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ABSTRACT: An effective Cu-catalyzed selective formal carboxylation of C−F bonds with an atmospheric pressure of CO2 is 
reported. A variety of gem-difluoroalkenes, gem-difluorodienes and -trifluoro-methyl alkenes show high reactivity and selectivity 
for this ipso mono-carboxylation. Under mild conditions, diverse important -fluoroacrylic acids and ,-difluorocarboxylates are 
obtained in good-to-high yields. Moreover, this operationally-simple protocol features good functional group tolerance, is readily 
scalable, and the resulting products are readily converted into bioactive -fluorinated carbonyl compounds, indicating potential 
application in biochemistry and drug discovery. Mechanistic studies reveal that fluorinated boronate esters might be vital 
intermediates in this transformation. 

KEYWORDS: carbon dioxide, carboxylation, C−F bond cleavage, selectivity, copper catalysis

As an inexpensive and renewable carbon source, CO2 has 
been widely used in organic synthesis to make value-added 
chemicals.1 Among these transformations, catalytic 
carboxylation with CO2 is well demonstrated to construct 
valuable carboxylic acids,2 which is a functional group that 
exists widely in natural products, agrochemicals and 
pharmaceuticals.3 Recently, the reductive carboxylation of 
organic (pseudo)halides with CO2 has been extensively 
studied,4,5 presenting powerful and efficient alternatives to 
existing carboxylation methods with organometallic 
reagents.2,6 Notably, the catalytic carboxylation of diverse 
C−X bonds (X = Cl, Br, I, O, N) in the presence of reductants 
is well documented using different transition metal catalysts 
(Figure 1A).4,5 However, the transition metal-catalyzed formal 
carboxylation of C−F bonds with CO2 is considered 
challenging and has been rarely investigated.7 This is 
reasonable due to the low reactivity of CO2 and exceptional 
inertness of C−F bonds, which show much higher bond 
dissociation energy and are less reactive toward oxidative 
addition to low-valent transition metal catalyst than other C−X 
bonds.8 Therefore, a novel strategy should be considered to 
address such a challenge. Herein, we report the first copper-
catalyzed selective formal carboxylation of C−F bonds with 
CO2 (Figure 1B). A variety of valuable -fluoroacrylic acids 
and ,-difluorocarboxylates are obtained in high selectivities 
and efficiency using inexpensive catalyst and non-metallic 
reductants. 

-Fluoroacrylic acids are important motifs widely present in 
medicines and bioactive molecules (Figure 2).9 Previous 
methods for their synthesis suffer, however, from tedious 
procedures, limited substrate scope, poor functional group 
tolerance, and low selectivity or yield.9b,10 Moreover, some 
expensive reagents are usually required, thus limiting 
applicability. Since selective functionalization of C−F bonds 
in easily available multifluorinated compounds provides an 

alternative access to complex partially fluorinated 
molecules,11-14 we wondered whether selective carboxylation 
of C−F bonds in gem-difluoroalkenes13 with CO2 could 
constitute a direct and efficient entry to -fluoroacrylic acids. 
Realizing this hypothesis, however, suffers several challenges. 
Besides the above-mentioned inertness of both C–F bonds and 
CO2, it is also challenging to realize selective mono- instead of 
di-carboxylation of C–F bonds in gem-difluoroalkenes due to 
their similar bond energies. 

(B) Copper-catalyzed selective carboxylation of C-F bonds with CO2 (This work)

Challenges: low reactivity (C-F cleavage and CO2 activation)
selectivity (mono-, regio- and stereo-selectivities)

+ CO2

cat. Ni or Pd or Cu
ligand

(1 atm)

(A) Previous carboxylation of C-X bonds with CO2

X CO2H

X = Cl, Br, I, OR1, NMe3X
reductant

(Mn, Zn, Et2Zn,...)
R R

(1-10 atm)

+ CO2
cat. Cu/L

F CO2HRf Rf(B(OR)2)2

+ High selectivity
+ Mild conditions

+ Good FG tolerance
+ Broad substrate scope

+ Important and diverse
+ Easy derivation

Figure 1. Catalytic carboxylation of C−X bonds with CO2.
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Figure 2. Selected bioactive -fluoroacrylates and derivatives.
As direct carboxylation of C−F bonds with CO2 is difficult 

