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Abstract Bismuth(III) nitrate pentahydrate [Bi(NO3)3�5H2O] or zirconium(IV)

chloride (ZrCl4) has been shown to catalyze nucleophilic ring opening of 2,2-

dicyanooxiranes along with ring closure by 1,3-dinucleophiles such as 1H-1,3-

benzimidazole-2-thiol, 5-phenyl-4H-1,2,4-triazole-3-thiol, and thioureas. These

reactions led to efficient synthesis of heterocyclic compounds condensed with

benzimidazole or triazole derivatives. The used catalysts are inexpensive, highly

efficient, and reusable for opening of epoxides with 1,3-dinucleophiles at ambient

temperature, with excellent regioselectivity.

Keywords Bismuth(III) nitrate pentahydrate [Bi(NO3)3�5H2O] �
Zirconium(IV) chloride � 1H-1,3-Benzimidazole-2-thiol � 5-Phenyl-4H-1,2,4-

triazole-3-thiol � Thioureas � 2,2-Dicyanooxiranes

Introduction

2,2-Dicyanooxiranes and their a-haloketone derivatives are known as very effective

bielectrophile reagents for synthesis of a large variety of heterocyclic compounds

such as thiazoles [1], dithioles [2], imidazoles [3], 1,3-oxathioles [4], and condensed

imidazolo and thiazolo derivatives [5]. In general, nucleophilic reagents can react

with these compounds regioselectively: they can attack the oxirane ring, cyano

functional group to give either ring-opened products, new functionalized oxiranes or

different heterocycles. Epoxide ring opening with nucleophilic agents is an

important step in preparation of 1,2-disubstituted products [6]. Heating epoxides in

the presence of nucleophiles, which would occur with poorly nucleophilic addition,

suffers from lack of appreciable regioselectivity [6]. The requirement for high
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temperature in epoxides sensitive to this condition led to the necessity for activation

of the epoxide rings to increase their susceptibility to nucleophilic attack. The

various methodologies developed for this purpose include the use of Lewis acid

catalysts such as alumina [7], metal triflates [8], transition-metal halides [9], alkali-

metal perchlorates [10], silica under high pressure [11], and montmorillonite clay

under microwave irradiation [12]. The search for new and efficient Lewis acid

catalysts for various useful organic transformations is one of the most important,

interesting, and challenging research topics in catalytic synthesis. On the other hand,

in recent years, economically affordable ecofriendly catalysts have received greater

acceptance for use in organic reactions. In this respect, bismuth(III) and

zirconium(IV) derivatives are known as Lewis acid catalysts in various organic

transformations involving carbon–carbon bond formation, protection-deprotection

chemistry, and conversion of epoxides into vic-acylamino hydroxy compounds [13–

16]. Since zirconium, in its normal quadrivalent state, displays no redox properties

but can attain a maximum covalency up to eight and displays low toxicity [16],

Zr(IV) compounds should be ideal for catalytic applications. Coordination of Bi3?

with the epoxide oxygen renders the epoxide susceptible to nucleophilic attack by

nucleophilic reagents. Considering the widespread applications of 2,2-dicyanoox-

iranes in synthesis of a large variety of heterocyclic compounds and their sensitivity

to high temperature, we planned to employ bismuth(III) nitrate pentahydrate and

zirconium(IV) chloride as Lewis acid catalysts to evaluate their catalytic efficiency

in carrying out ring-opening reactions of these epoxides with 1,3-dinucleophiles.

Results and discussion

We investigated ring opening and condensation reaction of 2,2-dicyanooxiranes

(1a–1d) with 1,3-dinucleophiles such as 1H-1,3-benzimidazole-2-thiol (2),

5-phenyl-4H-1,2,4-triazole-3-thiol (4), and thioureas (6a, 6b) in different conditions

at ambient temperature (Scheme 1). Lewis acid catalysts, namely bismuth(III)

nitrate pentahydrate and zirconium(IV) chloride, were used for activation of the

epoxide rings, rendering them more susceptible to nucleophilic attack under milder

conditions. Selective formation of the regioselective products 3, 5, and 7 arising

from nucleophilic attack at the benzylic carbon (Cb) of 2,2-dicyanooxiranes (1a-1d)

was observed in the course of the reactions with 1,3-dinucleophiles 2, 4, and 6.

Reactions of 2,2-dicyanooxiranes with 1,3-dinucleophiles occur at ambient

temperature in the absence of catalyst in long experimental times [17–19]. These

epoxides are sensitive to high temperature; therefore, we planned to employ Lewis

acid catalysts bismuth(III) nitrate pentahydrate and zirconium(IV) chloride to

decrease the activation energy of the ring-opening reaction of epoxides with 1,3-

dinucleophiles (Table 1).

