

Accepted Article

Title: Copper-catalyzed aerobic oxidative cleavage of unstrained carbon-carbon bonds of 1,1-disubstituted alkenes with sulfonyl hydrazides

Authors: Dong Yi,* Linying He, Zhongyu Qi, Zhijie Zhang, Mengshun Li, Ji Lu, Jun Wei, Xi Du, Qiang Fu,* Siping Wei*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: *Chin. J. Chem.* **2020**, *38*, 10.1002/cjoc.202000549.

The final Version of Record (VoR) of it with formal page numbers will soon be published online in Early View: http://dx.doi.org/10.1002/cjoc.202000549.

WILEY-VCH SIOC CCS

ISSN 1001-604X • CN 31-1547/O6 mc.manuscriptcentral.com/cjoc www.cjc.wiley-vch.de

Copper-catalyzed aerobic oxidative cleavage of unstrained carbon-carbon bonds of 1,1-disubstituted alkenes with sulfonyl hydrazides

Dong Yi,*^{,a,#} Linying He,^{a,b,#} Zhongyu Qi,^a Zhijie Zhang,^a Mengshun Li,^c Ji Lu,^a Jun Wei,^a Xi Du,^a Qiang Fu,*^{,a} Siping Wei*^{,a}

^a Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China ^b People's Hospital of Xinjin District, Chengdu 611430, China School of Pharmacy, Binzhou Medical University, Yantai 264003, China

ite this paper: Chin. J. Chem. 2019, 37, XXX—XXX. DOI: 10.1002/cjoc.201900XXX

ummary of main observation and conclusion Alkoxy radical-mediated carbon-carbon bond cleavages have emerged as a powerful strategy to complement traditional ionic-type transformations. However, carbon-carbon cleavage reaction triggered by alkoxy radical intermediate derived from the ombination of alkyl radical and dioxygen, is scarce and underdeveloped. Herein, we report alkoxy radical, which was generated from alkyl radical and dioxygen, mediated selective cleavage of unstrained carbon-carbon bond for the oxysulfonylation of 1,1-disubstituted alkenes, providing facile access to a variety of valuable *θ*-keto sulfones. Mechanistic experiments indicated alkoxy radical intermediate that underwent subsequent regioselective *θ*-scission might be involved in the reaction and preliminary computational studies were conducted to provide a detailed explanation on the regioselectivity of the C bond cleavage. Notably, the strategy was successfully applied for constructing uneasily obtained architecturally intriguing molecules.

Background and Originality Content

Catalytic and selective cleavage of carbon-carbon bonds, which would provide a complementarily powerful strategy to transformation, remains less organic explored and underdeveloped in organic chemistry due to the difficulties ssociated with discriminating the carbon-hydrogen and carbon-carbon bonds and thermodynamically stability of C-C σ bond in organic molecules.^[1] In order to conquer the above hallenges, the well-developed C-C bond cleavage reactions usually depend on specific substrates bearing strained rings, helation-assisted groups or electron-withdrawing groups to polarize the C-C bonds.^[2] Thus, the development of a general and more efficient strategy for selective C-C bond cleavage remains r ighly desirable. With the rapid development of radical chemistry, e range of reactions involving selective C-C bond cleavage by a radical process has emerged as an interesting strategy for the reparation of value-added compounds.^[3] In particular, great rogress has been achieved in alkoxy radical initiated β -scission for the ring-opening functionalization of cycloalkanols to furnish nore valuable products (Scheme 1a). For example, transition netal-catalyzed^[4] or photocatalytic^[5] alkoxy radical-mediated ring-opening functionalization of cycloalkanols has made great chievements. In those works, the key alkoxy radical intermediates generate from the hydroxyl groups of the substrates. The direct use of dioxygen as oxygen source for onstructing hydroxyl or carbonyl groups in oxygen-containing organic frameworks has been achieved via radical processes in the past several years.^[6] We wondered whether alkoxy radical, which as been applied in the selective C-C bond cleavage, could be generated from the reaction between alkyl radical and dioxygen. The realization of the hypothesis could provide a powerful

strategy for selective C-C bond cleavage and building highly valuable compounds. While our manuscript was under preparation, an example of the combination of hydrogen atom transfer (HAT) with alkoxyl radical, derived from alkyl radical capturing dioxygen, for the diverse functionalization of C-C bond adjacent to arene was reported by Liu's group (Scheme 1b)^[7].

