Accepted Manuscript

Total Synthesis and Cytotoxicity of Leucetta Alkaloids

Panduka B. Koswatta, Sabha Kasiri, Jayanta Das, Arunoday Bhan, Heather M. Lima, Beatriz Garcia-Barboza, Nicole N. Khatibi, Muhammed Yousufuddin, Subhrangsu S. Mandal, Carl J. Lovely

PII:	\$0968-0896(17)30097-4
DOI:	http://dx.doi.org/10.1016/j.bmc.2017.01.024
Reference:	BMC 13503
To appear in:	Bioorganic & Medicinal Chemistry
Received Date:	7 September 2016
Revised Date:	12 January 2017
Accepted Date:	16 January 2017

Please cite this article as: Koswatta, P.B., Kasiri, S., Das, J., Bhan, A., Lima, H.M., Garcia-Barboza, B., Khatibi, N.N., Yousufuddin, M., Mandal, S.S., Lovely, C.J., Total Synthesis and Cytotoxicity of *Leucetta* Alkaloids, *Bioorganic & Medicinal Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.bmc.2017.01.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Total synthesis and cytotoxicity of *Leucetta* alkaloids

Leave this area blank for abstract info.

Panduka B. Koswatta, Sabha Kasiri, Jayanta Das, Arunoday Bhan, Heather M. Lima, Beatriz Garcia-Barboza, Nicole N. Khatibi, Muhammed Yousufuddin, Subhrangsu S. Mandal and Carl J. Lovely

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019-0065, USA

Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com

Total Synthesis and Cytotoxicity of Leucetta Alkaloids

Panduka B. Koswatta, Sabha Kasiri, Jayanta Das, Arunoday Bhan, Heather M. Lima, Beatriz Garcia-Barboza, Nicole N. Khatibi, Muhammed Yousufuddin, Subhrangsu S. Mandal and Carl J. Lovely

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019-0065, USA

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Keywords: 2-Aminoimidazole Heterocycles Metallation Reduction Naphthimidazole The total synthesis of a number of representative natural products isolated from *Leucetta* and *Clathrina* sponges containing a polysubstituted 2-aminoimidazole are described. These syntheses take advantage of the site specific metallation reactions of 4,5-diiodoimidazoles resulting in the syntheses of three different classes of *Leucetta* derived natural products. The cytotoxicities of these natural products, along with several precursors in MCF7 cells were determined through an MTT growth assay. For comparative purposes a series of naphthimidazole-containing family members are included.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Leucetta and Clathrina families of marine sponges have been investigated as sources of novel bioactive secondary metabolites for several years.¹ Broadly speaking, these sponges produce either polyunsaturated fatty acid derivatives or a growing family of 2-aminoimidazole containing alkaloids (e.g., 1-7, Figure 1).² These alkaloids vary in complexity from the simple monobenzyl substituted derivatives such as clathridine A (1) to the highly condensed kealiiquinone $(6)^3$ or the highly oxidized spiroleucettadine (7) (Figure 1).⁴ In between these extremes are the two isomeric dibenzyl substituted systems exemplified by isonaamidine E $(2)^5$ or naamidine H (5).⁶ The vast majority of these natural products are described as possessing "biological activity", but rarely are either the assays or the cell types the same from one isolation group to the next.⁷ Furthermore, it is often times difficult to obtain extremely pure materials from natural isolates which influences both the magnitude and in some cases the reliability of these data. Lastly, the ability to conduct SAR studies is limited to derivatization of the natural material, which often can only be obtained in limited supply. To date, only the biological activity of naamidine A (3) has been extensively investigated by the Ireland lab which has demonstrated that it promotes caspase-dependent apoptosis in cultured tumor cells.⁸ An Australian team has reported a modest exploration of the SAR of the naamine/naamidine A framework.⁹ More recently, the Looper lab¹⁰ and our group¹¹ have begun to evaluate the biological activity of synthetic versions of various other family members, specifically the naphthimidazole group. Very recently Jiang and coworkers have applied our synthetic methods to access the naamine framework to prepare derivatives at the 2-amino group with activity against P-glycoprotein mediated drug resistance in various cancer cell lines.¹² In order to pursue a medicinal chemistry campaign of these molecules, we needed reliable synthetic strategies that ideally were short and readily amenable to variation thus providing both the opportunity to access natural products but also permitting the construction of analogues around the imidazole core.

Several years ago, we began a synthetic program directed towards the total synthesis of several of the more complex members of the Leucetta alkaloids, specifically calcaridine A $(10)^{13}$ and spirocalcaridines A (8) and (9),¹⁴ using a broadly bioinspired-synthetic strategy.^{1a, 15} As a result we needed to access the basic framework found in the naamine group of alkaloids to perform a variety of biomimetic rearrangements. As we considered our options, it became clear that any strategy along these lines would provide an opportunity for the preparation of a selection of different family members. In this manuscript, we detail this strategy with the total synthesis of an example from each major class of Leucetta alkaloids. In addition, we describe the cytotoxicity of the synthesized natural products and selected precursors using an MTT based cell viability assay in MCF7 breast cancer cells, thereby obtaining direct comparative biological data for several members of the Leucetta alkaloids and their precursors for the first time.

Figure 1: Characteristic members of the Leucetta alkaloids

2. Results and Discussion

Strategy: As noted above, we wished to develop an approach to this group of molecules which was flexible, would readily deliver analogs and above all would be scalable. Several general strategies can be envisioned for the preparation of the polysubstituted imidazoles, either through the intermediacy of α substituted ketones (12 \rightarrow 11), hydroamination of alkynes^{10b, 16} or through the functionalization of pre-formed imidazoles $(13\rightarrow 11)$.¹⁷ In each case, the strategies are executed to avoid introducing the polar 2-amino substituent until the end of the synthetic sequence. In this context we pursued the latter approach, relying on halogen-Grignard exchange reactions of 4,5-diiodoimidazole derivatives and subsequent electrophilic quench.¹⁸ Based on literature reports, it was known that C5 would undergo exchange first, followed by C4, the remaining unsubstituted position at C2 could then be deprotonated with n-BuLi allowing the sequential and selective polyfunctionalization of the heterocycle. The majority of examples described in the literature prior to our work involved imidazoles with stabilizing N-substituents, whereas our substrates by necessity would have either methyl or benzyl groups which would not stabilize any adjacent negative charge character to any appreciable extent. As a consequence, when we initiated this effort it was uncertain whether this technique could be extrapolated to such systems.

Figure 2: Strategic approaches to the Leucetta alkaloids

Our initial target centered on the construction of the simple trisubstituted system clathridine A (1) and the related preclathridine A (19) (Scheme 1).¹⁹ Our synthesis began with the preparation of 4,5-diiodo-1-methylimidazole (14);²⁰ while this material is commercially available through various sources, it can be prepared easily and in large quantities through the iodination of imidazole in basic solution and then N-methylation. No chromatography is required for either step; simply washing with solvent provides material of sufficient purity for further use. In order to access clathridine A (1), the 4-iodoimidazole 15 was required, this can be obtained by treatment of 14 with ethylmagnesium bromide and quenching with water.²¹ At this stage we were in position to install the benzylic substituent. Previous experience in our lab had demonstrated that this would be difficult to achieve directly by using a benzyl halide with electron rich imidazoles due to competitive N-alkylation^{13a} and therefore we employed an aldehyde and reduced the corresponding alcohol. In practice this involved metallation of C4 of 15 by treatment with ethylmagnesium bromide followed by treatment with piperanal, which delivered the doubly benzylic alcohol 16 in excellent yield. Ionic reduction occurred smoothly upon treatment of 16 with Et₃SiH in a mixture of TFA and dichloromethane. At this stage the introduction of the 2-amino group was necessary and this was accomplished through a twostep sequence involving C2-metallation of 17 with n-BuLi and trapping with $T_{s}N_{3}^{2}$. The resulting 2-azido derivative 18 was subjected to catalytic hydrogenation (Pd-C/H₂) affording preclathridine A (19). Clathridine A (1') was obtained by introduction of the methyl parabanic acid fragment using a literature procedure involving exposure of 19 to the silylated parabanic acid derivative 20.²³ The resulting synthetic material had spectroscopic properties that nicely matched those reported for the natural material. In addition, the synthetic natural product was crystalline and so an X-ray crystal structure was obtained which nicely illustrated the location of all of the substituents and confirmed the structure of the natural product (Figure 3). Interestingly, the crystalline material obtained was tautomeric to the reported structure of clathridine A (1) (Figure 1) but this may simply reflect crystal packing forces.

Figure 3: X-ray crystal structure of clathridine

With the synthesis of the two clathridine derivatives complete, we turned our attention to the isonaamidine series.²⁴ In this subfamily, the imidazole nitrogen is substituted with a benzyl moiety and thus the synthesis commenced with the 4,5diiodoimidazole by alkylation with p-methoxybenzyl chloride resulting in the formation of 22 (Scheme 2). Treatment of 22 with ethylmagnesium bromide followed by quenching with water provided the 4-iodoimidazole 23.²⁵ Exposure of 23 to ethylmagnesium bromide and treatment of the metallated imidazole with benzaldehyde 24 gave a mixture of the desired alcohol 25 and the corresponding ketone. Treatment of this unpurified mixture with NaBH4 reduced the ketone to the alcohol, which upon purification delivered 73% of the required product 25. Reduction of the doubly benzylic alcohol with Et_3SiH and TFA provided 26. At this stage we were in a position to introduce the C2-amine via metallation with n-BuLi and trapping with TrisN₃, however there was some concern vis à vis chemoselectivity as it is known that N-benzylimidazoles are prone to deprotonation at the benzylic position.²⁶ Fortunately, when 26 was exposed to n-BuLi followed by reaction with TrisN₃ the 2-azido derivative 27 was obtained in good yield. Reduction with Pd-C/H₂ delivered isonaamine C (28) which upon treatment with the silvlated parabanic acid derivative 20 afforded isonaamidine E (2) in good yield (Scheme 2).