via oxidative addition, we wondered whether we could realize 
the C−F bond cleavage via β-F elimination13,14 and generate 
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reactive organometallic reagents, which might react with CO2 
under mild reaction conditions. We began our investigations 
by evaluating the reaction of 4-(2,2-difluorovinyl)-1,1'-
biphenyl (1a) with CO2 and a copper(I)/diboron catalytic 
system (Table 1). When we conducted the reaction using 
KOAc or CsF as base, no or only trace amounts of the desired 
product 2a was detected (entries 1-2). We suspected that a 
stronger base may be essential to activate the diboron reagents 
and promote this transformation. Further screening of several 
strong bases revealed that LiOtBu afforded 2a in the highest 
yield (entries 3-5). We also tested other cuprous catalysts and 
found that CuTc gave the best result (entries 3, 6 and 7). Other 
solvents, such as DMAc and o-xylene, all resulted in lower 
yields (entries 8-9). The Xantphos was found to be the best 
ligand and the B2pin2 was the diboron sources of choice 
(Please see SI for details). Control experiments showed that 
both the copper catalyst and base were vital to this 
transformation (entries 10-11). Notably, this  formal 
carboxylation proceeded with high efficiency (entry 12. Please 
see SI for details) and high (Z)-selectivity; no (E)-isomer was 
detected by 19F NMR.
Table 1. Optimization of the Reaction Conditionsa

 

F

F

[Cu] (5 mol%)
Xantphos (5 mol%)

base (3.5 equiv)
B2pin2 (1.5 equiv)

solvent, 80 °C, 24 h
then HCl (aq.)

CO2

(1 atm, closed)

+
CO2H

F

1a 2a

Ph Ph

entry

1

2

3
4

5

6

7

8

9

10

11

12c

Yield of 2a (%)b[Cu] base solvent

CuTc

CuTc

CuTc
CuTc

CuTc

CuI

CuOAc

CuTc

CuTc

-

CuTc

CuTc

KOAc

CsF

LiOtBu
NaOtBu

KOtBu

LiOtBu

LiOtBu

LiOtBu

LiOtBu

LiOtBu

-

LiOtBu

DMF

DMF

DMF
DMF

DMF

DMF

DMF

DMAc

o-xylene

DMF

DMF

DMF

N.D.

trace

88 (85)
59

44

73

83

70

65

N.D.

N.D.

85

aReaction conditions: 1a (0.4 mmol), 1 atm of CO2, [Cu] (0.02 
mmol), Xantphos (0.02 mmol), base (1.4 mmol), B2pin2 (0.6 
mmol), solvent (2 mL), 80 ºC, 24 h. bYields were determined by 
UPLC using anisole as an internal standard, and the isolated 
yields are given in parentheses. c2 h instead of 24 h. CuTc = 
copper(I) thiophene-2-carboxylate. N.D. = not detected. DMF = 
N,N-dimethylformamide. DMAc = N,N-dimethylacetamide.

The best reaction conditions were used for further 
evaluation of the scope of gem-difluoroalkenes (Scheme 1). 
Substrates bearing either an electron-donating group (EDG) 
(2e-2h, 2l, 2s and 2x) or an electron-withdrawing group 
(EWG) (2m-2q and 2u) on the phenyl ring showed good 
reactivity and gave the carboxylated products 2 in moderate-
to-high yields. Substituents at different positions on the arenes, 
such as the para-, meta- and ortho-positions, did not inhibit 
the reaction. It is worth noting that a variety of synthetically 
valuable functional groups, including ether (2f, 2g, 2h, 2s and 
2x), fluoro (2i, 2v and 2aa), chloro (2j and 2t), bromo (2k), 
amino (2l), and sulfone (2p), were all tolerated, providing 
opportunities for subsequent useful transformations. 
Moreover, some base-sensitive functional groups, such as 
methyl ester (2n) and nitrile (2o and 2u), could remain intact 
under our reaction conditions. Naphthalenes (2y and 2z) and 

heterocycles, such as pyridine (2q), benzothiophene (2ab), and 
quinoline (2ac), were also compatible with this reaction. 
Interestingly, the reaction of substrate 1ad bearing both an 
aliphatic and an aryl gem-difluoroalkene provided the single 
product 2ad in a satisfactory yield, demonstrating the high 
selectivity of this reaction and acceptable toleration of 
aliphatic gem-difluoroalkenes. Importantly, the more 
challenging gem-difluorodienes were also applicable (Scheme 
2), affording the desired products 2ae-2ah with high chemo- 
and stereoselectivity, thus significantly extending the scope of 
the reaction.
Scheme 1. Substrate Scope of gem-Difluoroalkenesa
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2d, R = iPr, 60%b