To determine standard operating conditions for these reactions, we used some

polar and nonpolar solvents in the reaction of 3-phenyloxirane-2,2-dicarbonitrile

(1a) and 1H-benzo[d]imidazole-2-thiol (2) in the presence of Lewis acid catalysts

bismuth(III) nitrate pentahydrate and zirconium(IV) chloride as model reactions to
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investigate the effects of solvent for preparing compound 3a. In each case, the

substrates were mixed together with 10 mol.% of these catalysts agitated with

10 mL solvent at room temperature. The results are presented in Table 2. It is

Scheme 1 Condensation reaction of 2,2-dicyanooxiranes (1a–1d) with 1,3-dinucleophiles such as 1H-
1,3-benzimidazole-2-thiol (2), 5-phenyl-4H-1,2,4-triazole-3-thiol (4), and thioureas (6a, 6b)

Table 1 Reaction of 1,3-dinucleophiles (2, 4, 6a, 6b) with 2,2-dicyanooxiranes (1a–1d) for synthesis of

3a–3d, 5a, 5b, 7a, and 7b in the presence of Bi(NO3)3�5H2O (5 mol.%) and ZrCl4 (10 mol.%)

Compd. Oxirane Dinuc. Without catalyst Bi(NO3)3 (5 mol.%) ZrCl4 (10 mol.%)

Time (h) Yield (%) Time (min) Yield (%) Time (min) Yield (%)

3a 1a 2 7 90 40 90 30 92

3b 1b 2 7 93 35 92 25 94

3c 1c 2 7 94 35 95 25 95

3d 1d 2 7 90 40 93 35 94

5a 1b 4 7 90 30 92 25 92

5b 1d 4 7 94 35 94 30 94

7a 1d 6a 24 68 70 83 60 85

7b 1d 6b 24 70 75 88 70 90
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noteworthy that polar solvents such as acetonitrile afforded better yields than

nonpolar solvents.

We also optimized the quantity of catalysts. The best results were obtained when

the reactions were carried out in the presence of 5 or 10 mol.% bismuth(III) nitrate

pentahydrate and zirconium(IV) chloride, respectively. The results are presented in

Table 3.

We also attempted to reuse the catalysts by a variety of methods (Table 4). Direct

reuse of the catalysts (Table 4, entry 2, 6) led to a greater than 15 % decrease in

activity, while washing with dichloromethane and ethylacetate prior to reuse also

resulted in lower conversions (Table 4, entry 3, 4, 7, 8). This phenomenon probably

arose because the reactant and product were not completely desorbed from the

catalyst, and therefore the active sites were blocked.

Using this protocol (Scheme 1), we investigated reactions of 2,2-dicyanooxiranes

1, which have three electron-deficient centers, with 1,3-dinucleophiles for synthesis

of heterocyclic compounds in the presence of Lewis acid catalysts Bi(NO3)3�5H2O

(5 mol.%) and ZrCl4 (10 mol.%). In these reactions, the 1,3-dinucleophiles act

Table 2 Solvent effects on ring-opening reaction of epoxide 1a with 1H-benzo[d]imidazole-2-thiol (2)

Entry Solvent Catalyst Time (min) Yield (%)

1 Toluene Bi(NO3)3�5H2O 80 75

2 Toluene ZrCl4 70 78

3 THF Bi(NO3)3�5H2O 48 87

4 THF ZrCl4 37 89

5 CH3CN Bi(NO3)3�5H2O 40 90

6 CH3CN ZrCl4 30 92

8 Ethanol Bi(NO3)3�5H2O 45 88

9 Ethanol ZrCl4 35 91

THF tetrahydrofuran

Table 3 Optimized quantity of catalysts for ring-opening reaction of epoxide 1a in synthesis of com-

pound 3a

Entry Catalyst Mol.% catalyst Time (min) Yield (%)