Scheme 1: Total synthesis of preclathridine A (19) and clathridine A (1°)

Scheme 2: Total synthesis of isonaamine (28) and isonaamidine E (2)

With approaches to examples of 4-substituted imidazoles secured, we turned our attention to the 4,5-disubstituted derivatives. Strategically, we anticipated that both benzyl moieties could be installed sequentially through metallation and trapping with the appropriate aldehydes. As initial targets, our attention was directed to naamidine G (4),²⁷ one of several molecules isolated by Pietra and coworkers.²⁸ The crude extract containing these molecules was described as being cytotoxic, but no details were described for the individual purified molecules and thus access to synthetic versions would help address the question of which of these several derivatives were responsible for the cytotoxicity. The synthesis commenced from the diiodoimidazole 14 which was subjected to transmetallation with Exposure of the resulting organometallic to p-EtMgBr. anisaldehyde delivered the corresponding alcohol 29; ionic reduction of the doubly benzylic alcohol using Et₃SiH and trifluoroacetic acid provides 30 (Scheme 3). In the context of our calcaridine A (10) synthesis we had attempted to introduce the second benzylic substituent by reaction of the Grignard derived from **30** and a protected benzaldehyde derivative, but this was not very efficient.¹³ We were able to circumvent this problem by formylating first and then using an aryl Grignard reagent. Accordingly, formation of the Grignard reagent was accomplished by treatment of 30 with EtMgBr and then reaction with N-methyl formanilide (31) which delivered the aldehyde 32

in excellent yield. Reaction of the aldehyde with *p*-anisylmagnesium bromide provided the corresponding alcohol **33** in good yield. Ionic reduction of the benzylic alcohol **33** was readily accomplished on exposure to Et₃SiH and TFA. The synthesis naamidine G (**5**) was completed in short order by metallation of imidazole **34** at C2 with n-BuLi and reaction of the thus formed organolithium with TsN₃. The resulting azido derivative **35** was hydrogenated with Pd-C to provide the 2-amino derivative **36** which upon treatment with the activated parabanic acid derivative **20** afforded naamidine G (**4**) (Scheme 3). Compound **36** has not been reported as a natural product, but the desmethyl derivative (naamidine D) and the dimethyl derivative (N,N-dimethylnaamidine D)² have been described.

Scheme 3: Total synthesis of naamidine G (4)

We noted that alcohol **33** might serve as a precursor to the C14-oxygenated derivatives exemplified by 14methoxynaamidine G (**40**) (Scheme 4). Accordingly, alcohol **33** was converted to the methyl ether by treatment with TFA and methanol followed by C2-azidation and reduction to give the corresponding amine. Unfortunately, we were unable to obtain the naamidine derivative in useful amounts as the introduction of the parabanic acid fragment was not efficient using standard literature methods for its introduction. Presumably, residual BSA from the activation of the parabanic acid leads to competitive ionization of the methyl ether and non-productive side reactions.

Scheme 4: Total synthesis of 14'-Methoxynaamidine

The last targets that we pursued were naamine G and naamidine H as these derivatives were reported to possess cytotoxicity against several cancer cell lines in the low micromolar range.²⁹ Our synthesis began from 14 and proceeded through halogen-metal exchange and subsequent reaction with the Bn-protected aldehyde 41 resulting in the formation of alcohol 42. Attempts to reduce this alcohol under ionic conditions were not especially efficient, delivering less than 30% yield of the benzylic derivative 43. In addition to the required product, the reductive debenzylation product 43 was obtained in a similar yield. However, rather than searching for conditions to optimize this reduction, we chose to introduce the second benzylic substituent and then remove both hydroxyl groups We were able to introduce this second simultaneously. substituent through similar chemistry to that employed above wherein the imidazolyl aldehyde 45 was prepared first and then reaction with *p*-anisylmagnesium bromide to deliver diol 46 as a mixture of diastereomers. With the crude diol in hand it was subjected to the standard conditions that had been successful previous for the ionic reduction of related derivatives, however, rather than reduction, the diol underwent an intramolecular Friedel-Crafts reaction followed by elimination to provide the naphthimidazole 47. Presumably, a carbocation is formed and then this is trapped by the more electron rich aromatic system, dehydration then affords 47. The initial formation and rearrangement of an ipso addition adduct cannot be ruled out. Indeed, in recently published work we have evidence of such

rearrangements resulting in the formation of naphthimidazoles.¹⁴ While clearly in the context of our targets this outcome was not useful, the framework produced in this reaction maps very nicely onto other members of the *Leucetta* alkaloids, most notably the kealiinines and kealiiquinones. Indeed, we have used related chemistry to access both families of natural products.^{11, 15}

Scheme 5: First generation approach to naamidine H (5)

Given the propensity of this electron-rich system to undergo cyclization rather than reduction chemistry, we needed to develop an approach to circumvent this problem. An obvious way to accomplish this task was to avoid the generation of these benzylic carbocations. One way that this can be achieved is to use benzyl halides as electrophiles rather than aldehydes. We attempted to execute such a strategy with N-methylimidazole derivatives, e.g., $14+48 \rightarrow 43$. Unfortunately this chemistry was not successful and led to the formation of monoiodinated imidazolium salts On the other hand, Lindell has demonstrated that C-alkylation can be feasible using dimethylsulfamoyl (DMAS)-protecting group via the corresponding organocuprate. While this was encouraging, this meant that an exchange of imidazole N-substituents was necessary and that this had to be accomplished in a position selective manner. Fortunately, Robiette,³⁰ Sames³¹ and more recently Knochel^{17b} have demonstrated that the DMAS-protecting group can be removed with a methyl group via the intermediacy of an imidazolium salt formed by reaction with methyl triflate or Meerwein's salt. Given this encouraging precedent, the corresponding DMAS-protected

4.5-diiodoimidazole was used as a starting material. Sequential treatment of 49 with EtMgBr then CuCN.2LiCl provided the corresponding cuprate which was then reacted with pmethoxybenzyl bromide to provide 50 in 65% yield. Essentially the same sequence of reactions was used to obtain the dibenzyl substituted imidazole this time using benzyl bromide 48 as the electrophile. At this stage, we chose to perform the protecting group exchange sequence by first converting 51 to the methyl imidazolium salt 52 by treatment with methyl triflate. Subsequent reaction with benzylamine in acetonitrile at reflux provided the N-methyl substituted derivative 53 in 90% yield for the two step sequence. At this point all that remained to be done was to introduce the 2-amino group and the parabanic acid Interestingly, it was found that metalation at C2 moiety. followed by treatment with TsN3 resulted in sulfonylation, but substitution with $TrisN_3$ delivered the 2-azidoimidazole 55. Catalytic hydrogenation resulted in reduction of the azido moiety to the corresponding amine and hydrogenolysis of the benzyl protecting group resulting in the synthesis of naamine G (56) in excellent yield. Treatment with activated N-methyl parabanic acid then delivered naamidine H (5) in good yield. The spectroscopic data for both synthetic naamine G and synthetic naamidine H were in good agreement with that obtained for the isolated materials.

Scheme 6: Second generation total syntheses of naamine G (56) and naamidine G (5)

With this group of natural products in hand they were subjected to cytotoxicity testing using an MTT assay with MCF7 cells; the outcomes of these experiments are reported in Table 1 (entries 1-10). In addition to the naamine/naamidine group of compounds, we also include the naphthimidazole based family that we have reported previously for comparative purposes (entries 12-23, Table 1).¹¹ Generally speaking for the synthetic versions of the natural products, the systems substituted with Nmethyl parabanic acid are substantially more active than the corresponding 2-amino derivatives or desamino derivatives. Interestingly, there appears to be broad tolerance with respect to the identity and location of the other substituents around the In cases where cytotoxicity has been imidazole moiety. determined on material isolated from natural sources, our synthetic materials display similar values – typically $IC_{50} < 10$ μ M. One notable exception was with isonaamine C (28) (entry 4), for which the naturally occurring material was reported to have an IC₅₀ value of 2-5 µM, although this was obtained in different cell lines, whereas our synthetic material had an IC₅₀ $>100 \mu$ M. Our data are consistent with respect to the naamine vs naamidine activities, with the latter being more active. In the cases of the naphthimidazole derivatives, the cytotoxicities were not determined on natural materials, only on the synthetic materials.11, 32 In general terms the presence of a C2-amino substituent increases their cytotoxicity as evidenced by the kealiinines, but the presence of quinone in the C-ring as found in kealiiquinone (6) and 2-deoxy-2-aminokealiiquinone (68) appears to reduce activity. Interestingly, kealiinine C (63) is almost devoid of activity, whereas the isomeric congener 65 (entry 19) is about equipotent with the other two family members 59 and 61 (entries 13 and 15). At one point in our synthetic studies we were concerned that the structure of kealiinine C had been misassigned, however, HPLC studies suggested that the original assignment does in fact appear to be correct.

C

Conclusion

Our initial approach to these molecules relied on the formation of Grignards by *in situ* metal-halogen exchange reactions followed by trapping with carbonyl derivatives. In most cases this was followed by ionic reduction to deliver the net Calkylated product. This strategy worked well for the production a number of representative members of the *Leucetta* alkaloids, however, in at least one case the ionic reduction chemistry was

compromised by the presence of an electron rich aromatic ring that led to an unanticipated Friedel-Craft's pathway and the formation of a naphthimidazole. To circumvent this pathway, an electron poor imidazole derivative was alkylated at carbon thereby avoiding the non-productive cyclization pathway and ultimately delivering naamidine H. This latter strategy, while requiring the use of an *N*-protecting group, results in an overall shorter synthetic sequence and would appear to represent the best approach to this family of natural products. In general terms, synthetic variants of the natural products containing the methyl parabanic acid moiety exhibited higher cytotoxicities.

Experimental

Chemicals were used as received unless indicated otherwise. NMR spectra were obtained at either 500 MHz (for ¹H NMR spectra) and 125 MHz (for ¹³C NMR spectra) in CDCl₃ unless indicated otherwise. Infrared (IR) spectra were obtained on neat samples (ATR spectroscopy) or using either KBr pellets for solids or neat films on NaCl plates for liquids (transmission). Analytical thin-layer chromatography (TLC) was performed on silica gel plates, 200 mesh with F254 indicator. Visualization was accomplished by UV light (254 nm), and/or a 10% ethanol solution of KMnO₄. Flash column chromatography was performed with 230-400 silica gel. High resolution mass spectra (HRMS) were recorded by electrospray ionization (ESI-TOF) or atmospheric-pressure chemical ionization (APCI-TOF) unless otherwise indicated.

4-Iodo-1-methyl-1*H***-imidazole (15)**: EtMgBr (3.0 M solution in ether, 11.00 mL, 32.9 mmol) was added to a solution of **14** (10.00 g, 29.9 mmol) in dry CH_2Cl_2 (150 mL) at rt. over ~15 min. The resulting mixture was stirred for 20 min and water (20 mL) was added to the reaction mixture after running a TLC experiment to confirm all the starting material is consumed. Then, the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3x50 mL) and the combined organic layers were dried (Na₂SO₄) and concentrated to isolate **15** as pale yellow oil (5.86 g, 94%).

4-(Benzo[1,3]dioxol-5-yl)hydroxymethyl-1-methyl-1H-

imidazole (16): EtMgBr (3.0 M solution in ether, 9.76 mL, 29.3 mmol) was added to a solution of 15 (5.80 g, 27.9 mmol) in dry THF (100 mL) at 0 °C over ~10 min. The resulting mixture was stirred at rt. for 30 min and piperonal (4.65 mL, 30.7 mmol) was added to the reaction slowly at rt. After stirring overnight at rt., satd. aq. NH₄Cl (20 mL) was added to the reaction and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 50 mL) and the combined organic extracts were dried (Na_2SO_4) and concentrated to provide the crude product, which was purified by flash column chromatography on silica gel (100% EtOAc \rightarrow 100% Acetone) to isolate 16 (5.82 g, 90%) as an orange semi-solid: ¹H NMR: δ = 7.35 (s, 1H), 6.90 (s, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.45 (s, 1H), 5.88(s, 2H), 5.66 (s, 1H), 5.27 (br, 1H), 3.54 (s, 3H); 13 C NMR: $\delta =$ 147.5, 146.8, 146.0, 137.8, 137.4, 120.1, 117.2, 107.9, 107.4, 101.0, 70.0, 33.5; IR (neat, cm^{-1}): = 3114, 2891, 1493, 1442, 1243, 1037, 927, 794, 756; HR-ESIMS (m/z): Calcd. for C₁₂H₁₃N₂O₃ [M+H]⁺233.0921, found 233.0925.