6-Ketosulfones are widely applied in the synthesis of natural products, pharmaceuticals and agrochemicals and exhibit interesting biological properties,^[8] great efforts have hence been devoted for the synthesis of the compounds with various sulfonylating agents.^[9] In particular, a variety of methods based on the oxysulfonylation of alkenes with sulfonylhydrazides have been developed to access β -ketosulfones. For example, Wang's^[8a] group has proposed copper-catalyzed synthesis of $\boldsymbol{\mathcal{B}}$ -ketosulfones starting from alkenes with oxygen. Alternatively, Zhang's group has reported metal-free aerobic oxidative synthesis of *θ*-ketosulfones^[8d]. Recently, visible-light-promoted aerobic oxidative difunctionalization of alkenes for the construction of β-ketosulfones has been disclosed by Wang and Zhu's groups.^[10] Despite the above achievements, there is still a great demand for the development of alternative strategies to access β -ketosulfones in synthetic chemistry. 1,1-Disubstituted alkenes served as powerful building blocks in organic synthesis.^[11] However, as a result of the challenges associated with the selective C-C bond cleavage of unstrained C-C bonds of 1,1-disubstituted alkenes, oxysulfonylation of 1,1-disubstituted alkenes with oxygen affording corresponding β -ketosulfones has not yet been described in literature. Inspired by the alkoxy radical-mediated C-C cleavage, herein, we report copper-catalyzed aerobic oxidative carbon-carbon cleavage of simple unstrained 1,1-disubstituted alkenes without the assistance of directing group for constructing

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/cjoc.202000549

This article is protected by copyright. All rights reserved.

Report

0

β-ketosulfones via O-centered alkoxy radical in situ generated from alkyl radical and oxygen (Scheme 1c).

Scheme 1 Alkoxy radical-mediated regioselective C-C bond cleavage via **B**-scission

(a) Alkoxyl radical derived from hydroxyl group (ref. 4 and 5)

Results and Discussion

studies commenced with α -benzylstyene **1a** and p-toluenesulfonyl hydrazide 2a as the model substrates using prous iodide (CuI) as catalyst under O2 atmosphere, and acetonitrile loaded with some water was used as the solvent, in hich water was employed to increase the solubility of compound 2a. To our delight, the selective carbon-carbon bond cleavage of ate 2a was observed, affording the desired product 3aa in 30% yield (Table 1, entry 1). After screening of the catalysts, it was f und that Cu(OTf)₂ was the ideal catalyst, leading to the desired product in 86% yield while other copper salts gave lower yields (entries 2-6). Then, different solvents, such as THF, DME, DMSO, and NMP loaded with water were examined, acetonitrile was still ine best choice (entries 7-10). After the solvent screening, the impact of the amount of water on the reaction was investigated, it v as found that when MeCN/H₂O (9:1, V/V) was used as the solvent, the optimal 93% yield was obtained (entries 11-15). Next, no better yield was obtained when the reaction temperature was Decreased or increased (entries 16 and 17). Finally, control experiments revealed that oxygen or copper catalyst was crucial to the success of the reaction (entries 18-20).

Dh		Catalyst	0 те
Ph	1 SINITINI 2	Solvent, T (°C)	Ph
1a	2a	O ₂ (balloon)	3aa
Entry	Catalyst	Solvent	3 aa (%) ^b
1	Cul	MeCN/H ₂ O (5:1)	30 ^c
2	Cul	MeCN/H ₂ O (5:1)	52
3	Cu₂O	MeCN/H ₂ O (5:1)	46
4	CuBr ₂	MeCN/H ₂ O (5:1)	55
5	Cu(OAc) ₂	MeCN/H ₂ O (5:1)	79
6	Cu(OTf) ₂	MeCN/H ₂ O (5:1)	86
7	Cu(OTf) ₂	THF/H ₂ O (5:1)	44
8	Cu(OTf) ₂	DME/H ₂ O (5:1)	76
9	Cu(OTf) ₂	DMSO/H ₂ O (5:1)	58
10	Cu(OTf) ₂	NMP/H ₂ O (5:1)	33
11	Cu(OTf) ₂	MeCN/H ₂ O (3:1)	51
12	Cu(OTf) ₂	MeCN/H ₂ O (7:1)	89
13	Cu(OTf)₂	MeCN/H ₂ O (9:1)	93
14	Cu(OTf) ₂	MeCN/H ₂ O (11:1)	92
15	Cu(OTf) ₂	MeCN	51
16	Cu(OTf) ₂	MeCN/H ₂ O (9:1)	54 ^d
17	Cu(OTf) ₂	MeCN/H ₂ O (9:1)	46 ^e
18	Cu(OTf) ₂	MeCN/H ₂ O (9:1)	31 ^f
19	Cu(OTf) ₂	MeCN/H ₂ O (9:1)	0 ^g
20	_	MeCN/H ₂ O (9:1)	26 ^h

Table 1 Optimization of the reaction conditions.^a

^a Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), Catalyst (5 mol %), Solvent (2 mL), 65 °C, 12 h, O2 (balloon). ^b Isolated yield based on 1a. ^c Catalyst (2 mol %), 40 °C, 7 h. ^d 50 °C. ^e 80 °C. ^f Air (balloon). ^g N₂ (balloon). ^h 24 h.