1 Bi(NO3)3�5H2O 3 50 85

2 ZrCl4 5 38 88

3 Bi(NO3)3�5H2O 4 45 87

4 ZrCl4 7.5 35 89

5 Bi(NO3)3�5H2O 5 40 90

6 ZrCl4 10 30 92

7 Bi(NO3)3�5H2O 6 40 90

8 ZrCl4 12.5 30 92

9 Bi(NO3)3�5H2O 7 40 90

10 ZrCl4 15 30 92
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regioselectively on Cb and Ca of 2,2-dicyanooxiranes 1, which have three electron-

deficient centers. These processes are highly regioselective, with the products

resulting from initial attack of the nucleophilic sulfur atom of compounds 2, 4 or 6
on Cb of 2,2-dicyanooxiranes 1 followed by ring opening. The intermediate I was

formed by loss of cyano group. The last step is intramolecular nucleophilic addition

of nitrogen on carbonyl group of intermediate I, followed by elimination of HCN to

form a single product. Coordination of the Lewis acids with the epoxide and

carbonyl group oxygen increases the polarity of the C–O bond and makes the

adjacent carbons more susceptible to nucleophilic attack (Scheme 2).

Conclusions

Bismuth(III) nitrate pentahydrate and zirconium(IV) chloride are known as effective

Lewis acid catalysts for synthesis of heterocyclic compounds which condensed

[1,3]thiazole with benzimidazole, triazole or thiazolinone derivatives via nucleo-

philic reaction of 1,3-dinucleophiles with 2,2-dicyanooxiranes at ambient temper-

ature. These catalysts show an environmentally friendly character and are

inexpensive and easily obtained. Moreover, the procedure offers several advantages

including high yield, operational simplicity, clean reaction conditions, and short

Table 4 Reusability of Bi(NO3)3�5H2O and ZrCl4 in ring-opening reaction of epoxide 1a for synthesis of

compound 3a

Entry Catalyst Time (min) Yield (%)

1 Bi(NO3)3�5H2O (1st use) 40 90

2 Bi(NO3)3�5H2Oa (2nd use) 70 75

3 Bi(NO3)3�5H2Ob (2nd use) 55 83

4 Bi(NO3)3�5H2Oc (2nd use) 55 81

5 ZrCl4 (1st use) 30 92

6 ZrCl4
a (2nd use) 55 78

7 ZrCl4
b (2nd use) 40 85

8 ZrCl4
c (2nd use) 40 84

a Direct reuse of catalysts
b Bi(NO3)3�5H2O and ZrCl4 were washed with dichloromethane
c Bi(NO3)3�5H2O and ZrCl4 were washed with ethylacetate

Scheme 2 A reasonable mechanism for formation of product 3
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reaction time, making it a useful and attractive process for synthesis of these

compounds.

Experimental

General procedures

Melting points were measured on an Electrothermal Engineering Ltd. apparatus and

are uncorrected. Infrared (IR) spectra were measured on a Mattson 1000 FT-IR

spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were

recorded with a Bruker DRX-400 AVANCE spectrometer at 400 and 100 MHz,

respectively. Mass spectra were recorded on a MS-QP2000A Shimadzu mass

spectrometer operating at an ionization potential of 70 eV. Elemental analyses were

performed using a Heraeus CHN-O-Rapid analyzer. 2,2-Dicyanooxiranes 1a–1d
were prepared according to a literature procedure [18].

Procedure for preparation of 2-arylidene-[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-

ones (3a–3d), 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones (5a, 5b),

and thiazolinones (7a, 7b)

A mixture of 2,2-dicyanooxiranes 1a–1d (2 mmol), 1H-benzo[d]imidazole-2-thiol 2
or 5-mercapto-3-phenyl-s-triazole 4 or thioureas (6a, 6b) (2 mmol), and ZrCl4
(10 mol.%) or Bi(NO3)3�5H2O (5 mol.%) in CH3CN (20 mL) was stirred for the

appropriate time (Table 1), the progress of the reaction being monitored by thin-

layer chromatography (TLC) using hexane/ethylacetate as eluent. When the reaction

was completed as indicated by TLC, the crude product 3a–3d, 5a, 5b, 7a, and 7b
was precipitated from the reaction mixture, and the solid was filtered and

recrystallized with hexane/ethylacetate to get pure product.

2-Phenyl[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one (3a) White crystals; m.p.

190–192 �C. IR (KBr, mmax/cm-1): 1,742 (C=O), 1,603 (C=N). 1H NMR

(400 MHz, DMSO-d6): 8.81 (d, 1H, 3JH–H = 8 Hz, CH), 7.71 (d, 1H,
3JH–H = 8 Hz, CH), 7.67–7.39 (m, 7H, Ar), 6.40 (s, 1H). 13C NMR (100 MHz,

DMSO-d6): 153.84 (C=O), 144.75 (C=N), 142.92, 133.21, 132.69, 132.38, 129.45,

129.04, 128.93, 124.63, 122.87, 117.76, 50.10 (C2). MS (m/z): 266 (M?(98), 237

(80), 205 (20), 150 (15), 121 (100), 90 (78), 77 (40). Anal. calcd. for C15H10N2OS:

C, 67.65; H, 3.78; N, 10.52 %. Found: C, 67.42; H, 3.66; N, 10.18 %.