4-(Benzo[1,3]dioxol-5-yl)methyl-1-methyl-1*H*-imidazole

(17): TFA (7.00 mL, 91.4 mmol) and Et_3SiH (17.00 mL, 106.4 mmol were added to a solution of 16 (5.31 g, 22.9 mmol) in dry CH_2Cl_2 (150 mL) at rt. The resulting mixture was stirred for 48 h; the reaction mixture was then quenched by the addition of sat.

NaHCO₃ solution until effervescence ceased. The resulting mixture was extracted with CH₂Cl₂ several times and the combined extracts were dried (Na₂SO₄) and concentrated. The residue was purified by chromatography (acetone/EtOAc, 3/7) to isolate a pale yellow semi-solid: **17** (3.55 g, 72%); ¹H NMR: $\delta = 7.27$ (s, 1H), 6.71 (s, 1H), 6.67 (s, 2H), 6.46 (s, 1H), 5.82 (s, 2H), 3.76 (s, 2H), 3.52 (s, 3H); ¹³C NMR: $\delta = 147.6$, 145.8, 142.8, 137.4, 134.4, 121.6, 117.0, 109.4, 108.2, 101.0, 34.7, 33.2; IR (neat, cm⁻¹): = 3367, 2900, 2778, 1492, 1441, 1246, 1185, 1038, 928, 815, 773; HR-ESIMS (*m*/*z*): Calcd. for C₁₂H₁₃N₂O₂ [M+H]⁺ 217.0972, found 217.0991.

2-Azido-4-(benzo[1,3]dioxol-5-yl)methyl-1-methyl-1H-

imidazole (18): *n*-Butyl lithium (1.4 M solution in hexanes, 11.34 mL, 15.9 mmol) was added dropwise to a solution of **17** (3.12 g, 14.4 mmol) in THF at -78 °C and TsN₃ (3.41 g, 17.3 mmol) were used to afford the crude product, which was purified by chromatography (15% → 20% EtOAc in hexanes) to isolate **18** (2.93 g, 78%) as a reddish brown oil: ¹H NMR: δ = 6.76 (s, 1H), 6.72 (s, 2H), 6.24 (s, 1H), 5.90 (s, 2H), 3.74 (s, 2H), 3.31 (s, 3H); ¹³C NMR: δ = 147.7, 146.0, 140.2, 140.0, 133.6, 121.7, 116.1, 109.5, 108.2, 100.9, 34.8, 31.5; IR (neat, cm⁻¹): = 2896, 2154, 2125, 1494, 1441, 1245, 1039, 929, 812; HR-ESIMS (*m*/*z*): Calcd. for C₁₂H₁₂N₅O₂ [M+H]⁺ 258.0986, found 258.0987.

2-Amino-4-(benzo[1,3]dioxol-5-yl)methyl-1-methyl-1*H***imidazole (Preclathridine A) (19):** Azide **18** (2.80 g, 10.9 mmol) was dissolved in EtOH (30 mL) and stirred under a hydrogen atmosphere (1 atm) in the presence of 10% Pd-C on charcoal (0.30 g) at rt overnight to afford **19** (2.59 g, quant) as a yellow solid: m.p. = 116-118 °C; ¹H NMR (CDCl₃): δ = 6.73 (s, 1H), 6.69 (s, 2H), 6.08 (s, 1H), 5.86 (s, 2H), 4.14 (br, 2H), 3.63 (s, 2H), 3.26 (s, 3H); ¹³C NMR δ = 148.0, 147.5, 145.8, 137.1, 134.5, 121.7, 112.8, 109.5, 108.1, 100.8, 34.7, 31.3; IR (KBr, cm⁻¹): = 3432, 3299, 3109, 1643, 1547, 1505, 1442, 1244, 1034, 921, 814; HR-ESIMS (*m*/z): Calcd. for C₁₂H₁₄N₃O₂ [M+H]⁺ 232.1081, found 232.1094.

2-(3-Methylimidazolidine-2,4-dione)imino-4-(4benzo[1,3]dioxol-5-ylmethyl-1-methyl-1*H*-imidazole

(Clathridine A) (1'): N,O-Bis(trimethysilyl)acetamide (5.18 mL, 21.2 mmol) was added to a solution of 1-methylparabanic acid (2.26 g, 17.7 mmol) in dry CH₃CN (30 mL) under an N₂ atmosphere and the resulting mixture was heated at reflux temperature for 1.5 h. The solvent was removed by vacuum distillation, and to the resulting yellow residue 20 was dissolved in dry toluene (5 mL) and then added amine 19 (817 mg, 3.5 mmol) under N₂ atmosphere. After, this mixture was heated at 85 °C overnight (product starts to form after 10 min as a yellow solid at the bottom of the flask), the product was filtered and solid was washed with methanol (10 mL) to deliver 1' as a yellow solid (730 mg, 61%): m.p. = 253-254 °C (lit.⁷ m.p. = 260-262 °C); ¹H NMR: $\delta = 6.75$ (d, J = 8.3 Hz, 1H), 6.71 (s, 1H), 6.70 (d, J = 8.3 Hz, 1H), 6.52 (s, 1H), 5.93 (s, 2H), 3.80 (s, 2H), 3.71 (s, 3H), 3.18 (s, 3H); ¹³C NMR: $\delta = 162.0$, 155.0, 147.8, 147.1, 146.3, 144.3, 139.7, 132.7, 121.7, 117.7, 109.3, 108.4, 101.0, $34.5, 32.2, 24.8; \text{ IR (KBr, cm}^{-1}) = 3204, 3122, 2914, 1789, 1738,$ 1665, 1444, 1391, 1323, 1249, 1209, 1114, 1034, 925, 732; HR-ESIMS (m/z): Calcd. for C₁₆H₁₆N₅O₄ [M+H]⁺ 342.1197, found 342.1201.

4,5-Diiodo-1-(4-methoxybenzyl)-1H-imidazole (22): 4,5-Diiodo-1H-imidazole **21** (0.50 g, 1.6 mmol) in THF (15 mL) was cooled to 0 °C and NaH (60% suspension in mineral oil) (0.10 g, 2.5 mmol) was added slowly. The reaction was allowed to come to rt and stir under N₂ for 30 min. 4-Methoxybenzyl chloride (0.28 mL, 2.0 mmol) was added and stirred at 50 °C for 18 h. The reaction was allowed to cool to rt, quenched with water

(10 mL) and extracted with EtOAc (2 x 10 mL). The combined organic solutions were washed with water (10 mL), brine (10 mL), dried (anhyd. Na₂SO₄) and concentrated. The resulting crude residue was purified by column chromatography (4:6 EtOAc/Hexane) to give **22** as a yellow solid (0.63 g, 91%). m.p. = 158-160 °C; ¹H NMR: δ = 7.55 (s, 1H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 5.07 (s, 2H), 3.80 (s, 3H); ¹³C NMR: δ = 159.9, 141.2, 129.2, 126.7, 114.5, 96.1, 82.4, 55.4, 53.1; IR (cm-1): 3099, 2929, 2832, 1611, 1510, 1433, 1298, 1241, 1174, 1024, 816, 760, 629; HR-ESIMS (*m*/*z*): Calcd. for [M+H]⁺ C₁₁H₁₁N₂OI₂ is 440.8955 found 440.8956.

 $(23):^{25b}$ 4-Iodo-1-(4-methoxybenzyl)-1H-imidazole Diiodoimidazole 22 (16.2 g, 36.8 mmol) in CH₂Cl₂ (250 mL) was cooled to 0 °C under N2 and EtMgBr (3.0 M in Et2O) (12.3 mL, 36.8 mmol) was added slowly. The reaction mixture was allowed to come to rt and stirred for 1.5 h. Water (5 mL) was slowly added and then the mixture was stirred at rt for an additional 1 h. The reaction was partitioned with water and the organic layer separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 100 mL). The combined organic extracts were washed with brine, dried (anhyd. Na₂SO₄), and concentrated. The resulting residue was purified by column chromatography (1:1 EtOAc/Hexane) to give **23** as a pale yellow solid (9.6 g, 83%). m.p. = 49-51 °C; ¹H NMR (CDCl₃+DMSO-d₆): δ = 7.37 (d, J = 1.7 Hz, 1H), 7.08, (d, J = 8.6 Hz, 2H), 6.91 (d, J = 1.7 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 4.97 (s, 2H), 3.76 (s, 3H); ¹³C NMR (CDCl₃+DMSO-d₆): δ = 159.9, 138.7, 129.2, 127.2, 124.7, 114.5, 81.9, 55.4, 50.8; IR (cm⁻¹): 3127, 3005, 2959, 2836, 1612, 1512, 1441, 1244, 1223, 1179, 1095, 1033, 934, 837, 813, 760, 619.

4-[Hydroxy-(3,4-dimethoxyphenyl)]methyl-1-(4-

methoxybenzyl)-1H-imidazole (25): Iodoimidazole 23 (1.0 g, 3.2 mmol) in THF (15 mL) was added EtMgBr (3.0 M in Et₂O) (1.28 mL, 3.83 mmol) under N₂ and stirred at rt for 30 min. The resulting Grignard solution was then added to aldehyde 24 (0.53 g, 3.2 mmol) in THF (30 mL) and the mixture was stirred at rt for 18 h. The reaction was quenched with water (30 mL) and the aqueous phase was extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with brine, dried (anhyd. Na₂SO₄), and concentrated. The crude residue was dissolved in MeOH (10 mL) and NaBH₄ (0.060 g, 1.6 mmol) was added and stirred at rt for 3 h. The reaction was quenched with water (10 mL) and extracted with CH₂Cl₂ (2 x 15 mL). The combined organics were dried (anhyd. Na2SO4) and concentrated. The resulting residue was purified by column chromatography (5% MeOH in EtOAc) to give 25 as an off-white solid (0.82 g, 73%). m.p. = 115-117 °C; ¹H NMR: δ = 7.45 (d, J = 1.2 Hz, 1H), 7.07 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 2.3 Hz, 1H), 6.96 (dd, J = 2.3, 8.0 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.51 (s, 1H), 5.72 (s, 1H), 4.93 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H); ¹³C NMR: δ = 159.7, 148.9, 148.5, 146.3, 137.0, 135.6, 129.0, 127.8, 119.0, 116.0, 114.4, 110.9, 109.9, 70.6, 56.0, 55.9, 55.4, 50.6; IR (cm⁻¹): 3125 (br), 2838, 1612, 1505, 1417, 1302, 1248, 1134, 792, 746, 630; HR-ESIMS (m/z): Calcd. for $[M+H]^+ C_{20}H_{23}N_2O_4$ is 355.1652 found 355.1642.