With the optimal conditions in hand (Table 1, entry 13), we subsequently evaluated the generality of the radical-induced C-C cleavage reaction for oxysulfonylation of different kinds of 1,1-disubstituted alkenes. As illustrated in Table 2, a diverse array of styrenes bearing different groups at α -position could undergo C-C bond cleavage with high selectivity. The substrates with different functional groups at para-, meta- and ortho-position of benzyls, including methyl (1a), methoxyl (1b, 1h, and 1j), halogens (1c-1e, 1i and 1k), trifluoromethyl (1f), all reacted well. We next turned our attention to examine the compatibility of substrates with various functional groups attached to the α -carbon atom. Pleasingly, a broad range of functional groups had no significant effect on the radical-induced C-C bond cleavage process. As also shown in Table 2, various heteroatom-containing functional groups, such as hydroxyl (1n), methoxyl (1o), phenoxyl (1p), acyloxyl (1q), sulfonyloxyl (1r), amino (1s-1v), azido (1w), phosphonyl (1x) and sulfonyl (1y), are tolerated well, affording the desired product via C-C bond cleavage in 42-73% yields,

www.cjc.wiley-vch.de

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. 2019, 37, XXX-XXX

demonstrating the flexibility of the current method. Notably, moderate yields could also be obtained with styrenes bearing tertiary-carbon (1z and 1aa). In addition, C(sp²)-C(sp²) bond resided in 1,1-diphenyl-ethylene 1ab could also be selectively cleaved albeit in relatively lower yield, which might be attributed to different reactivity of substrate 1ab and higher bond energy of C(sp²)-C(sp²) bond than C(sp²)-C(sp³) bond in the alkoxy radical intermediate. Additionally, the substrate 1ac containing C-C triple bond was also compatible in the reaction. Taken together, the selectivity of the carbon-carbon cleavage could be controlled in a elective manner by substituents on the alkenes. Besides, a gram-scale model reaction was carried out to afford the product 3aa in 63% isolated yield, demonstrating the practicality and scalability of the present method (see SI for more details). Notably, X, leaving as a substituted carbon radical, might transform into xygenated products with oxygen, coupling products with another radical, or some unidentified products after the reaction.

^{*a*} **1** (0.5 mmol), **2** (1.0 mmol), Cu(OTf)₂ (5 mol %), MeCN/H₂O (9:1, 2 mL), 5 °C, 12 h, O₂ (balloon). ^{*b*} Isolated yields based on **1**. ^{*c*} Performed at 6 mmol scale of **1a**. ^{*c*} When R¹, R², X = H, *β*-hydroxysulfone was obtained in 66%. ^{*d*} Ring-opening products were identified by LC-HRMS. ^{*c*} Two 1, yproducts acetophenone and (2-tosylethene-1,1-diyl)dibenzene were isolated and confirmed by NMR spectra.

Having demonstrated the powerful capability of the method in the radical-initiated carbon-carbon bond cleavage of diverse 1,1-disubstituted alkenes, the scope of the substitutes on the arenes was investigated. As illustrated in Table 3, the substrates bearing electron-donating (3ba, 3da-3ea) or electron-withdrawing (3ha-3ja) groups at the para-position of phenyls all underwent the reaction smoothly. The substrates with methoxyl (3ka and 3ma) or fluoride (3la and 3na) substituted at meta- or ortho-position could also afford the desired products via selective C-C cleavage. Substrates containing naphthyl (30a) or furyl (3pa) could also be applied to the transformation. Furthermore, the generality of the method with respect to the sulfonyl hydrazide coupling partner was explored using α -benzylstrene **1a** as the substrate. Aryl sulfonyl hydrazides containing methoxyl (3ab), halogen (3ac-3ae, 3la, and 3na), cyano (3ia), trifluoromethyl (3ag) or nitro (3ah) substituents were compatible. Additionally, 2-naphthyl, 3-pyridyl and 2-thienyl sulfonyl hydrazides (3ak-3am) reacted under the optimized conditions to afford the products in moderate yields. Finally, alkyl sulfonyl hydrazide (3an) could also undergo high-yielding coupling with the model substrate 1a, which was possibly due to the fact that alkyl sulfonyl hydrazide could be more easily oxidized to alkyl radical but also alkyl sulfonyl radical was more reactive than aryl sulfonyl radical.

