol) were added to a 10 mL glass pressure microwave tube equipped with a magnetic stirrer bar. The tube was closed with a silicon septum and the reaction mixture was subjected to microwave irradiation for 2-3 min. The reaction mixture was cooled to room temperature and was transferred to a round-bottomed flask. The solvent was evaporated, ethyl acetate (20 mL) was added and the mixture was washed with a saturated aqueous solution of potassium carbonate $(3 \times 5 \text{ mL})$. The organic layer was dried with Na₂SO₄, filtered and the solvent was evaporated. The remaining residues were purified by column chromatography with EtOAc/hexane (1:1) as eluent. Crystallization from THF/hexane provided 5af as analytically pure solids. Microwave parameters for compounds 5a-f: Discover mode; power: 100 W; ramp time: 1 min; hold time: 2-3 min; temperature: 50 °C; pressure: 4 bar; PowerMax cooling mode.

(4*E*)-4-(Cyanoimino)-2-cyclohexyl-8-oxa-1,3,5-triazaspiro[4.5]dec-1en-5-ium-3-ide (5a): Colourless solid; yield 92% (481 mg), m.p. 139.5 °C. ¹H NMR: $\delta = 1.17$ –1.90 (m, 10 H, cyclohexyl, C₅H₁₀), 2.47–2.55 (m, 1 H, cyclohexyl, CH), 3.21–3.24 (d, ³*J*_{H,H} = 12.72 Hz, 2 H, 6-H), 3.55–3.62 (m, 2 H, 10-H), 3.48–4.09 (m, 4 H, 7,9-H) ppm. ¹³C NMR: $\delta = 25.16$ (cyclohexyl, C-3,5), 25.70 (cyclohexyl, C-4), 29.40 (cyclohexyl, C-2,6), 38.17 (cyclohexyl, C-1), 59.94 (C-7,9), 62.39 (C-6,10), 115.23 [N(CN)], 178.52 (C-2), 184.13 (C-4) ppm. IR: $\tilde{v} = 2193$ (CN), 1650 (C=N) cm⁻¹. C₁₃H₁₉N₅O (261.33): calcd. C 59.75, H 7.33, N 26.80; found C 59.73, H 7.36, N 26.80. Hold time: 3 min.

(5*E*)-5-(Cyanoimino)-3-(3,4-dimethoxybenzyl)-1,1-dimethyl-1,5-dihydro-1,2,4-triazol-1-ium-4-ide (5b): Colourless solid; yield 82% (471 mg), m.p. 165.4 °C. ¹H NMR: δ = 3.24 [s, 6 H, N(CH₃)₂], 3.72 [s, 2 H, 3,4-(CH₃O)₂-PhCH₂], 3.73 [d, ³J_{H,H} = 2.26 Hz, 6 H, 3,4-(CH₃O)₂-Ph], 6.81–6.84 (m, 1 H, 6'-H), 6.89–6.91 (m, 2 H, 2',5'-H) ppm. ¹³C NMR: δ = 34.20 [3,4-(CH₃O)₂-PhCH₂], 51.32
$$\begin{split} &[\mathrm{N}(\mathrm{CH}_3)_2], 55.41, 55.50 \ [3,4-(\mathrm{C}H_3\mathrm{O})_2-\mathrm{Ph}], 111.91, 113.02 \ (\mathrm{C-5'}, \ \mathrm{C-2'}), 114.73 \ [\mathrm{N}(\mathrm{CN})], 121.23 \ (\mathrm{C-6'}), 126.81 \ (\mathrm{C-1'}), 147.86, 148.63 \ (\mathrm{C-4'}, \ \mathrm{C-3'}), 178.40 \ (\mathrm{C-3}), 179.01 \ (\mathrm{C-5}) \ \mathrm{ppm}. \ \mathrm{IR:} \ \tilde{\nu} = 2195 \ (\mathrm{CN}), 1655 \ (\mathrm{C=N}) \ \mathrm{cm^{-1}}. \ \mathrm{C_{14}H_{17}N_5O_2} \ (287.32): \ \mathrm{calcd.} \ \mathrm{C} \ 58.52, \ \mathrm{H} \ 5.96, \ \mathrm{N} \ 24.37; \ \mathrm{found} \ \mathrm{C} \ 58.52, \ \mathrm{H} \ 6.13, \ \mathrm{N} \ 24.25. \ \mathrm{Hold} \ \mathrm{time:} \ 2.5 \ \mathrm{min.} \end{split}$$

(4*E*)-4-(Cyanoimino)-2-(3,4-dichlorobenzyl)-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (5c): Colourless solid; yield 86% (578 mg), m.p. 194.5 °C. ¹H NMR: δ = 1.54–2.04 (m, 6 H, 7,8,9-H), 3.23– 3.26 (d, ³*J*_{H,H} = 11.70 Hz, 2 H, 6-H), 3.43–3.50 (m, 2 H, 10-H), 3.89 (s, 2 H, 3,4-Cl₂-PhC*H*₂), 7.33–7.36 (m, 1 H, 6'-H), 7.60 (d, ³*J*_{H,H} = 8.14 Hz, 1 H, 2'-H), 7.65 (d, ³*J*_{H,H} = 2.04 Hz, 1 H, 5'-H) ppm. ¹³C NMR: δ = 20.58 (C-8), 21.64 (C-7,9), 34.20 (3,4-Cl₂-PhCH₂), 61.64 (C-6,10), 115.18 [N(*C*N)], 130.09, 130.90 (C-6', C-5'), 131.26 (C-3',4'), 131.73 (C-2'), 136.35 (C-1'), 178.88 (C-2), 179.82 (C-4) ppm. IR: $\tilde{\nu}$ = 2190 (CN), 1642 (C=N) cm⁻¹. C₁₅H₁₅Cl₂N₅ (336.23): calcd. C 53.59, H 4.50, N 20.83; found C 53.57, H 4.61, N 20.81. Hold time: 2.5 min.