4-(3,4-Dimethoxybenzyl)-1-(4-methoxybenzyl)-1H-

imidazole (26): Alcohol 25 (0.82 g, 2.3 mmol) in CHCl₃ (25 mL) was added TFA (1.10 mL, 13.9 mmol) followed by Et₃SiH (1.85 mL, 11.6 mmol) and heated to 55 °C under N₂ for 30 h. The reaction was quenched with 2M Na₂CO₃ until neutral and then extracted with CH₂Cl₂ (2 x 20 mL), dried (anhyd. Na₂SO₄), and concentrated. The resulting residue was purified by column chromatography (100% EtOAc to 5% MeOH in EtOAc) to give 26 as a colorless oil (0.67 g, 86%). ¹H NMR: δ = 7.42 (d, *J* = 1.2 Hz, 1H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.79

(d, J = 1.7 Hz, 1H), 6.78 (d, J = 1.7 Hz, 1H), 6.77 (s, 1H), 6.49 (d, J = 1.2 Hz, 1H), 4.93 (s, 2H), 3.83 (s, 5H), 3.81 (s, 3H), 3.78 (s, 3H); ¹³C NMR: $\delta = 159.6$, 148.8, 147.4, 143.2, 136.8, 133.1, 128.9, 128.3, 120.8, 116.0, 114.3, 112.2, 111.2, 56.0, 55.8, 55.4, 50.4, 34.8; IR (cm⁻¹): 2998, 2933, 2834, 1611, 1510, 1463, 1246, 1175, 1137, 1025, 818, 764, 686; HR-ESIMS (*m*/*z*): Calcd. for [M+H]⁺ C₂₀H₂₃N₂O₃ is 339.1703 found 339.1718.

2-Azido-4-(3,4-dimethoxybenzyl)-1-(4-methoxybenzyl)-1Himidazole (27): Imidazole 26 (0.10 g, 0.30 mmol) in THF (15 mL) was cooled to -78 °C under N₂. n-BuLi (1.6 M in hexane) (0.22 mL, 0.36 mmol) was added and stirred at -78 °C for 7 min. TrisN₃ (0.11 g, 0.36 mmol) was added in one portion and then the mixture was stirred at -78 °C for 30 min. The reaction was quenched by the addition of water (15 mL) and extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with brine, dried (anhyd. Na2SO4), and concentrated. The resulting residue was purified by column chromatography (35% EtOAc in hexane) to give 27 as a yellow oil (0.072 g, 65%). 1 H NMR: $\delta = 7.08$ (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.80 (s, 1H), 6.78 (m, 2H), 6.24 (s, 1H), 4.72 (s, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.77 (s, 2H); ¹³C NMR: δ = 159.5, 148.8, 147.5, 140.7, 139.6, 132.2, 128.9, 128.2, 120.8, 114.9, 114.3, 112.3, 111.2, 56.0, 55.9, 55.4, 48.2, 34.8; IR (cm⁻¹): 2934, 2907, 2128, 1734, 1611, 1512, 1244, 1175, 1137, 1027; HR-ESIMS (m/z): Calcd. for $[M+H]^+ C_{20}H_{22}N_5O_3$ is 380.1717 found 380.1727.

2-Amino-4-(3,4-dimethoxybenzyl)-1-(4-methoxybenzyl)-1H-imidazole (28): Isonaamine C 10% Pd/C (0.020 g, 0.018 mmol) was added to azide 26 (0.069 g, 0.18 mmol) in MeOH (5 mL) and stirred under H₂ (1 atm) at rt for 20 h. The catalyst was filtered through Celite and washed with CH₂Cl₂. The filtrate was reduced and the resulting residue purified by column chromatography using Biotage KP-NH Silica (100% EtOAc to 1% MeOH in EtOAc) to give 28 as a yellow solid (0.055 g, 86%). m.p. = 103-106 °C; ¹H NMR: δ = 7.06 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 2.0 Hz, 1H), 6.79 (d, J = 2.0 Hz, 1H), 6.78 (s, 1H), 6.16 (s, 1H), 4.74 (s, 2H), 3.83 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.70 (s, 2H); ¹³C NMR: δ = 159.4, 148.8, 147.5, 147.4, 137.4, 132.9, 128.3, 128.1, 120.8, 114.5, 112.5, 112.3, 111.2, 56.0, 55.9, 55.4, 48.2, 34.6; IR (cm⁻¹): 3367, 3075, 2997, 2939, 2838, 1612, 1587, 1512, 1442, 1232, 1151, 1024, 803; HR-ESIMS (m/z): Calcd. for $[M+H]^+ C_{20}H_{24}N_3O_3$ is 354.1812, found 354.1824.

4-(3,4-dimethoxybenzyl)-1-(4-methoxybenzyl)-2-(3-methylimidazolidine-2,4-dione)imino-1H-imidazole

(Isonaamidine E) (2): 1-Methylparabanic acid (0.11 g, 0.85 mmol) in dry CH₃CN (8 mL) was added N,Obis(trimethylsilyl)acetamide (0.25 mL, 1.0 mmol) and heated to reflux for 1.5 h. The solvent was removed by vacuum distillation and the resulting residue was dissolved in dry toluene (5 mL). Amine 28 (0.060 g, 0.17 mmol) was added and stirred at 85 °C under N₂ for 18 h. The reaction was quenched with water (10 mL) and extracted with EtOAC (2 x 10 mL). The combined organic extracts were dried (anhyd. Na₂SO₄) and concentrated. The resulting residue was purified by column chromatography (1:1 EtOAc/Hexane) to give 2 as an orange solid (0.078 g, 51%). m.p. = 121-124 °C; ¹H NMR: δ = 7.16 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 6.80-6.74 (m, 3H), 6.47 (s, 1H), 5.19 (s, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.80 (s, 2H), 3.77 (s, 3H), 3.18 (s, 3H); ¹³C NMR: $\delta = 162.0, 159.5, 155.1, 149.0, 147.5, 147.7, 146.8,$ 144.6, 140.0, 131.3, 129.5, 128.4, 120.8, 116.1, 114.3, 112.1, 111.3, 56.0, 55.9, 55.4, 48.4, 34.4, 24.8; IR (cm⁻¹): 3001, 2936, 2839, 1789, 1728, 1661, 1609, 1512, 1440, 1389, 1343, 1245,

1226, 1137, 1105, 1025, 822, 603; HR-ESIMS (m/z): Calcd. for $[M+H]^+ C_{24}H_{26}N_5O_5$ is 464.1928 found 464.1915.

4-Iodo-5-(4-methoxybenzyl)-1-methyl-1*H*-imidazole (30): Et₃SiH (13.9 mL, 87.2 mmol) and TFA (5.60 mL, 72.6 mmol) were added to a solution of benzyl alcohol 29 (5.00 g, 14.5 mmol) in anhydrous CH₂Cl₂ (100 mL) at rt, then the resulting mixture was heated at reflux for 60 h under N2 atmosphere. After cooling to rt, the reaction was quenched by the addition of sat. aq. solution of NaHCO₃. The resulting mixture was extracted with CH₂Cl₂ several times and the combined extracts were dried (Na₂SO₄) and concentrated. The residue was purified by chromatography (hexane/EtOAc, 1/3) to isolate **30** (4.65 g, 97%) as a pale yellow solid: m.p. = 97-99 °C; ¹H NMR (Acetone–D6): δ = 7.50 (s, 1H), 7.09 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2 H), 3.92 (s, 2H), 3.74 (s, 3H), 3.51 (s, 3H); ¹³C NMR: $\delta = 158.6$, 139.4, 133.4, 129.3, 129.1, 114.3, 84.9, 55.4, 32.6, 30.0; IR (KBr, cm^{-1}): = 3005, 3001, 2957, 2834, 1608, 1508, 1444, 1280, 1247, 1176, 1030, 981, 821, 770, 694; HR-ESIMS (m/z): Calcd. for C₁₂H₁₄IN₂O [M+H]⁺ 329.0145, found 329.0142.

5-(4-Methoxybenzyl-1-methyl-1H-imidazole-4-

carbaldehyde (32): EtMgBr (3.0 M in ether, 5.2 mL, 15.7 mmol) was added into a solution of **30** (4.90 g, 14.9 mmol) in dry THF (50 mL) at 0 °C, and the resulting mixture was stirred at rt. for 2 h. Then, N-methylformanilide (31) (2.23 mL, 17.9 mmol) was added at 0 °C and the resulting mixture was stirred at rt overnight. Saturated aq. NH₄Cl (20 mL) was added to quench the reaction and the organic layer was extracted with EtOAc, dried (Na₂SO₄) and concentrated to provide the crude product, which was purified through a short plug of silica gel (EtOAc) to isolate **32** (3.10 g, 90%) as a white solid: m.p. = 120-121 °C; ¹H NMR: δ = 9.99 (s, 1H), 7.40 (s, 1H), 7.04 (d, J = 8.3 Hz, 2H), 6.79 (d, J =8.3 Hz, 2H), 4.32 (s, 2H), 3.3.75 (s, 3H), 3.45 (s, 3H); ¹³C NMR: $\delta = 187.7, 158.6, 138.8, 138.4, 137.7, 129.3, 128.5, 114.4, 55.3,$ 31.6, 28.5; IR (KBr, cm^{-1}): = 3105, 3022, 2957, 2818, 2770, 1669, 1552, 1511, 1344, 1244,1022, 824, 789; HR-ESIMS (*m/z*): Calcd. for $C_{13}H_{15}N_2O_2$ [M+H]⁺ 231.1128, found 231.1139.

4-[Hydroxy-(4-methoxyphenyl)]methyl-5-(4-methoxy-

benzyl)-1-methyl-1*H***-imidazole** (33): p-Anisylmagnesium bromide was prepared from *p*-bromoanisole (6.67 mL, 52.1 mmol) and magnesium turnings (1.25 g, 52.1 mmol) in THF. A solution of **32** (3.00 g, 13.0 mmol) in THF (20 mL) was added dropwise. to afford a crude product, which was purified through a short plug of silica gel (EtOAc) to isolate **33** (4.34 g, 98%) as an off-white solid: m.p. = 134-135 °C; ¹H NMR: δ = 7.33 (d, *J* = 8.7 Hz, 2H), 7.33 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 6.75 (d, *J* = 8.7 Hz, 2H), 5.74 (s, 1H), 3.81 (s, 2H), 3.75 (s, 6H), 3.30 (s, 3H); ¹³C NMR: δ = 158.5, 158.1, 141.4, 136.8, 136.7, 130.2, 129.2, 127.8, 126.2, 113.9, 113.4, 69.4, 55.1, 55.1, 31.4, 28.0; IR (KBr, cm⁻¹): = 3112 (br), 2835, 2710, 1608, 1582, 1511, 1461, 1298, 1250, 1173, 1042, 846, 820, 787; HR-ESIMS (*m*/z): Calcd. for C₂₀H₂₃N₂O₃ [M+H]⁺ 339.1703, found 339.1701.