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.cjc.wiley-vch.de

Table 3 Substrate scope of $\alpha\text{-benzyl}$ substituted styrenes and sulfonyl hydrazides.^b

E selectivity^[14]. The success of these experiments indicate that the protocol could constitute a potentially useful strategy for further functionalization of the commodity chemicals.

Scheme 2 Synthetic applications of the reaction.

(b) Product transformations

^a **1** (0.5 mmol), **2** (1.0 mmol), Cu(OTf)₂ (5 mol %), MeCN/H₂O (9:1, 2 mL), 5^o °C, 12 h, O₂ (balloon). ^b Isolated yields based on **1**.

To validate the potential applicability of the strategy, aryl substituted cyclohexenes 1ac-af were subjected to the standard on conditions, and they could undergo carbon-carbon cleavage smoothly to furnish structurally interesting products 4 ar-af (Scheme 2a). Particularly, an intriguing C=C double bond eavage occurred in the reaction which could be hardly achieved by other methods. Then, the utility of the method was further confirmed by facile derivatization of the product 3aa (Scheme 2). or example, the keto group of the product could be easily reduced to generate β-hydroxysulfone 5. Intermolecular n icleophilic substitution between β -ketone sulfone and cinnamyl romide provided the mono-C-cinnamylation product 6, which stereoselectively transformed into could be sulfonyl trahydropyrans via sequential reduction, epoxidation, and ring-closure^[12]. Moreover, α -bromomethyl sulfone **7** could also be achieved in moderate yield via mono-bromination and bise-induced chemoselective cleavage.^[13] Furthermore, the combination of the β -keto sulfone with α -bromo ketone formed an extremely valuable unsymmetric 1,4-enedione 8 with complete

A final set of studies focused on the detailed mechanism of the reaction. As shown in Scheme 3, the model reaction was completely suppressed when radical scavenger 2,2,6,6-tetramethyl-piperidinyloxyl (TEMPO) or butylated hydroxytoluene (BHT) was added into the reaction system (Scheme 3a), indicating that a radical process might be involved in the present cleavage reaction. Subsequently, isotope-labeling experiments were performed under ¹⁸O₂ or in H₂¹⁸O to get a more in-depth understanding of the pivotal role of dioxygen in the transformation. When the model reaction was conducted under ¹⁸O₂ atmosphere, 62% of ¹⁸O-labeled product **3aa** was detected in HR-MS spectra (Scheme 3b, and see SI). Upon performing the reaction in the presence of H₂¹⁸O, 36% of ¹⁸O-labeled product **3aa** was detected in HR-MS spectra (Scheme 3c, and see SI). And, when the model reaction was conducted under both ¹⁸O-labeled H₂¹⁸O and ¹⁸O₂, 89% of ¹⁸O-labeled product **3aa** was detected. Moreover, oxygen exchange between the product ¹⁶O-3aa and H218O via the hydrate was observed by the oxygen scrambling experiment under the standard conditions (Scheme 3d, and see SI).^[8a] The combination of the above results provided strong support for the carbonyl oxygen originating from dioxygen. Besides, when substrate 3aa' was subjected to the standard

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. 2019, 37, XXX-XXX

reactions, no corresponding product was detected, precluding the possibility that **3aa'** was the key intermediate in the reaction (Scheme 3e). Furthermore, when **3aa'** was transformed into alkoxy radical-mediated by cerium photocatalysis,^[5f] the product **3aa** was obtained smoothly, providing the evidence that an alkoxy radical mediated β -scission process might be involved in the reaction (Scheme 3f).

Scheme 3 Mechanistic studies.

Based on the above observations, LC-HRMS analysis (see SI for information) and previous reports^[6b, 8a], a plausible mechanism for the present transformation is described in Scheme 4. Initially, a sulfonyl radical would be formed from sulfonyl ydrazide **2a** via intermediate **A** and **B** with the release of N₂. The sulfonyl radical would attack the double bond of alkene 1a to rovide the alkyl radical intermediate **D**, which captures an O_2 to Jeliver peroxide radical intermediate D-O. Subsequently, the intermediate **D-O** might undergo hydrogen atom transfer (HAT) iving rise to intermediate E. Also, intermediate E might be ormed through the coupling between alkyl radical intermediated D with peroxyl radical (•OOH) generated form oxygen. Then, the ingle electron transfer (SET) between intermediate E and Cu(I) results in alkoxy radical F. Eventually, highly selective β -scission of the carbon-carbon of the intermediate F would lead to the final roduct **3aa** along with the benzyl radical **G**,^[15] which could react with oxygen or sulfonyl radical C leading to the corresponding aldehyde I and radical-radical coupling molecule K. Notably, the