(5*E*)-3-(4-Chlorobenzyl)-5-(cyanoimino)-1,1-dimethyl-1,5-dihydro-1,2,4-triazol-1-ium-4-ide (5d): Colourless solid; yield 75% (392 mg), m.p. 156.3 °C. ¹H NMR: δ = 3.24 [s, 6 H, N(CH₃)₂], 3.83 (s, 2 H, 4-Cl-PhCH₂), 7.34–7.41 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 34.47 (4-Cl-PhCH₂), 51.74 [N(CH₃)₂], 115.08 [N(CN)], 128.76 (C-3',5'), 131.59 (C-2',6'), 132.06 (C-1'), 134.05 (C-4'), 178.82 (C-3), 179.01 (C-5) ppm. IR: \tilde{v} = 2195 (CN), 1662 (C=N) cm⁻¹. C₁₂H₁₂ClN₅ (261.72): calcd. C 55.07, H 4.62, N 26.76; found 55.27, H 4.78, N 26.84. Hold time: 2.5 min.

(4*E*)-2-(4-Chlorobenzyl)-4-(cyanoimino)-8-methyl-1,3,5,8-tetraazaspiro[4.5]dec-1-en-5-ium-3-ide (5e): Colourless solid; yield 87% (551 mg), m.p. 250 °C (dec.). ¹H NMR: δ = 2.31 (s, 3 H, NC*H*₃), 2.62–2.68 (m, 2 H, 7-H), 2.96 (d, ³*J*_{H,H} = 12.46 Hz, 2 H, 9-H), 3.28 (d, ³*J*_{H,H} = 12.21 Hz, 2 H, 6-H), 3.51–3.58 (m, 2 H, 10-H), 3.85 (s, 2 H, 4-Cl-PhC*H*₂), 7.35–7.41 (m, 4 H, 4-Cl-Ph) ppm. ¹³C NMR: δ = 34.18 (4-Cl-PhC*H*₂), 44.91 (NCH₃), 49.54 (C-7,9), 60.31 (C-6,10), 114.68 [N(*C*N)], 128.39, 131.05 (C-3',5', C-2',6'), 131.67, 133.72 (C-1', C-4'), 178.67 (C-2), 178.99 (C-4) ppm. IR: \tilde{v} = 2189 (CN), 1655 (C=N) cm⁻¹. C₁₅H₁₇CIN₆ (316.80): calcd. C 56.87, H 5.41, N 26.53; found 56.74, H 5.53, N 26.42. Hold time: 2.5 min.

Eurjoc European journal

(4*E*)-4-(Cyanoimino)-2-(2-thienylmethyl)-8-oxa-1,3,5-triazaspiro[4.5]dec-1-en-5-ium-3-ide (5f): Pale-rose solid; yield 64% (352 mg), m.p. 174.2 °C. ¹H NMR: $\delta = 3.27$ (d, ${}^{3}J_{\rm H,H} = 12.80$ Hz, 2 H, 6-H), 3.58–3.65 (m, 2 H, 10-H), 3.99–4.11 (m, 4 H, 7,9-H), 4.10 (s, 2 H, 2-thienyl-*CH*₂), 6.98–7.00 (m, 1 H, 3'-H), 7.05–7.06 (m, 1 H, 4'-H), 7.43–7.45 (m, 1 H, 5'-H) ppm. ¹³C NMR: $\delta = 29.54$ (2-thienyl-*C*H₂), 59.63 (C-7,9), 61.98 (C-6,10), 114.45 [N(*C*N)], 125.56, 126.92, 127.16 (C-5', C-4', C-3'), 135.72 (C-2'), 178.21 (C-2), 178.93 (C-4) ppm. IR: $\tilde{\nu} = 2189$ (CN), 1641 (C=N) cm⁻¹. C₁₂H₁₃N₅OS (275.33): calcd. C 52.35, H 4.76, N 25.44; found C 52.12, H 4.93, N 25.19. Hold time: 2.5 min.

Acknowledgments

We thank Prof. Dr. J. Kopf for the X-ray crystal structure analysis.

- a) C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250–6284; b)
 B. Wathey, J. Tierney, P. Lidström, J. Westman, Drug Discovery Today 2002, 7, 373–380.
- [2] a) K. Schonafinger, *Farmaco* 1999, 54, 316–320; b) S. Laurant,
 F. Bringaud, P. Hoffmann, *J. Heterocycl. Chem.* 2003, 40, 943–947.
- [3] M. Kouji, H. Jiyunzuo, Sankyo Co., Ltd., JP 58116475, 1983 [*Chem. Abstr.* 1983, 99, 158441y].
- [4] K. T. Potts, W. R. Kuehnling, P. Murphy, J. Org. Chem. 1984, 49, 2404–2407.
- [5] M. Takahashi, K. Takeguchi, S. Imaizum, Synthesis 1982, 155– 156.
- [6] K. Grohe, Bayer AG, DE 2743976, 1979 [Chem. Abstr. 1979, 91, 91644f].
- [7] a) W. Walter, H. Weiss, Justus Liebigs Ann. Chem. 1972, 758, 162–172; b) A. Pinner, Die Imidoäther und ihre Derivate, Oppenheim, Berlin, 1892.
- [8] a) R. L. Webb, S. Labaw, J. Heterocycl. Chem. 1982, 19, 1205–1206; b) T. Kurz, N. Lolak, D. Geffken, Tetrahedron Lett. 2007, 48, 2733–2735.

Received: August 12, 2008 Published Online: October 31, 2008