4,5-Bis(4-methoxybenzyl)-1-methyl-1*H***-imidazole (34):** Et₃SiH (1.88 mL, 11.8 mmol) and TFA (0.73 mL, 9.5 mmol) were added to a solution of **33** (800 mg, 2.4 mmol) in anhydrous CH₂Cl₂ (20 mL) at rt, then the resulting mixture was stirred overnight. The reaction was quenched by the addition of satd. aq. solution of NaHCO₃ and the resulting mixture was extracted with CH₂Cl₂ several times. The combined extracts were dried (Na₂SO₄), concentrated and the residue was purified by chromatography (acetone) to provide **34** (615 mg, 81%) as a pale yellow oil: ¹H NMR: δ = 7.32 (s, 1H), 7.16 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 2H), 3.85 (s, 2H), 3.75 (s, 3H), 3.74 (s, 3H),

3.30 (s, 3H); ¹³C NMR: δ = 158.3, 157.9, 139.0, 136.7, 133.2, 130.4, 129.6, 129.0, 125.7, 114.1, 113.9, 55.3, 33.1, 31.7, 28.3; IR (neat, cm⁻¹): = 3000, 2908, 2835, 1610, 1509, 1461, 1245,1178, 1034,819; HR-ESIMS (*m*/*z*): Calcd. for C₂₀H₂₃N₂O₂ [M+H]⁺ 323.1754, found 323.1774.

2-Azido-4,5-bis(4-methoxybenzyl)-1-methyl-1*H*-imidazole (35): n-Butyl lithium (1.4 M solution in hexanes, 1.50 mL, 2.1 mmol) was added dropwise to a stirred solution of 34 (613 mg, 1.9 mmol) in dry THF (15 mL) at -78 °C. The reaction was stirred for 1 h at the same temperature. The cooling bath was removed for 10 min, then the reaction mixture was re-cooled to -78 °C, and TsN₃ (0.80 g, 4.1 mmol) in THF (3 mL) was added dropwise. After stirring for 40 min at -78 °C, the reaction mixture was allowed to come to rt. and was quenched by the addition of satd. aq. NH₄Cl (3 mL). The aqueous layer was extracted with EtOAc (3x20 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated to provide a pale brown oil, which was purified through a short column of silica gel (hexane/EtOAc, 4:1) to isolate **35** (615 mg, 89%) as a pale yellow oil: ¹H NMR: δ = 7.17 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.3 Hz, 2H), 6.79 (d, J =8.3 Hz, 2H), 6.77 (d, J = 8.3 Hz, 2H), 3.84 (s, 2H), 3.79 (s, 2H), 3.76 (s, 6H), 3.06 (s, 3H); ¹³C NMR: $\delta = 158.3$, 158.0, 139.0, 136.3, 132.8, 130.2, 129.5, 129.0, 125.0, 114.1, 113.9, 55.3, 32.8, 29.5, 28.7; IR (neat, cm^{-1}): = 3000, 2944, 2835, 2132, 1609, 1508, 1247, 1176, 1034, 821; HR-ESIMS (m/z): Calcd. for $C_{20}H_{22}N_5O_2$ [M+H]⁺ 364.1773, found 364.1768.

2-Amino-4,5-bis(4-methoxybenzyl)-1-methyl-1*H***-imidazole** (36): Azide 35 (475 mg, 1.3 mmol) was dissolved in EtOH (10 mL) and stirred overnight under a hydrogen atmosphere (1 Atm) in the presence of 10% Pd-C on charcoal (47 mg) at rt. The catalyst was removed by filtration through a pad of Celite and the filtrate was concentrated to isolate amine, 36 (440 mg, quant) as a pale yellow solid: m.p. = 175-176 °C; ¹H NMR: δ = 7.09 (d, *J* = 8.3 Hz, 2H), 6.93 (d, *J* = 8.3 Hz, 2H), 6.77 (d, *J* = 8.3 Hz, 2H), 5.79 (br, 2H), 3.75 (s, 2H), 3.74 (s, 3H), 3.70 (s, 3H), 3.68 (s, 2H), 3.03 (s, 3H); ¹³C NMR: δ = 158.4, 158.0, 147.4, 132.4, 130.4, 130.4, 129.6, 128.9, 121.0, 114.1, 113.9, 55.3, 55.3, 31.8, 29.5, 28.5; IR (KBr, cm⁻¹): = 3374, 3296, 3123, 2954, 2838, 1764, 1610, 1550, 1510, 1462, 1249, 1178, 1033, 819, 758; HR-ESIMS (*m*/*z*): Calcd. for C₂₀H₂₄N₃O₂ [M+H]⁺ 338.1863, found 338.1871.

4,5-Bis(4-methoxybenzyl)-1-methyl-2-(3-methyl-

imidazolidine-2,4-dione)imino-1*H*-imidazole (Naamidine G) (4): N,O-Bis(trimethysilyl)acetamide (1.00 mL, 4.1 mmol) was added to a solution of 1-methylparabanic acid (526 mg, 4.1 mmol) in dry CH₃CN under an N₂ atmosphere and the resulting mixture was heated at reflux for 1 h. Then, the solvent was removed by distillation and to the resulting yellow residue in toluene (3 mL) was added amine 36 (277 mg, 0.8 mmol) under N2. After, this mixture was heated at 85 °C overnight, water (5 mL) was added and the organic layer was extracted in to EtOAc. The dried organic layer (Na₂SO₄) was concentrated to afford a yellow residue, which was purified over silica gel (EtOAc/hexanes, 3/7) to provide 4 (287 mg, 78%) as a yellow powder: m.p. = 195-196 °C (lit.²⁸ m.p. = 94 °C); ¹H NMR: δ = 10.04 (br, 1H), 7.10 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 3.89 (s, 2H), 3.88 (s, 2H), 3.76 (s, 6H), 3.47 (s, 3H), 3.15 (s, 3H); ¹³C NMR: δ = 162.3, 158.6, 158.3, 155.7, 146.5, 145.0, 135.7, 131.5, 129.4, 129.1, 129.0, 127.0, 114.3, 114.1, 55.4, 32.3, 30.0, 28.7, 24.7; IR (KBr, cm-1): = 3241, 2931, 2835, 1788, 1738, 1656, 1511, 1451, 1302, 1248, 1177, 1036, 744, 697; HR-ESIMS (m/z): Calcd. for $C_{24}H_{26}N_5O_4$ [M+H]⁺448.1979, found 448.1984.

(40):

N,O-

2-Azido-5-[4-methoxybenzyl]-4-[methoxy-(4-methoxy-

phenyl)]methyl-1-methyl-1H-imidazole (38): TFA (0.60 mL, 7.8 mmol) was added to a solution of 33 (1.31 g, 3.9 mmol) in anhyd MeOH (20 mL) at rt. and the mixture was then heated at 55 °C overnight. Satd. aq. solution of NaHCO3 was used to neutralize the above reaction mixture, and the aqueous layer was extracted with EtOAc (3x 30 mL). Combined organic layers were washed with water and brine, then dried (Na2SO4) and concentrated to provide 37 (1.37 g, >95%) as a pale yellow oil which was used directly in the next step: ¹H NMR: $\delta = 7.34$ (d, J = 8.7 Hz, 2H), 7.23 (s, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.7 Hz, 2H), 5.26 (s, 1 H), 3.93 (s, 2H), 3.75 (s, 6H), 3.34 (s, 3H), 3.29 (s, 3H). Following the general procedure for azidation, n-Butyl lithium (1.4 M solution in hexanes, 2.66 mL, 3.7 mmol), 37 (1.45 g, 3.4 mmol) in dry THF (20 mL) and TsN₃ (0.80 g, 4.1 mmol) were used to obtain the crude product, which was purified through a short column of silica gel (hexane/EtOAc, 4:1) to isolate 38 (891 mg, 67%) as a reddish brown oil: ¹H NMR: δ = 7.41 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 5.23 (s, 1 H), 3.85 (s, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.35 (s, 3H), 3.03 (s, 3H); ¹³C NMR: $\delta = 159.0$, 158.4, 139.8, 136.9, 133.4, 129.9, 129.1, 128.4, 126.1, 114.1, 113.7, 79.1, 56.8, 55.3, 55.3, 29.4, 28.6; IR (neat, cm^{-1}) = 2937, 2834, 2138, 1508, 1246, 1174, 1087, 1033, 829; HR-ESIMS (m/z): Calcd. for $C_{21}H_{23}N_5NaO_3 [M+Na]^+ 416.1693$, found 416.1677.

2-Amino-5-(4-methoxybenzyl)-4-[methoxy-(4-methoxyphenyl)]methyl-1-methyl-1*H***-imidazole (39):** Following the general procedure for catalytic reduction, azide **38** (800 mg, 2.0 mmol) in EtOH (10 mL) and 10% Pd-C on charcoal (80 mg) at 1 atm hydrogen were used to afford amine **39** (745 mg, quant) as a pale yellow solid: m.p. = 139-140 °C; ¹H NMR (CD₃OD): δ = 7.29 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 5.21 (s, 1H), 3.86 (s, 2H), 3.74 (s, 3H), 3.73 (s, 3H), 3.30 (s, 3H), 3.08 (s, 3H); ¹³C NMR: δ = 159.0, 158.4, 148.9, 133.8, 131.8, 130.7, 128.7, 127.9, 123.0, 113.6, 113.1, 78.5, 55.4, 54.4, 54.4, 28.0, 27.7; IR (KBr, cm⁻¹) = 3129, 1671, 1510, 1459, 1248, 1176, 1084, 1031, 830, 746; HR-ESIMS (*m*/z): Calcd. for C₂₁H₂₆N₃O₃ [M+H]⁺ 368.1969, found 368.1970.