oxygen atom of carbonyl group of **3aa** could undergo reversible oxygen atom exchange with water. In addition, benzaldehyde hydrazone **J**, compound **K**, TEMPO-trapped compounds **D'** and **G'** were detected through LC-HRMS analysis of the ongoing reaction mixture, which validates the existence of radicals **D** and **G**, providing further evidence for the reaction mechanism. Importantly, preliminary computational studies indicated that the C-C bond cleavage of position **a** of alkoxy radical **F** was more thermodynamically favorable than θ -scission of position **b** and **c** due to the much lower energetic barrier of the transition state (See SI for more information).

Scheme 4 Possible reaction mechanism.

Conclusions

In summary, we have successfully developed an aerobic copper-catalyzed radical-initiated selective cleavage of unstrained carbon-carbon bond for the oxysulfonylation of 1,1-disubstituted alkenes. The protocol features excellent chemo- and regio-selectivities, good functional group tolerance, broad substrate scope, high yields and could be readily extended to reconstruct structurally complex molecules. Notably, the alkoxy radicals involved in the reaction are generated from alkyl radicals and dioxygen. We anticipate that the present protocol would be beneficial to the development of alkoxy radical-mediated regioselective carbon-carbon bond cleavage with dioxygen for the construction of structurally more complex products that are

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.cjc.wiley-vch.de

Report

difficult to access by other approaches. Further studies on the nature of alkoxy radical are undergoing in our laboratory.

Experimental

Cu(OTf)₂ (9 mg, 5 mol%) was added to a mixture of 1,1-disubstituted alkene 1 (0.5 mmol), sulfonyl hydrazide 2 (1.0 mmol), and MeCN/H₂O (2 mL, 9/1) in a 25 mL round-bottomed flask at room temperature under O₂ (balloon). The reaction vessel was allowed to stir at 65 °C for 12 h. Upon completion of the r action, the resulting mixture was concentrated under vacuum and the residue was purified by flash column chromatography using petroleum ether/ethyl acetate (v/v 10:1 to 1:1) to provide ... e desired product.

Supporting Information

The supporting information for this article is available on the W/WW under https://doi.org/10.1002/cjoc.2018xxxxx.

Acknowledgement

We are grateful for the financial support from the Collaborative Fund of Luzhou Government and Southwest Medical niversity (2019LZXNYDJ28, 2018LZXNYD-ZK33, 2018LZXNYD-ZK39), and the research fund of Southwest Medical University (2017-ZRZD-020 and 2017-ZRQN-031).

References

[_] (a) Liu, H.; Feng, M.; Jiang, X. Unstrained Carbon⊡Carbon Bond C eavage. Chem. Asian J. **2014**, 9, 3360-3389. (b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Selective Carbon–Carbon B ond Cleavage for the Stereoselective Synthesis of Acyclic Systems. *.ngew. Chem. Int. Ed.* **2015**, *54*, 414-429. (c) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. ..ickel-Mediated Decarbonylation of Simple Unstrained Ketones through the Cleavage of Carbon–Carbon Bonds. J. Am. Chem. Soc. **2**. **17**, *139*, 1416-1419.

) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chelation-Assisted Carbon-Hydrogen and Carbon-Carbon Bond Activation by T ansition Metal Catalysts. Chem. Eur. J. 2002, 8, 2422-2428. (b) chen, F.; Wang, T.; Jiao, N. Recent Advances Transition-Metal-Catalyzed Functionalization of Unstrained rbon–Carbon Bonds. Chem. Rev. 2014, 114, 8613-8661. (c) To, C. T.; Chan, K. S. Selective Aliphatic Carbon–Carbon Bond Activation by Rhodium Porphyrin Complexes. Acc. Chem. Res. 2017, 50, 1702-1711. (d) Jia, K.; Chen, Y. Visible-Light-Induced Alkoxyl Radical Generation for Inert Chemical Bond eavage/Functionalization. Chem. Commun. 2018, 54. 6105-6112.