2-(4-Chlorophenyl)[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one (3b) White crys-

tals; m.p. 136–139 �C. IR (KBr, mmax/cm-1): 1,726 (C=O), 1,609 (C=N). 1H NMR

(400 MHz, DMSO-d6): 7.87 (d, 1H, 3JH–H = 8 Hz, CH), 7.66 (d, 1H,
3JH–H = 8 Hz, CH), 7.62 (d, 2H, 3JH–H = 8.8 Hz, CH), 7.50 (d, 2H,
3JH–H = 8.8 Hz, CH), 7.42 (t, 1H, 3JH–H = 8 Hz, CH), 7.35 (d, 1H, 3JH–H = 8 Hz,

CH), 6.32 (s, 1H). 13C NMR (100 MHz, DMSO-d6): 166.83 (C=O), 156.88 (C=N),
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149.42, 133.61, 133.44, 131.17, 128.72, 128.02, 125.77, 123.74, 123.35, 118.70,

67.32 (C2). MS (m/z): 300 (M?) (100), 27 (70), 237 (50), 156 (80), 124 (20), 89

(73), 63 (40). Anal. calcd. for C15H9ClN2OS: C, 59.90; H, 3.02; N, 9.31 %. Found:

C, 59.83; H, 2.88; N, 9.01 %.

2-(4-Nitrophenyl)[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one (3c) White crystals;

m.p. 193–196 �C. IR (KBr, mmax/cm-1): 1,750 (C=O), 1,609 (C=N). 1H NMR

(400 MHz, DMSO-d6): 8.49 (d, 2H, 3JH–H = 8 Hz, CH), 7.72 (d, 1H, 3JH–H = 8 Hz,

CH), 7.50–7.26 (m, 5H, Ar), 5.79 (s, 1H). 13C NMR (100 MHz, DMSO-d6): 165.83

(C=O), 153.20 (C=N), 150.3, 145.4, 140.01, 138.5, 129.73, 126.56, 124.55, 124.49,

119.51, 128.9, 57.61 (C2). MS (m/z): 311 (M?) (100), 282 (20), 265 (15), 236 (40), 167

(98), 151 (20), 145 (50), 121 (30), 109 (20), 90 (77), 77 (80), 63 (88). Anal. calcd. for

C15H9N3O3S: C, 57.87; H, 2.91; N, 13.50 %. Found: C, 57.69; H, 2.85; N, 13.21 %.

2-(2,5-Dimethoxyphenyl)[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one (3d) Yellow

crystals; m.p. 140–143 �C. IR (KBr, mmax/cm-1): 1,748 (C=O), 1,611 (C=N). 1H

NMR (400 MHz, DMSO-d6): 7.81 (d, 1H, 3JH–H = 8 Hz, CH), 7.49 (d, 1H,
3JH–H = 8 Hz, CH), 7.31–7.12 (m, 2H, CH), 7.05 (s, 1H, CH), 7.02 (d, 1H,
3JH–H = 8 Hz, CH), 6.88 (d, 1H, 3JH–H = 8 Hz, CH), 6.01 (s, 1H), 3.65, 3.48 (s, 6H,

2OCH3). 13C NMR (100 MHz, DMSO-d6): 167.91 (C=O), 154.70 (C=N), 152.59,

150.56, 126.40, 124.75, 124.38, 123.38, 119.61, 117.79, 116.30, 56.88, 56.09

(2OCH3) 57.61 (C2). MS (m/z): 326 (M?) (100), 311 (85), 267 (20), 178 (15), 163 (50),

149 (60), 135 (20), 121 (40), 107 (12), 91 (30), 77 (43), 63 (35). Anal. calcd. for

C17H14N2O3S: C, 62.56; H, 4.32; N, 8.58 %. Found: C, 62.44; H, 4.28; N, 8.31 %.