5-(4-Methoxybenzyl)-4-[methoxy-(4-methoxyphenyl)]methyl-1-methyl-2-(3-methylimidazolidine-2,4dione)imino-1H-imidazole (4-Methoxynaamidine G) Following the general procedure,

Bis(trimethysilyl)acetamide (0.33 mL, 1.4 mmol) and 1methylparabanic acid (174 mg, 1.4 mmol) in dry CH₃CN (15 mL) were used to produce a yellow residue, which was treated with amine **39** (100 mg, 0.3 mmol) to obtain the product **40** (13 mg, 11%) as a yellow solid after the purification over silica gel (EtOAc/hexanes, 2/3): ¹H NMR: δ = 7.34 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 5.29 (s, 1H), 3.98 (s, 2H), 3.79 (s, 3H), 3.77 (s, 3H), 3.45 (s, 3H), 3.35 (s, 3H), 3.17 (s, 3H);

5-(4-Benzyloxy-3,5-dimethoxyphenyl)hydroxymethyl-4-

iodo-1-methyl-1H-imidazole (42): EtMgBr (3.0 M solution in ether, 7.54 mL, 22.6 mmol) was added to a solution of 14 (7.19 g, 21.5 mmol) in dry CH_2Cl_2 (100 mL) at rt. over ~10 min. After stirring at rt. for 20 min, aldehyde 41 (6.46 g, 23.7 mmol) was added to the reaction followed by 48 h stirring. Then, satd. aq. NH4Cl (10 mL) was added to the reaction and the resulting pale yellow solid was filtered and the filtrate was partitioned with CH_2Cl_2 . The organic layer was dried (Na₂SO₄) and concentrated to provide a pale yellow solid. The resulting solid was triturated with hexanes, recrystallized with CH_2Cl_2 to isolate 42 (9.68 g, 95%) as a white solid: m.p. = 173-175 °C; ¹H NMR: δ = 7.44 (d, *J* = 7.8 Hz, 2H), 7.31-7.24 (m, 4H), 6.57 (s, 2H), 5.98 (s, 1H), 5.18 (s, 1H), 4.98 (s, 2H), 3.75 (s, 6H), 3.43 (s, 3H); ¹³C NMR: δ = 153.6, 141.1, 137.8, 136.6, 135.9, 135.2, 128.6, 128.2, 127.9, 102.7, 84.6, 75.0, 67.1,56.3, 33.5; IR (neat, cm⁻¹): = 3253 (br), 3104, 1585, 1501, 1411, 1338, 1226, 1140, 1033, 908 ; HR-DARTMS (*m*/*z*): Calc. for C₂₀H₂₁IN₂O₄ [M]⁺ 480.0546; found: 480.0546; Calc. for C₂₀H₂₂IN₂O₄ [M+H]⁺ 481.0624, found 481.0624.

5-(4-Benzyloxy-3,5-dimethoxybenzyl)-4-iodo-1-methyl-1Himidazole (43): Et₃SiH (1.00 mL, 6.2 mmol) and TFA (0.40 mL, 5.2 mmol) were added to a solution of 42 (0.50 g, 1.0 mmol) in anhydrous CHCl₃ (20 mL) at rt. and the resulting mixture was heated at reflux temperature for 24 h under nitrogen atmosphere. After cooling to rt., reaction was quenched by the addition of satd. aq. NaHCO₃. The aqueous layer was extracted several times with CHCl3 and the combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was purified by chromatography (EtOAc) to isolate 43 (0.14 g, 28%) as a pale brown semi solid: ¹H NMR: $\delta = 7.44$ (d, J = 6.9 Hz, 2H), 7.36 (s, 1H), 7.30 (t, J = 6.9 Hz, 2H), 7.25 (d, J = 6.9 Hz, 1H), 6.31 (s, 2H), 4.95 (s, 2H), 3.87 (s, 2H), 3.73 (s, 6H), 3.40 (s, 3H); ¹³C NMR: δ = 153.8, 139.6, 137.9, 135.9, 133.1, 128.5, 128.2, 127.9, 105.2, 85.0, 75.1, 56.3, 32.7, 31.0; IR (neat, cm-1): = 3107, 2939, 1588, 1494, 1460, 1420, 1237, 1215, 1187, 1100, 978, 758 ; HR-ESIMS (m/z): Calc. for C₂₀H₂₂IN₂O₃ [M+H]⁺ 465.0670, found 465.0669.

5-[(3,5-Dimethoxy-4-hydroxy)benzyl]-4-iodo-1-methyl-1Himidazole (44): A second product was obtained from above reaction in which the *O*-benzyl protecting group has been removed **44** (0.11 g, 27%) as a pale yellow solid: m.p. = 210-212 °C; ¹H NMR (DMSO-D₆): δ = 7.40 (s, 1H), 6.34 (s, 2H), 5.47 (br, 1H), 3.90 (s, 2H), 3.82 (s, 6H), 3.45 (s, 3H); ¹³C NMR: δ = 148.6, 140.6, 134.7, 133.7, 128.4, 106.1, 85.1, 56.5, 32.6, 30.0; IR (neat, cm⁻¹): = 3107, 2936 (br), 1595, 1514, 1499, 1413, 1242, 1214, 1113, 1037, 838, 811, 765, 737; HR-ESIMS (*m/z*): Calc. for C₁₃H₁₅IN₂O₃ [M+H]⁺

5-(4-Benzyloxy-3,5-dimethoxyphenyl)hydroxymethyl-1methyl-1H-imidazole-4-carbaldehyde (45): EtMgBr (3.0 M in ether, 13.8 mL, 41.4 mmol) was added into a solution of 42 (9.03 g, 18.8 mmol) in dry THF (200 mL) at rt., and the resulting mixture was stirred for 20 min. Then, N-methylformanilide (30) (2.78 mL, 22.6 mmol) was added to the reaction mixture followed by stirring for 33 h. Half saturated NH₄Cl (30 mL) was added to quench the reaction and the organic layer was extracted with EtOAc, dried (Na₂SO₄) and concentrated to provide the crude product, which was purified through a short plug of silica gel (EtOAc \rightarrow Acetone) to isolate 45 as a pale yellow solid (5.52 g, 77%): m.p. = 132-134 °C; ¹H NMR: δ = 9.82 (s, 1H), 7.42 (d, J = 7.3 Hz, 2H), 7.38 (s, 1H), 7.29 (t, J = 7.3 Hz, 2H), 7.25 (m, 1H), 6.50 (s, 2H), 6.23 (s, 1H), 4.94 (s, 2H), 3.71 (s, 6H), 3.47 (s, 3H); 13 C NMR: $\delta = 188.4$, 153.8, 141.7, 139.9, 138.0, 137.7, 136.6, 136.2, 128.5, 128.2, 127.9, 103.4, 75.1, 66.7, 56.3, 33.1; IR (neat, cm^{-1}): = 3253 (br), 3106, 2938, 1680, 1587, 1502, 1450, 1415, 1230, 1100, 1056, 824 ; HR-DARTMS (m/z): Calc. for $C_{21}H_{23}N_2O_5 [M+H]^+$ 383.1601, found 383.1597.

6-Benzyloxy-5,7-dimethoxy-4-(4-methoxyphenyl)-1-

methyl-1H-naphtho[2,3-d]imidazole (47): A Grignard reagent was prepared from *p*-bromoanisole, (7.23 mL, 56.5 mmol), magnesium turnings (1.35 g, 56.5 mmol) and a small crystal of iodine in THF (100 mL) and a solution of 45 (5.40 g, 14.1 mmol) in THF (50 mL) were used to obtain a crude product, which was purified through a short plug of silica gel (EtOAc) to isolate 46 (4.38 g, 63%) as a pale yellow oil, which was used in the next

step directly without further characterization. Et₃SiH (11.41 mL, 71.4 mmol) and TFA (4.81 mL, 62.5 mmol) were added to a solution of 45 (4.38 g, 8.9 mmol) in anhydrous CH₂Cl₂ (100 mL) at rt. and the resulting mixture was stirred for 24 h under nitrogen atmosphere. Then, the reaction was quenched by the addition of satd. aq. solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ several times and the combined extracts were dried (Na₂SO₄), and concentrated. The residue was purified by chromatography (EtOAc \rightarrow acetone) to provide 47 (3.30 g, 81%) as a pale brown solid; m.p. = 194-197 °C; ¹H NMR: δ = 7.87 (s, 1H), 7.61 (s, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 7.08 (s, 1H), 7.05 (d, J = 8.7 Hz, 2H), 5.10 (s, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 3.74 (s, 3H), 3.37 (s, 3H); ¹³C NMR: $\delta = 158.2$, 152.1, 150.6, 146.6, 142.9, 139.8, 138.0, 134.4, 132.4, 131.6, 130.9, 129.7, 128.4, 128.3, 127.9, 119.6, 112.7, 104.0, 102.3, 75.2, 60.9, 55.8, 55.4, 31.0; IR (neat, cm⁻¹): = 2929, 2831, 1607, 1514, 1451, 1330, 1274, 1236, 1145, 1075, 1027, 826, 740; HR-DARTMS (m/z): Calc. for C₂₈H₂₇N₂O₄ [M+H]⁺ 455.1971, found 455.1983.

1-(N,N-dimethylaminosulfonyl)-4-iodo-5-(4-methoxy-

benzyl)-1H-imidazole (50): EtMgBr (3.0 M solution in ether, 8.60 mL, 25.8 mmol) was added to a solution of 49 (7.19 g, 21.5 mmol) in dry CH₂Cl₂ (150 mL) at rt. The resulting mixture was stirred at rt. for 20 min and 1.0 M solution of CuCN.2LiCl in dry THF (26.0 mL, 26.0 mmol) was added followed by pmethoxybenzyl bromide (3.80 mL, 25.8 mmol). The orange reaction solution was stirred at rt. for 48 h and poured into half sat. NH₄Cl containing 2% concentrated NH₃ (50 mL). After stirring for 20 min, the resulting solid was filtered off and the filtrate was partitioned with CH₂Cl₂ (3x50 mL). The organic layer was dried (Na₂SO₄), concentrated and purified by chromatography (EtOAc/hexane, 3:7) to afford 50 (6.41 g, 65%) as a pale yellow solid: m.p. = 76-78 °C; ¹H NMR: δ = 7.87 (s. 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.37 (s, 2H), 4.09 (s, 2H), 3.71 (s, 3H), 2.49 (s, 6H); 13 C NMR: $\delta = 158.5$, 139.7, 137.9, 132.5, 129.1, 114.0, 90.6, 55.4, 37.6, 29.9; IR (neat, cm^{-1}): = 3111, 2919, 1514, 1459, 1415, 1240, 1173, 1174, 1095, 960, 802 ; HR-DARTMS (m/z): Calc. for $C_{13}H_{17}IN_3O_3S [M+H]^+$ 422.0030, found 422.0047.

4-(4-Benzyloxy-3,5-dimethoxybenzyl)-1-(N,N-dimethyl-

sulfonyl)-5-(4-methoxybenzyl)-1H-imidazole (51): EtMgBr (3.0 M solution in ether, 4.98 mL, 14.9 mmol), 50 (5.72 g, 13.6 mmol) in dry CH₂Cl₂ (150 mL), 1.0 M solution of CuCN.2LiCl in dry THF (16.3 mL, 16.3 mmol) and 206 (6.87 g, 20.4 mmol) were used to synthesize 51 (5.18 g, 70%) as a pale yellow oil after the purification by chromatography (EtOAc:hexane, 1:1): ¹H NMR: δ = 7.94 (s. 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.27 (t, J = 7.33 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.37 (s, 2H), 4.94 (s, 2H), 4.14 (s, 2H), 3.78 (s, 2H), 3.75 (s, 3H), 3.71 (s, 6H), 2.57 (s, 6H); ¹³C NMR: δ = 158.4, 153.4, 141.3, 138.1, 138.0, 135.6, 134.8, 130.3, 129.9, 128.9, 128.5, 128.2, 127.8, 114.0, 106.0, 75.1, 56.1, 55.4, 37.5, 34.0, 28.1; IR (neat, cm^{-1}): = 2929, 2857, 1691, 1507, 1393, 1252, 1124, 909, 836, 779 ; HR-DARTMS (m/z): Calc. for $C_{29}H_{34}N_3O_6S [M+H]^+ 552.2163$, found 552.2180.