2e, R = tBu, 76%b,c

2f, R = OMe, 55%b,c
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CO2H

F

2aa, 67%b

F

MeO

CO2H

F
2v, R = F, 84%
2w, R = Me, 52%b,c

2x, R = OMe, 66%b,c

R

CO2H

F

2ad, 68%
F

F

N

CO2Me

F

2ac, 52%d

CO2Me

F
R
2m, R = CF3, 69%d

2n, R = CO2Me, 75%d

2o, R = CN, 70%d

2p, R = SO2Me, 66%d

2q, R = Py, 73%d

CO2Me

F

NC

2u, 68%d

Ar Ar

2ab, 70%
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2i, R = F, 68%b
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2k, R = Br, 70%
2l, R = NPh2, 85%

aReaction conditions are shown in Table 1, entry 3. b36 h. cCuTc 
(10 mol%) and Xantphos (10 mol%) were used. dIsolated yields of 
methyl ester using MeI as esterification reagent. 

Scheme 2. Substrate Scope of gem-Difluorodienesa

Ph
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F
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CO2Me
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2af, 72% (Z/E = 15:1)b

Ph
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F

2ag, 61%c

Ph
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CuTc (5 mol%)
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then HCl (aq.) or MeI
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(1 atm, closed)

+

1

R2

R1

R3

CO2R

F
R2

R1
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2, R = H or Me

Ph
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F

2ah, 45% (Z/E > 20:1)b

 aReaction conditions are shown in Table 1, entry 3. bThe Z/E ratio 
was determined by 19F NMR analysis of reaction mixture. cCuTc 
(10 mol%) and Xantphos (10 mol%) were used, 36 h.

After realizing the selective carboxylation of C(sp2)−F 
bonds in gem-difluoroalkenes, we wondered whether we could 
apply this catalytic system to realize a selective defluorinative 
carboxylation of C(sp3)−F bonds in -trifluoromethyl 
alkenes14 with CO2. The aliphatic C–F bond is well-known to 
be highly unreactive due to the high BDE of a C(sp3)–F bond. 
Moreover, it is rather difficult to avoid multiple 
defluorinations and thus realize a selective mono-
carboxylation, since the C–F bonds in the initial products 
might be activated by the carboxyl group. 
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With these challenges in mind, we investigated the 
carboxylation of trifluoromethyl alkene 3a with CO2. To our 
delight, we found that 3a underwent a highly selective ipso-
carboxylation of one C−F bond to give the ,-
difluorocarboxylate 4a in 70% yield under slightly modified 
reaction conditions (Scheme 3). Bis(hexylene 
glycolato)diboron turned out to be a better choice for this case 
with better yields than B2pin2 (Please see SI for details). 
Notably, this represents a rare example for an ipso-
functionalization of a C−F bond in -trifluoromethyl 
alkenes.15 Although gem-difluoroalkenes typically are 
obtained via SN2’-type reactions in most cases,14 the formation 
of isomer 4a’ was not observed in our reaction. Importantly, 
the generated difluoromethylene group (CF2) at benzylic 
position has good metabolic stability, which is often regarded 
as the bioisosteres of oxygen atom, carbonyl group and 
methylene group,16 thus providing a possibility for the 
application of the product 4 in medicine and bioactive 
molecules. Furthermore, the substrate scope of 3 was 
investigated (Scheme 3). For example, the substrates with 
different substituents on the arenes, including methoxy (4b, 
4g), chloro (4c, 4h, 4o), bromo (4d), and trifluoromethyl (4f) 
were tested and they afforded the desired ,-
difluorocarboxylates in moderate-to-good yields. Besides the 
substrates bearing monosubstituted benzenes, those with 
disubstitutions (4j, 4k, and 4m) could also react well to 
furnish the products effectively. The substrates bearing 
naphthalene (4l and 4n) or fluorene (4p) also showed good 
reactivity in this transformation. Notably, multiple 
defluorinations were not observed in all cases.17

Scheme 3. Substrate Scope of -Trifluoromethyl Alkenesa 

 

CuCl (10 mol%)
Xantphos (10 mol%)

KOMe (3.0 equiv)
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R
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4m, 66%

F

F
F
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CO2C6H13

Cl
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F

4k, 65%

CO2C6H13O

O

F
F

4n, 55%

CO2C6H13

F
F

4

CO2C6H13
R

aReaction conditions: 3 (0.2 mmol), 1 atm of CO2, CuCl (0.02 
mmol), Xantphos (0.02 mmol), KOMe (0.6 mmol), (B(OR1)2)2 
(0.3 mmol), NMP (2 mL), 80 ºC, 24 h; isolated yields. (B(OR1)2)2 
= Bis(hexylene glycolato)diboron. 