[2] (a) Liu, H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Transition-Metal-Free Aerobic Oxidative Cleavage of C-C Bonds in A-Hydroxy Ketones and Mechanistic Insight to the Reaction Pathway. Angew. Chem. Int. Ed. 2012, 51, 12570-12574. (b) Liu, Z.-Q.; Zhao, L.; Shang, X.; Cui, Z. Unexpected Copper-Catalyzed Aerobic Oxidative Cleavage of C(Sp3)–C(Sp3) Bond of Glycol Ethers. Org. Lett. 2012, 14, 3218-3221. (c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Visible Light-Driven Organic Photochemical Synthesis in China. Sci. China Chem. 2019, 62, 24-57. (d) Morcillo, S. P. Radical-Promoted C-C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew. Chem. Int. Ed. 2019, 58, 14044-14054. (e) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Cleavage of Carbon-Carbon Bonds by Radical Reactions. Chem. Soc. Rev. 2019, 48, 2615-2656. (f) Smaligo, A. J.; Swain, M.; Quintana, J. C.; Tan, M. F.; Kim, D. A.; Kwon, O. Hydrodealkenylative C(Sp3)-C(Sp2) Bond Fragmentation. Science 2019, 364, 681-685. (g) Wang, P.-Z.; He, B.-Q.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Radical C-C Bond Cleavage/Addition Cascade of Benzyl Cycloketone Oxime Ethers Enabled by Photogenerated Cyclic Iminyl Radicals. Org. Lett. 2019, 21, 6924-6929. (h) Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z.-Q. Surgical Cleavage of Unstrained C(Sp3)-C(Sp3) Bonds in General Alcohols for Heteroaryl C-H Alkylation and Acylation. Adv. Synth. Catal. 2019, 361, 4568-4574. (i) Wu, X.; Zhu, C. Recent Advances in Alkoxy Radical-Promoted C-C and C-H Bond Functionalization Starting from Free Alcohols. Chem. Commun. 2019, 55, 9747-9756. (j) Zhang, G.; Liu, Y.; Zhao, J.; Li, Y.; Zhang, Q. Radical Cascade Reactions of Unsaturated C-C Bonds Involving Migration. Sci. China Chem. 2019, 62, 1476-1491.

[4] (a) Wang, Y.-F.; Chiba, S. Mn(lii)-Mediated Reactions of Cyclopropanols with Vinyl Azides: Synthesis of Pyridine and 2-Azabicyclo[3.3.1]Non-2-En-1-Ol Derivatives. J. Am. Chem. Soc. 2009, 131, 12570-12572. (b) Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. F-Carbonyl Quinones: Radical Strategy for the Synthesis of Evelynin and Its Analogues by C-H Activation of Quinones Using Cyclopropanols. Org. Lett. 2013, 15, 4968-4971. (c) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Manganese-Catalyzed Oxidative Azidation of Cyclobutanols: Regiospecific Synthesis of Alkyl Azides by CIC Bond Cleavage. Angew. Chem. Int. Ed. 2015, 54, 12692-12696. (d) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. Silver-Catalyzed Ring-Opening Strategy for the Synthesis of B- and **Г-Fluorinated** Ketones. J. Am. Chem. Soc. 2015, 137, 3490-3493. (e) Lu, S.-C.; Li, H.-S.; Xu, S.; Duan, G.-Y. Silver-Catalyzed C2-Selective Direct Alkylation of Heteroarenes with Tertiary Cycloalkanols. Org. Biomol. Chem. 2017, 15, 324-327. (f) Allen, B. D. W.; Hareram, M. D.; Seastram, A. C.; McBride, T.; Wirth, T.; Browne, D. L.; Morrill, L. C. Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols Via Alkoxy Radicals. Org. Lett. 2019, 21, 9241-9246.

[5] (a) Bloom, S.; Bume, D. D.; Pitts, C. R.; Lectka, T. Site-Selective Approach to B-Fluorination: Photocatalyzed Ring Opening of Cyclopropanols. *Chem. Eur. J.* **2015**, *21*, 8060-8063. (b) Guo, J.-J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C–C Bond