5-(4-Benzyloxy-3,5-dimethoxybenzyl)-4-(4-methoxy-

benzyl)-1-methyl-1H-imidazole (53): Methyl trifluoromethanesulfonate (0.95 mL, 8.7 mmol) was added dropwise to a solution of 51 (3.96 g, 7.2 mmol) in CH_2Cl_2 (50 mL), at 0 °C under N₂ and stirred for 4 h at the same temperature. Then, the solvent was evaporated under reduced pressure and the crude pale yellow oil was dissolved in dry acetonitrile (30 mL), and benzylamine (0.95 mL, 8.7 mmol) was added to it. After heating at 80 °C for 10 h, the solvent was evaporated to provide a

crude oil, which was purified with a gradient column (EtOAc:hexanes, 3:1 \rightarrow EtOAc:acetone; 1:1) to isolate **53** (2.96 g, 90%) as a light brown oil: ¹H NMR: δ = 7.45 (d, *J* = 7.3 Hz, 2H), 7.40 (s, 1H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 6.15 (s, 2H), 4.96 (s, 2H), 3.88 (s, 2H), 3.87 (s, 2H), 3.75 (s, 3H), 3.64 (s, 6H), 3.34 (s, 3H); ¹³C NMR: δ = 157.9, 153.8, 138.8, 137.9, 136.8, 135.5, 134.1, 133.1, 129.5, 128.5, 128.2, 127.9, 125.5, 113.9, 105.1, 75.1, 56.1, 55.3, 32.8, 31.9, 29.5; IR (neat, cm⁻¹): = 2929, 2857, 1691, 1507, 1391, 1251, 1176, 1150, 910; HR-ESIMS (*m*/*z*): Calc. for C₂₈H₃₁N₂O₄ [M+H]⁺ 459.2278, found 459.2278.

2-Azido-5-(4-benzyloxy-3,5-dimethoxybenzyl)-4-(4-

methoxybenzyl)-1-methyl-1H-imidazole (55): n-Butyl lithium (1.6 M solution in hexanes, 1.31 mL, 2.1 mmol) was added dropwise to a stirred solution of 52 (870 mg, 1.9 mmol) in dry THF (20 mL) at -78 °C, and the reaction was stirred for 1 h. The cooling bath was removed for 10 min, then the reaction mixture was re-cooled to -78 °C, and then TrisN₃ (706 mg, 2.3 mmol) was added. After stirring for an additional 45 min at -78 °C, the reaction mixture was guenched by the addition of satd. aq. NH₄Cl (5 mL). The aqueous layer was extracted with EtOAc (3x15 mL), and the combined organic extracts were dried (Na_2SO_4) and concentrated to provide a pale brown oil, which was purified through a short column of silica gel (hexane/EtOAc, 7:3) to isolate azide 55 (600 mg, 63%) as a pale brown oil: ¹H NMR: $\delta =$ 7.46 (d, J = 7.4 Hz, 2H), 7.38-7.26 (m, 3H), 7.21 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 8.5 Hz, 2H), 6.16 (s, 2H), 4.95 (s, 2H), 3.85 (s, 2H), 3.80 (s, 2H), 3.76 (s, 3H), 3.64 (s, 6H), 3.08 (s, 3H); ¹³C NMR: δ = 158.0, 153.7, 139.2, 137.9, 136.5, 135.5, 134.0, 132.9, 129.5, 128.6, 128.2, 127.9, 124.6, 113.9, 105.0, 75.0, 56.1, 55.3, 32.7, 30.0, 29.6; IR (neat, cm-1): = 2929, 2857, 2129, 1691, 1507, 1391, 1252, 1150, 1124, 909, 836, 779; HR-ESIMS (m/z): Calc. for $C_{28}H_{30}N_5O_4$ [M+H]⁺ 500.2292, found 500.2290.

2-Amino-5-(3,5-dimethoxy-4-hydroxybenzyl)-4-(4-

methoxybenzyl)-1-methyl-1H-imidazole (Naamine G) (56): Azide 55 (600 mg, 1.2 mmol) was dissolved in EtOH (15 mL) and stirred overnight under a hydrogen atmosphere (55 psi) in the presence of 20% Pd(OH)₂ on charcoal (100 mg) at rt. The catalyst was filtered through a pad of Celite and the filtrate was concentrated to isolate naamine G, (56) (430 mg, 95%) as a greenish-yellow solid; m.p. = 218-220 °C; ¹H NMR (CD₃OD): δ = 7.17 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.34 (s, 2H), 3.92 (s, 2H), 3.84 (s, 2H), 3.74 (s, 3H), 3.69 (s, 6H), 3.23 (s, 3H); ¹³C NMR: δ = 158.8, 148.3, 146.5, 134.3, 129.8, 129.2, 127.3, 122.8, 122.4, 114.0, 105.2, 55.5, 54.5, 28.8, 28.3, 27.9; IR (neat, cm⁻¹): = 3244 (br), 3004, 2836, 1667, 1654, 1609, 1500, 1461, 1429, 1245, 1216, 1110, 1022; HR-DARTMS (*m*/*z*): Calc. for C₂₁H₂₆N₃O₄ [M+H]⁺ 384.1918, found 384.11907.

5-(3,5-Dimethoxy-4-hydroxybenzyl)-4-(4-methoxybenzyl)-1-methyl-2-(3-methylimidazolidine-2,4-dione)imino-1Himidazole (Naamidine H) (5): Following the general procedure for this reaction, N,O-Bis(trimethysilyl)acetamide (0.63 mL, 2.6 mmol) and 1-methylparabanic acid (331 mg, 4.1 mmol) in dry CH₃CN (10 mL) were used to produce 3-trimethylsilyl-1methylparabanic acid. After removing the solvent, naamine G, 1 h (198 mg, 0.5 mmol) was added and the mixture was heated at 80 °C overnight in dry toluene (5 mL). Usual workup and purification over silica gel (EtOAc/hexanes, 4/6) provided naamidine H (5) as a yellow amorphous solid (205 mg, 80%): m.p. = 204-205 °C; ¹H NMR: δ = 7.14 (d, J = 8.7 Hz, 2H), 6.98 (br, 1H), 6.78 (d, J = 8.7 Hz, 2H), 6.14 (s, 2H), 3.89 (s, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 3.69 (s, 6H), 3.49 (s, 3H), 3.47 (s, 3H), 3.16 (s, 3H); ¹³C NMR: δ = 162.3, 158.3, 155.5, 147.4, 146.6, 144.7, 136.1, 133.7, 131.7, 129.4, 128.1, 126.7, 114.1, 104.7, 56.3, 55.4,

32.3, 30.0, 29.7, 24.8; IR (neat, cm⁻¹): = 3501, 3212, 2929, 2837, 1784, 1718, 1652, 1511, 1392, 1113, 1039, 1020, 918 ; HR-DARTMS (m/z): Calc. for C₂₅H₂₈N₅O₆ [M+H]+ 494.2034, found 494.2049.

Cytotoxicity assay (IC₅₀ measurement): Human breast adenocarcinoma cell line (MCF7, ATCC) was maintained in growth medium containing Dulbeco's modified Eagles media (DMEM, Sigma) with 10% heat inactivated fetal bovine serum (FBS, Sigma), 2 mM L-glutamine, 100 units of penicillin, and 0.1 mg/mL streptomycin. Cells were incubated in a waterjacketed humidified CO2 incubator with 5% CO2 and at 37 °C. To measure the cytotoxicity of the test compounds, approximately 10,000 MCF7 cells were cultivated in each well of a 96-well microtiter plate and maintained overnight in 150 180 μ L of the growth medium and the conditions described above. Each compound was initially dissolved in DMSO and then was serially dilutedion also made (in DMSO) for (10 µL for each concentration). 10 µL and of each diluted stock was further then diluted within 990 µL of above growth medium to have desired concentration. To treat the cells, 50 20 µL of growth medium containing the appropriate amount of each compound was added to each well to obtain required final concentration (200 µL final volume and 0.1 µL of DMSO in each well). An equivalent volume of the vehicle (0.1 % DMSO) was added to each control well. After 96 h of incubation, the cell viability was analyzed by using the MTT assay. In brief, 20 µL of MTT solution (stock 5 mg/ml in PBS) was added into each well and incubated for 2 h under normal growth conditions to allow the viable cell to

1. (a) Koswatta, P. B.; Lovely, C. J., Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges *Nat. Prod. Rep.* **2011**, *28*, 511-528; (b) Sullivan, J. D.; Giles, R. L.; Looper, R. E., 2-Aminoimidazoles from Leucetta Sponges; Synthesis, Biology and the Emergence of a Privileged Pharmacophore. *Curr. Bioact. Cpds* **2009**, *5*, 39-78; (c) Roue, M.; Quevrain, E.; Domart-Coulon, I.; Bourguet-Kondracki, M.-L., Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products *Nat. Prod. Rep.* **2012**, *29*, 739-751.

2. Crews, P.; Clark, D. P.; Tenney, K., Variation in the Alkaloids among Indo-Pacific Leucetta Sponges. *J. Nat. Prod.* **2003**, *66*, 177-182.

3. Akee, R. K.; Carroll, T. R.; Yoshida, W. Y.; Scheuer, P. J.; Stout, T. J.; Clardy, J., Two imidazole alkaloids from a sponge *J. Org. Chem.* **1990**, *55*, 1944-1946.

4. White, K. N.; Amagata, T.; Oliver, A. G.; Tenney, K.; Wenzel, P. J.; Crews, P., Structure Revision of Spiroleucettadine, a Sponge Alkaloid with a Bicyclic Core Meager in H-Atoms. *J. Org. Chem.* **2008**, *73*, 8799-8722.

5. Gross, H.; Kehraus, S.; König, G. M.; Woerheide, G.; Wright, A. D., New and Biologically Active Imidazole Alkaloids from Two Sponges of the Genus Leucetta. *J. Nat. Prod.* **2002**, *65*, 1190-1193.

6. Tsukamoto, S.; Tetsuro Kawabata; Kato, H.; Ohta, T.; Rotinsulu, H.; Mangindaan, R. E. P.; Soest, R. W. M. v.; Ukai, K.; Kobayashi, H.; Namikoshi, M., Naamidines H and I, Cytotoxic Imidazole Alkaloids from the Indonesian Marine Sponge Leucetta chagosensis. *J. Nat. Prod.* **2007**, *70*, 1658-1660.

7. Kumar, R.; Khan, S.; Chauhan, P. M. S., 2-Aminoimidazole, Glycociamidine and 2-Thiohydantoin-Marine convert MTT to formazan. Then the media was discarded and formazan crystals were dissolved by adding 100 μ L of DMSO and incubating 2 h with continuous shaking. The absorbance of the lysates was measured directly at 560 nm using a micro plate reader (Fluostar-omega, BMG Labtech). The percent viable cells (calculated based on absorbance of the untreated control sample) were plotted as a function of concentration to obtain the IC50 values. Each experiment was repeated at least twice (with 5 replicates each time).