To further demonstrate the utility of this transformation, we 
conducted a gram-scale reaction of 1l to synthesize 2l in 78% 
yield (Figure 3A. See SI for details). Moreover, products could 
be readily converted into valuable compounds (Figure 3B. See 
SI for details). For example, the methyl ester 2a’’ readily 
underwent either reduction to generate fluoroallyl alcohol 5 or 
[3+2] cycloaddition with an azomethine ylide to give fluoro-

pyrrolidine 6 in one step.18 Notably, the facile condensation of 
2b with amines gave direct access to bioactive compounds, 
including anticonvulsant agent 7 (Figure 2) and quinuclidine 
acrylamide 8, which can be used for the treatment or 
prophylaxis of psychotic disorders and intellectual impairment 
disorders.9a,d 

To shed light on the mechanism of this transformation, 
several experiments were conducted (Figure 4). As we 
detected the Z-fluorinated vinylboronate ester 9a in the 
reaction of 1a under the N2 atmosphere, we speculated that 9a 
might be the intermediate of the reaction. So we synthesized 
9a according to the literature via Cu-catalyzed stereoselective 
borylation of gem-difluoroalkenes with B2pin2.13f,13h When it 
was subjected to the carboxylation reaction, the desired 
product 2a was obtained in 79% yield in 0.5 hour (Figure 4A). 
Surprisingly, the carboxylation of 9a also proceeded in the 
absence of a Cu-catalyst (Figure 4B), albeit with a lower 
efficiency than with Cu-catalysis (Figure 4A). Moreover, 
preliminary kinetic studies indicated that the Cu-catalysis 
should dominate the carboxylation of fluorinated 
vinylboronate ester with CO2 (See SI for details). In order to 
explain the unusual results in Figure 4B, we further studied the 
carboxylations of 9b and 9c in the same conditions (Figure 
4C). The results indicated that the electron-withdrawing effect 
of -substitutions could activate the vinylboronate ester. 
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(A) Gram-scale reaction

(B) Synthetic applications of products
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Figure 3. Gram-scale synthesis and synthetic applications of 
products.
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Figure 4. Control experiments.

Based on the experimental results and previous reports,19 we 
proposed the following possible mechanism for the 
carboxylation of 1 (Figure 5). Copper(I) alkoxide A would 
easily undergo transmetalation with the diboron reagent to 
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afford the boryl-copper(I) species B. Subsequently, insertion 
of a difluoroalkene 1 into the Cu−B bond of B would result in 
the formation of intermediate C. Among different 
configurations (C, C’ and C’’), the steric repulsion between 
the bulky boryl group and the R group in C’’ makes it 
unstable. Thus, syn β-F elimination via C’ selectively affords 
the (Z)-fluorinated pinacol alkenylboronate D and a Cu(I)-F 
species. In path A, a subsequent Cu(I)-catalyzed 
transmetallation/carboxylation process would give the desired 
product 2 and regenerate the active catalyst A. As 
demonstrated, the direct carboxylation of D with CO2 (path B) 
might also happen in the presence of LiOtBu, even though this 
is less efficient than path A and less favored in the reaction 
mixture. Another possible pathway to directly generate E from 
1 and B via a sigma bond metathesis can not be excluded at 
this stage.

CO2

A

B

LiOtBu

tBuO Bpin

B2pin2

LCuTc LCu OtBu

LCu Bpin

R
F

F1

H
R

LCu Bpin

F
F

C

R
Bpin

F

F-CuL

E

R
F

CuL

D
LiOtBu

LiOtBu
R

CO2Li

F

R
CO2H

F

H

path A

CO2

LiOtBu
R

CO2Li

F

H

R
CO2H

F2

path B

tBuO Bpin

2

C'
H

R

LCu F

F
Bpin

C''
H

R

LCu F

Bpin
F

Figure 5. Proposed mechanism.

In conclusion, we have realized the first Cu-catalyzed 
highly selective formal ipso-carboxylation of C−F bonds in 
fluorinated alkenes with CO2. A variety of valuable -
fluoroacrylic acids and ,-difluorocarboxylates, which exist 
among many drugs but are otherwise difficult to access, were 
obtained in good yields under mild conditions. Diverse 
functional groups were well tolerated in the presence of 
nonmetallic reductants. This method displays inexpensive 
catalyst, broad substrate scope, high mono-, chemo- and 
stereo-selectivities, scalability, and rapid access to bioactive 
molecules, providing great potential for application in organic 
synthesis, biochemistry and drug discovery.
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