Cleavage and Amination of Cycloalkanols by Cerium(Iii) Chloride Complex. Angew. Chem. Int. Ed. 2016, 55, 15319-15322. (c) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. Visible-Light-Induced Alkoxyl Radical Generation Enables Selective C(Sp3)–C(Sp3) Bond Cleavage and Functionalizations. J. Am. Chem. Soc. 2016, 138, 1514-1517. (d) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. C-C Bond-Forming Strategy by Manganese-Catalyzed Oxidative Ring-Opening Cyanation and Ethynylation of Cyclobutanol Derivatives. Angew. Chem. Int. Ed. 2016, 55, 2866-2869. (e) Yayla, H. G.; Wang, H.; Tarantino, K. T.; rbe, H. S.; Knowles, R. R. Catalytic Ring-Opening of Cyclic Alcohols Enabled by Pcet Activation of Strong O-H Bonds. J. Am. hem. Soc. 2016, 138, 10794-10797. (f) Jia, K.; Pan, Y.; Chen, Y. Selective Carbonyl-C(Sp3) Bond Cleavage to Construct Ynamides, noates, and Ynones by Photoredox Catalysis. Angew. Chem. Int. Ed. 2017, 56, 2478-2481. (g) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, .; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. J. Am. *Chem. Soc.* 2018, 140, 13580-13585. (h) Chen, Y.; Du, J.; Zuo, Z. Selective C-C Bond Scission of Ketones Via Visible-Light-Mediated Cerium Catalysis. Chem 2019, 6, 266-279. (i) Gazi, S.; Đokić, M.; Chin, K. F.; Ng, P. R.; Soo, H. S. Visible Light–Driven Cascade arbon-Carbon Bond Scission for Organic Transformations and Plastics Recycling. Adv. Sci. 2019, DOI: 10.1002/advs.201902020, 10.1002/advs.201902020. (j) Ota, E.; Wang, H.; Frye, N. L.; R. R. A Redox Strategy for Light-Driven, nowles. out-of-Equilibrium Isomerizations and Application to Catalytic C-C Bond Cleavage Reactions. J. Am. Chem. Soc. 2019, 141, 1457-1462. (k) Shi, J.-L.; Wang, Z.; Zhang, R.; Wang, Y.; Wang, J. visible-Light-Promoted Ring-Opening Alkynylation, Alkenylation, and Allylation of Cyclic Hemiacetals through B-Scission of Alkoxy adicals. Chem. Eur. J. 2019, 25, 8992-8995. (I) Wang, Y.; Liu, Y.; He, J.; Zhang, Y. Redox-Neutral Photocatalytic Strategy for Selective C-G Bond Cleavage of Lignin and Lignin Models Via Pcet Process. Sci. Bull. 2019, 64, 1658-1666. (m) Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. Catalytic Ring Expansions of Cyclic Alcohols Enabled by noton-Coupled Electron Transfer. J. Am. Chem. Soc. 2019, 141, 8752-8757.

5] (a) Wei, W.; Ji, J.-X. Catalytic and Direct Oxyphosphorylation of Alkenes with Dioxygen and H-Phosphonates Leading to -Ketophosphonates. *Angew. Chem. Int. Ed.* 2011, *50*, 9097-9099.
(b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary -Hydroxysulfones. *Angew. Chem. Int. Ed.* 2013, *52*, 7156-7159. (c)
Su, Y.; Sun, X.; Wu, G.; Jiao, N. Catalyst-Controlled Highly Selective oupling and Oxygenation of Olefins: A Direct Approach to Alcohols, Ketones, and Diketones. *Angew. Chem. Int. Ed.* 2013, *52*, 9808-9812. (d) Tang, C.; Jiao, N. Copper-Catalyzed Aerobic Oxidative C—C Bond Cleavage for C—N Bond Formation: From Ketones to Amides. *Angew. Chem. Int. Ed.* 2014, *53*, 6528-6532. (e) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Nmp and O2 as Radical Initiator: Trifluoromethylation of Alkenes to Tertiary B-Trifluoromethyl Alcohols at Room Temperature. *Org. Lett.* **2015**, *17*, 6034-6037. (f) Wang, H.; Lu, Q.; Qian, C.; Liu, C.; Liu, W.; Chen, K.; Lei, A. Solvent-Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. *Angew. Chem. Int. Ed.* **2016**, *55*, 1094-1097. (g) Xu, X.; Li, B.; Zhao, Y.; Song, Q. Aerobic Oxidative Decyanation–Amidation of Arylacetonitriles with Urea as a Nitrogen Source. *Org. Chem. Front.* **2017**, *4*, 331-334.

[7] Wang, Y.; Wang, N.; Zhao, J.; Sun, M.; You, H.; Fang, F.; Liu, Z.-Q. Visible-Light-Promoted Site-Specific and Diverse Functionalization of a C(Sp3)–C(Sp3) Bond Adjacent to an Arene. *ACS Catal.* **2020**, *10*, 6603-6612.

[8] (a) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Copper-Catalyzed Direct Oxysulfonylation of Alkenes with Dioxygen and Sulfonylhydrazides Leading to B-Ketosulfones. Chem. Commun. 2013, 49, 10239-10241. (b) Wang, H.; Wang, G.; Lu, Q.; Chiang, C.-W.; Peng, P.; Zhou, J.; Lei, A. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of B-Keto Sulfides and Sulfones. Chem. Eur. J. 2016, 22, 14489-14493. (c) Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Visible-Light Initiated Direct Oxysulfonylation of Alkenes with Sulfinic Acids Leading to B-Ketosulfones. Green Chem. 2016, 18, 5630-5634. (d) Wan, X.; Sun, K.; Zhang, G. Metal-Free Tetra-N-Butylammonium Bromide-Mediated Aerobic Oxidative Synthesis of B-Ketosulfones from Styrenes. Sci. China Chem. 2017, 60, 353-357. (e) Liu, Q.; Liu, F.; Yue, H.; Zhao, X.; Li, J.; Wei, W. Photocatalyst-Free Visible Light-Induced Synthesis of B-Oxo Sulfones Via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv. Synth. Catal. 2019, 361, 5277-5282.