Acknowledgments

We thank Paromita Deb for performing the evaluation of compound **17** (entry 1, Table 1). This research has been supported by The Robert A. Welch Foundation (Y-1362; CJL) and the NIH (1R15 ES019129-01; SSM and in part GM65503; CJL). NMR spectrometers were purchased with funds provided by the NSF (CHE-0234811 and CHE-0840509).

References and notes

Click here to remove instruction text...

Alkaloids as Molecular Inspirations for the Development of Lead Structures. *Curr. Drug Targets* **2011**, *12*, 1689-1708.

8. (a) Copp, B. R.; Fairchild, C. R.; Cornell, L.; A.M., C.; Robinson, S.; Ireland, C. M., Naamidine A is an antagonist of the epidermal growth factor receptor and an in vivo active antitumor agent. *J. Med. Chem.* **1998**, *41*, 3909-3911; (b) James, R. D.; Jones, D. A.; Aalbersberg, W.; Ireland, C. M., Naamidine A Intensifies the Phosphotransferase Activity of Extracellular Signal-regulated Kinases Causing A-431 Cells to Arrest in G1. *Mol. Cancer Ther.* **2003**, *2*, 747-; (c) LaBarbera, D. V.; Modzelewska, K.; Glazar, A. I.; Gray, P. D.; Kaur, M.; Liu, T.; Grossman, D.; Harper, M. K.; Kuwada, S. K.; Moghal, N.; Ireland, C. M., The marine alkaloid naamidine A promotes caspase-dependent apoptosis in tumor cells. *Anticancer Drugs* **2009**, *20*, 425-436.

9. Aberle, N. S.; Catimel, J.; Nice, E. C.; Watson, K. G., Synthesis and biological evaluation of analogues of the anti-tumor alkaloid naamidine A. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3741-3744.

10. (a) Gibbons, J. B.; Gligorich, K. M.; Welm, B. E.; Looper, R. E., Synthesis of the Reported Structures for Kealiinines B and C. *Org. Lett.* **2012**, *14*, 4734-4737; (b) Gibbons, J. B.; Salvant, J. M.; Vaden, R. M.; Kwon, K.-H.; Welm, B. E.; Looper, R. E., Synthesis of Naamidine A and Selective Access to N2-Acyl-2-aminoimidazole Analogues. *J. Org. Chem.* **2015**, *80*, 10076–10085.

11. Das, J.; Bhan, A.; Mandal, S.; Lovely, C. J., Synthesis and Anticancer Activity of Naphthimidazole-Containing Marine Natural Products and Analogs. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 6183-6187.

12. Zhang, N.; Zhang, Z.; Wong, I. L. K.; Wan, S.; Chow, L. M. C.; Jiang, T., 4,5-Di-substituted benzyl-imidazol-2-substituted amines as the structure template for the design and synthesis of reversal agents against P-gp-mediated multidrug resistance breast cancer cells. *Eur. J. Med. Chem.* **2014**, *83*, 74-83.

(a) Koswatta, P. B.; Sivappa, R.; Dias, H. V. R.; Lovely, C. J., Total Synthesis of (±)-Calcaridine A and (±)-epi-Calcaridine A. *Org. Lett.* 2008, *10*, 5055-5058; (b) Koswatta, P. B.; Sivappa, R.; Dias, H. V. R.; Lovely, C. J., Total Synthesis of the Leucetta-Derived Alkaloid Calcaridine A. *Synthesis* 2009, 2970-2982.

(a) Koswatta, P. B.; Das, J.; Yousufuddin, M.; Lovely, C. J., Studies towards the Leucetta-derived Alkaloids Spirocalcaridine A and B – Possible Biosynthetic Implications. *Eur. J. Org. Chem.* 2015, 2603-2013; (b) Singh, R. P.; Spears, J. A.; Dalipe, A.; Yousufuddin, M.; Lovely, C. J., Dearomatizing spirocyclization reactions of alkynyl cyanamides. *Tetrahedron Lett.* 2016, *57*, 3096-3099.

15. Lovely, C. J., *Strategies and Tactics in Organic Synthesis*. Academic Press: 2012; Vol. 8, p 199-224.

16. (a) Gainer, M. J.; Bennett, N. R.; Takahashi, Y.; Looper, Regioselective Rh(II)-catalyzed hydroaminations R. Е., of propargylguanidines. Angew. Chem. Int. Ed. 2011, 50, 684-687; (b) Ermolat'ev, D. S.; Bariwal, J. B.; Steenackers, H. P. L.; De Keersmaecker, S. C. J.; Van der Eycken, E. V., Concise and Diversity-Oriented Route Towards Polysubstituted 2-Aminoimidazole Alkaloids and their Analogues. Angew. Chem. Int. Ed. 2010, 49, 9465-9468.

17. (a) Du, H.; He, Y.; Rasapalli, S.; Lovely, C. J., New Methods of Imidazole Functionalization - From Imidazole to Marine Alkaloids. *Synlett* **2006**, 965-992; (b) Sämann, C.; Coya, E.; Knochel, P., Full Functionalization of the Imidazole Scaffold by Selective Metalation and Sulfoxide/Magnesium Exchange. *Angew. Chem. Int. Ed.* **2014**, *53*, 1430-1434.

18. (a) Carver, D. S.; Lindell, S. D.; Saville-Stones, E. A., Polyfunctionalization of Imidazole via Sequential Imidazolyl Anion Formation. Tetrahedron 1997, 53, 14481-14496; (b) Turner, R. M.; Lindell, S. D., A Facile Route to Imidazol-4-yl Anions and their Reaction with Carbonyl Compounds. J. Org. Chem. 1991, 56, 5739-5740; (c) Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Rottländer, M.; Knochel, P., Preparation of New Polyfunctional Magnesiated Heterocycles Using a Chlorine, Bromine, or Iodine-Exchange. J. Org. Chem. 2000, 65, 4618-4634; (d) Dehmel, F.; Abarbri, M.; Knochel, P., Preparation of New Magnesiate Functionalized Imidazoles and Antipyrines via an Iodine Magnesium Exchange. Synlett 2000, 345-346; (e) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V., Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew. Chem. Int. Ed. 2003, 42, 4302.

19. Zavesky, B. P.; Babij, N. R.; Wolfe, J. P., Synthesis of Substituted 2-Aminoimidazoles via Pd-Catalyzed Alkyne Carboamination Reactions. Application to the Synthesis of Preclathridine Natural Products. *Org. Lett.* **2014**, *16*, 4952–4955.

20. Koswatta, P. B.; Lovely, C. J., Expedient total syntheses of preclathridine A and clathridineA. *Tetrahedron Lett.* **2009**, *50*, 4998-5000.

21. In principle, the 4-iodoimidazole derivative can be prepared by methylation of the corresponding 4(5)-iodoimidazole, however, such a strategy gives rise to a mixture of postional isomers which cannot be isomerized to the more thermodynamically stable 4-isomer see: He, Y.; Chen, Y.; Du, H.; Schmid, L.A.; Lovely, C.J. *Tetrahedron Lett.* **2004**, *45*, 5529-5532

22. Lindel, T.; Hochgürtel, Synthesis of the Marine Natural Product Oroidin and its Z-Isomer. *J. Org. Chem.* **2000**, *65*, 2806-2809.

23. (a) Ohta, S.; Tsuno, N.; Maeda, K.; Nakamura, S.; Taguchi, N.; Yamashita, M.; Kawasaki, I., Total synthesis of a marine imidazole alkaloid, clathridine A. *Tetrahedron Lett.* **2000**, *41*, 4623-4627; (b) Nakamura, S.; Kawasaki, I.; Yamashita, M.; Ohta, S., 1-Methyl-3-trimethylsilylparabanic Acid as an Effective Reagent for the Preparation of N-Substituted (1-Methyl-2,5-dioxo-1,2,5H-imidazolin-4-yl)amines and Its Application to the Total Synthesis of Isonaamidines A and C, Antitumor Imidazole Alkaloids. *Heterocycles* **2003**, *60*, 583-598.

24. Lima, H. M.; Garcia-Barboza, B. J.; Khatibi, N. N.; Lovely, C. J., Total syntheses of isonaamine C and isonaamidine E *Tetrahedron Lett.* **2011**, *52*, 5725-5727.

25. (a) Read, M. L.; Braendvang, M.; Miranda, P. O.; Gundersen, L.-L., Synthesis and biological evaluation of pyrimidine analogs of antimycobacterial purines *Bioorg. Med. Chem.* **2010**, *18*, 3885-3897; (b) Miranda, P. O.; Gundersen, L.-L., Synthesis of imidazole derivatives with antimycobacterial activity *Arch. Pharm.* **2010**, *343*, 40-47.

26. Moreno-Manas, M.; Bassa, J.; Llado, N.; Pleixats, R., Lithiation of 1-Benzylimidazole. A Hypothesis on the Regioselectivity of the Electrophilic Attacks on the Lithiated Species. *Heterocycles* **1990**, *27*, 673-678.

27. Koswatta, P. B.; Lovely, C. J., Total Syntheses of Naamidine G and 14-Methoxynaamidine G. *Tetrahedron Lett.* **2010**, *51*, 164-166.

28. Mancini, I.; Guella, G.; Debitus, C.; Pietra, F., Novel Naamidine-type Alkaloids and Mixed-Ligand Zinc(II) Complexes From a Calcareous Sponge, Leucetta Sp, of the Coral Sea. *Helv. Chim. Acta* **1995**, *78*, 1178-1184.

29. Koswatta, P. B.; Lovely, C. J., Concise Total Synthesis of Naamine G and Naamidine H. *Chem. Commun.* **2010**, *46*, 2148-2150.

30. Delest, B.; Nshimyumukiza, P.; Fasbender, O.; Tinant, B.; Marchand-Brynaert, J.; Darro, F.; Robiette, R., Divergent and Regioselective Synthesis of 1,2,4- and 1,2,5-Trisubstituted Imidazoles. *J. Org. Chem.* **2008**, *73*, 6816–6823.

31. Joo, J. M.; Touré, B. B.; Sames, D., C–H Bonds as Ubiquitous Functionality: A General Approach to Complex Arylated Imidazoles via Regioselective Sequential Arylation of All Three C–H Bonds and Regioselective N-Alkylation Enabled by SEM-Group Transposition. *J. Org. Chem.* **2010**, *75*, 4911–4920.

32. (a) Das, J.; Koswatta, P. B.; Yousufuddin, M.; Jones, J. D.; Lovely, C. J., Total Syntheses of Kealiinines A-C. *Org. Lett.* **2012**, *14*, 6210-6213; (b) Lima, H. M.; Sivappa, R.; Yousufuddin, M.; Lovely, C. J., Total synthesis of 7'-desmethylkealiiquinone *Org. Lett.* **2012**, *14*, 2274-2277; (c) Lima, H. M.; Sivappa, R.; Yousufuddin, M.; Lovely, C. J., Total Synthesis of 7'-Desmethylkealiiquinone, 4'-Desmethoxykealiiquinone, and 2-Deoxykealiiquinone. *J. Org. Chem.* **2014**, *79*, 2481-2490.