5-(4-Chlorophenyl)-2-phenylthiazolo[3,2-b][1,2,4]triazol-6(5H)-one (5a) White crystals;

m.p. 152–155 �C. IR (KBr, mmax/cm-1): 1,744 (C=O), 1,692, 1,611 (C=N). 1H

NMR (400 MHz, DMSO-d6): 8.13–8.11 (m, 2H, Ar), 7.64 (d, 2H, 3JH–H = 8 Hz,

CH), 7.57–7.53 (m, 3H, Ar), 7.50 (d, 2H, 3JH–H = 8 Hz, CH), 6.41 (s, 1H). 13C

NMR (100 MHz, DMSO-d6): 169.73 (C=O), 165.03, 163.96 (C=N), 134.00,

132.56, 131.35, 131.27, 129.15, 129.04, 128.97, 126.90, 58.17 (C5). MS (m/z): 327

(M?) (80), 301 (12), 281 (12), 264 (55), 177 (20), 152 (60), 125 (40), 103 (100), 89

(85), 77 (30). Anal. calcd. for C16H10ClN3OS: C, 58.63; H, 3.07; N, 12.28 %.

Found: C, 58.44; H, 2.98; N, 11.97 %.

5-(2,5-Dimethoxyphenyl)-2-phenylthiazolo[3,2-b][1,2,4]triazol-6(5H)-one (5b)

Orange crystals; m.p. 204–206 �C. IR (KBr, mmax/cm-1): 1,754 (C=O), 1,606

(C=N). 1H NMR (400 MHz, DMSO-d6): 8.13 (d, 2H, 3JH–H = 8 Hz, CH),

7.70–7.66 (m, 3H, Ar), 7.20 (s, 1H, CH), 7.05–7.00 (m, 2H, CH), 6.31 (s, 1H),

3.76, 3.67 (s, 6H, 2OCH3). 13C NMR (100 MHz, DMSO-d6): 169.09 (C=O),

164.73, 164.32 (C=N), 153.08, 151.17, 131.19, 129.10, 129.05, 126.88, 122.58,

117.28, 115.78, 56.45, 55.84 (2OCH3), 55.67 (C5). MS (m/z): 353 (M?) (12), 294

(7), 178 (30), 163 (95), 147 (20), 135 (23), 121 (15), 103 (100), 92 (18), 77 (28).

Anal. calcd. for C18H15N3O3S: C, 61.18; H, 4.28; N, 11.89 %. Found: C, 60.95; H,

4.15; N, 11.60 %.
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2-Amino-5-(2,5-dimethoxyphenyl)thiazol-4(5H)-one (7a) Yellow crystals; m.p.

195–196 �C. IR (KBr, mmax/cm-1): 3,316 (NH2), 1,692 (C=O). 1H NMR

(400 MHz, DMSO-d6): 8.92 (s, 2H, NH2), 7.28 (d, 1H, 3JH–H = 8 Hz, CH), 7.15

(d, 1H, 3JH–H = 8 Hz, CH), 6.98 (s, 1H, CH), 5.91 (s, 1H, CH), 3.72, 3.65 (s, 6H,

2OCH3). 13C NMR (100 MHz, DMSO-d6): 176.25 (C=O), 169.24 (C=N), 153.33,

150.28, 127.48, 116.15, 114.36, 113.56, 56.25, 55.68 (2OCH3), 54.94 (C5). MS (m/

z): 252 (M?) (16), 221 (15), 190 (38), 137 (58), 115 (100), 74 (25). Anal. calcd. for

C11H12N2O3S: C, 52.37; H, 4.79; N, 11.10 %. Found: C, 52.18; H, 4.39; N,

10.98 %.

5-(2,5-Dimethoxyphenyl)-2-(phenylamino)thiazol-4(5H)-one (7b) White crystals;

m.p. 218–220 �C. IR (KBr, mmax/cm-1): 3,303 (NH), 1,702 (C=O). 1H NMR

(400 MHz, DMSO-d6): 9.12 (s, 1H, NH), 7.38 (d, 1H, 3JH–H = 8 Hz, CH), 7.27 (d,

1H, 3JH–H = 8 Hz, CH), 7.23–7.02 (m, 5H, Ar), 6.89 (s, 1H, CH), 5.78 (s, 1H, CH),

3.76, 3.69 (s, 6H, 2OCH3). 13C NMR (100 MHz, DMSO-d6): 173.63 (C=O), 168.23

(C=N), 153.03, 151.10, 134.32, 128.69, 128.45, 127.65, 124.85, 116.87, 114.16,

113.24, 56.45, 55.63 (2OCH3), 54.86 (C5). MS (m/z): 328 (M?) (10), 297 (26), 266

(16), 251 (58), 191 (12), 189 (26), 137 (34), 77 (100). Anal. calcd. for

C17H16N2O3S: C, 62.18; H, 4.91; N, 8.53 %. Found: C, 61.97; H, 4.48; N, 8.12 %.
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