[9] (a) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward B-Keto Sulfones. J. Am. Chem. Soc. 2013, 135, 11481-11484. (b) Handa, S.; Fennewald, J. C.; Lipshutz, B. H. Aerobic Oxidation in Nanomicelles of Aryl Alkynes, in Water at Room Temperature. Angew. Chem. Int. Ed. 2014, 53, 3432-3435. (c) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Copper-Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives. Angew. Chem. Int. Ed. 2014, 53, 4205-4208. (d) Liu, Q.; Liu, F.; Yue, H.; Zhao, X.; Li, J.; Wei, W. Photocatalyst-Free Visible Light-Induced Synthesis of B-Oxo Sulfones Via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv. Synth. Catal. 2019, 361, 5277-5282.

[10] (a) Wu, J.; Zhang, Y.; Gong, X.; Meng, Y.; Zhu, C. Visible-Light Promoted Aerobic Difunctionalization of Alkenes with Sulfonyl Hydrazides for the Synthesis of B-Keto/Hydroxyl Sulfones. *Org. Biomol. Chem.* **2019**, *17*, 3507-3513. (b) Wen, J.; Yang, X.; Sun, Z.;

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.cjc.wiley-vch.de

Report

Yang, J.; Han, P.; Liu, Q.; Dong, H.; Gu, M.; Huang, L.; Wang, H. Biomimetic Photocatalytic Sulfonation of Alkenes to Access B-Ketosulfones with Single-Atom Iron Site. *Green Chem.* **2020**, *20*, 230-237.

[11] Li, X.; Xu, X.; Zhou, C. Tetrabutylammonium lodide Catalyzed Allylic Sulfonylation of A-Methyl Styrene Derivatives with Sulfonylhydrazides. *Chem. Commun.* **2012**, *48*, 12240-12242.

[12] Chang, M.-Y.; Lu, Y.-J.; Cheng, Y.-C. M-Cpba-Mediated
 Stereoselective Synthesis of Sulfonyl Tetrahydropyrans.
 trahedron 2015, *71*, 1192-1201.

[13] Suryakiran, N.; Prabhakar, P.; Srikanth Reddy, T.; Chinni ahesh, K.; Rajesh, K.; Venkateswarlu, Y. Chemoselective Mono Halogenation of B-Keto-Sulfones Using Potassium Halide and '/drogen Peroxide; Synthesis of Halomethyl Sulfones and Dihalomethyl Sulfones. *Tetrahedron Lett.* **2007**, *48*, 877-881. [14] Li, S.-Y.; Wang, X.-B.; Jiang, N.; Kong, L.-Y. Synthesis of (E)-1,4-Enediones from A-Halo Ketones through a Sodium Sulfinate Mediated Reaction. *Eur. J. Org. Chem.* **2014**, *2014*, 8035-8039.

[15] Bietti, M.; Gente, G.; Salamone, M. Structural Effects on the B-Scission Reaction of Tertiary Arylcarbinyloxyl Radicals. The Role of A-Cyclopropyl and A-Cyclobutyl Groups. *J. Org. Chem.* **2005**, *70*, 6820-6826.

(The following will be filled in by the editorial staff) Manuscript received: XXXX, 2019 Manuscript revised: XXXX, 2019 Manuscript accepted: XXXX, 2019 Accepted manuscript online: XXXX, 2019 Version of record online: XXXX, 2019

Accepted Ar

Entry for the Table of Contents

Page No.

Copper-catalyzed aerobic oxidative cleavage of unstrained carbon-carbon bonds of 1,1-disubstituted alkenes with sulfonyl hydrazides

Dong Yi,*^{,a,#} Linying He,^{a,b,#} Zhongyu Qi,^a Zhijie Zhang,^a Mengshun Li,^c Ji Lu,^a Jun Wei,^a Xi Du,^a Qiang Fu,*^{,a} Siping

Herein, we report alkoxy radical, which was generated from alkyl radical and dioxygen, mediated selective cleavage of unstrained carbon-carbon bond for the oxysulfonylation of 1,1-disubstituted alkenes, providing facile access to a variety of valuable β -keto sulfones. Importantly, the strategy was successfully applied for constructing uneasily obtained architecturally intriguing molecules.