ISSN 1070-3632, Russian Journal of General Chemistry, 2011, Vol. 81, No. 11, pp. 2383–2384. © Pleiades Publishing, Ltd., 2011. Original Russian Text © V.D. Dyachenko, I.E. Dyachenko, 2011, published in Zhurnal Obshchei Khimii, 2011, Vol. 81, No. 11, p. 1931.

LETTERS TO THE EDITOR

Unusual Reaction of 1,2-Dihydro-5,6-tetramethylenespiro{cyclohexane-2-thieno-[2,3-d]pyrimidine-4(3H)-thione} with 2-Bromo-4'-methylacetophenone

V. D. Dyachenko and I. E. Dyachenko

Taras Shevchenko Lugansk National University, Oboronnaya ul. 2, Lugansk, 91011 Ukraine e-mail: dvd_lug@online.lg.ua

Received February 15, 2011

DOI: 10.1134/S1070363211110326

1,2-Dihydro-5,6-tetramethylenespiro{cyclohexane-2-thieno[2,3-*d*]pyrimidine-4(3*H*)-thione} I was alkylated with ethyl iodide [1] and α -chloroacetanilide [2] in DMF solution in the presence of KOH involving the sulfur atom of thioxo-group to give the corresponding thioethers. The use of 2-bromo4'-methylacetophenone II in this reaction as the alkylating agent led unexpectedly to the cross-recyclization of the pyrimidine fragment of the heterocyclic system I and to the formation of 2-(2-hydroxy-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-4-(4-methylphenyl)thiazole III.

The mechanism of this reaction and the limits of its applicability are studied.

2-(2-Hydroxy-4,5,6,7-tetrahydrobenzo[*b***]thiophen-3-yl)-4-(4-methylphenyl)thiazole (III).** To a stirred solution of 2.93 g (10 mmol) of compound I in 15 ml of DMF was consequently added 5.6 ml (10 mmol) of 10% aqueous solution of KOH and 2.13 g (10 mmol) of α-bromoketone II. The mixture was stirred for 4 h and diluted with an equal volume of water. The resulting precipitate was filtered off, washed with water, ethanol and hexane. Yield 2.42 g (74%), yellow powder, mp 190–192°C (AcOH). IR spectrum, v, cm⁻¹: 3332 (OH). ¹H NMR spectrum, δ, ppm: 1.67–1.88 m (4H, 2CH₂), 2.38 s (3H, Me), 2.57 m (2H, CH₂), 2.75 m (2H, CH₂), 7.21 d and 7.78 d

(4H, C₆H₄, J 8.1 Hz), 7.43 s (1H, C⁵H_{thiazole}). The signal of OH proton does not appears due to the rapid deuterium exchange. Mass spectrum, m/z (I_{rel} , %): 239 (2) $[M + 2]^+$, 328 (12) $[M + 1]^+$, 327 (27) $[M]^+$, 326 (100) $[M - 1]^+$, 325 (19) $[M - 1]^+$, 298 (20), 265 (13), 163 (19), 147 (25), 134 (16), 115 (15), 105 (10), 91 (12) $[C_6H_4Me]^+$, 77 (8) $[Ph]^+$, 65 (7), 45 (9) $[CHS]^+$, 40 (14). Found, %: C 65.89; H 5.12; N 4.15. C₁₈H₁₇NOS₂. Calculated, %: C 66.02; H 5.23; N 4.28.

The IR spectrum was registered on a IKS-40 spectrophotometer from the sample in vaseline oil. The ¹H NMR spectrum was recorded on a Gemini-200 spectrometer (199.975 MHz) in DMSO- d_6 with internal TMS. The mass spectrum was taken on a

Kratos MS-890 spectrometer (70 eV) using direct input of the sample into the ion source. The melting point was determined on a Kofler heating bench. The reaction progress was monitored by the TLC method on Silufol UV-254 plates eluting with acetone–hexane mixture (3:5) and detecting with iodine vapor and UV irradiation.

REFERENCES

- 1. Dyachenko, V.D., *Khim. Geterotsikl. Soedin.*, 2003, no. 8, p. 1271.
- Dyachenko, A.D., Rusanov, E.B., Dyachenko, V.D., Chernega, A.N., and Desenko, S.M., *Khim. Geterotsikl. Soedin.*, 2003, no. 10, p. 1554.