DOI: 10.1002/cmdc.201100316

Evaluation of 4,5-Disubstituted-2-Aminoimidazole–Triazole Conjugates for Antibiofilm/Antibiotic Resensitization Activity Against MRSA and *Acinetobacter baumannii*

Zhaoming Su, Lingling Peng, Roberta J. Worthington, and Christian Melander*^[a]

A library of 4,5-disubstituted-2-aminoimidazole-triazole conjugates (2-AITs) was synthesized, and the antibiofilm activity was investigated. This class of small molecules was found to inhibit biofilm formation by methicillin-resistant *Staphylococcus aureus* (MRSA) at low-micromolar concentrations; 4,5-disubstituted-2-AITs were also able to inhibit and disperse *Acinetobacter baumannii* biofilms. The activities of the lead compounds were

Introduction

Antibiotic-resistant pathogens have become an emerging crisis during the last decade.^[1] Bacteria have demonstrated the ability to develop resistance to virtually every antibiotic introduced by the medical community.^[2] Among the many defense mechanisms that bacteria have developed, biofilm formation plays an important role in establishing protection against antibacterial agents.^[3] Biofilms are defined as sessile communities of microorganisms that exist as differentiated entities embedded in an extracellular matrix of biomolecules (typically exopolysaccharides).^[4] Bacteria within a biofilm display up to 1000-fold increased resistance against traditional antibiotics relative to their planktonic counterparts.^[5] The US National Institutes of Health (NIH) have estimated that three of every four cases of bacterial infection are mediated by biofilms. Biofilms are the preferred living mode for bacteria, as ~80% of the world's microbial mass exists as a biofilm.^[6]

There are a number of naturally occurring molecular scaffolds that are capable of inhibiting biofilm formation^[7] including brominated furanone 1, *cis*-2-decenoic acid 2, and oroidin 3 (Figure 1). Our research group has focused on studying the ability of oroidin derivatives to modulate biofilm formation and, through a focused synthesis and screening effort, we have developed a number of oroidin analogues that inhibit and disperse bacterial biofilms via non-microbicidal mechacompared against the naturally occurring biofilm dispersant *cis*-2-decenoic acid and were revealed to be more potent. The ability of selected compounds to resensitize MRSA to traditional antibiotics (resensitization activity) was also determined. Lead compounds were observed to resensitize MRSA to oxacillin by 2–4-fold.

nisms (Figure 2).^[8-16] Among these molecules, dihydrosventrin **4** (DHS)^[8] and reverse amide **5** (RA-11)^[9] were found to possess outstanding antibiofilm activity against *Pseudomonas aeruginosa* (PA), while the 2-aminoimidazole–triazole conjugate (2-AIT) **6**^[10] was identified as the first small molecule to inhibit and dis-

Figure 2. Small molecules inspired by oroidin that have antibiofilm activity.

Supporting information for this article is available on the WWW under

[a] Z. Su, Dr. L. Peng, Dr. R. J. Worthington, Prof. Dr. C. Melander Department of Chemistry, North Carolina State University

Raleigh, NC 27695-8204 (USA) Fax: (+1)919-515-5079

E-mail: Christian_melander@ncsu.edu

http://dx.doi.org/10.1002/cmdc.201100316.

perse bacterial biofilms across order, class, and phylum. 2-AIT **6** was also reported to work synergistically with conventional antibiotics.^[17] In an effort to augment the activity of lead 2-AIT **6**, we recently reported the synthesis of a second-generation 2-AIT library.^[11] Subsequent screening of the library demonstrated that 2-AIT **7** is better able to inhibit methicillin-resistant *Staphylococcus aureus* (MRSA) biofilm formation and to disperse preformed *Acinetobacter baumannii* biofilms than compound **6**.

In a parallel structure-activity relationship (SAR) study, 4,5disubstituted-2-AI analogues with simple substituent patterns were synthesized by a nitroenolate approach, and we identi-

fied a number of broad-spectrum antimicrobial reagents against a wide range of terrestrial and Ph marine bacteria.^[18] Given the success of our 2-AIT 6 toward both modulating biofilm formation and resensitizing multidrug-resistant bacteria to conventional antibiotics (resensitization activity), we elected to study the biological impact of imparting a 4,5-disubstitution pattern on 2-AITs 6 and 7 in the context of antibiofilm and antibiotic resensitization activity. Specifically, we were interested in investigating the outcome that augmenting the antibiofilm properties of 2-AITs 6 and 7 through analogue synthesis would have upon resensitization activity. Our original nitroenolate approach, however, was incompatible with accessing 2-AIT analogues based on 6 and 7. To overcome this limitation, we report herein a general approach to 4,5disubstituted-2-AIT derivatives based on the use of Weinreb amides. Furthermore, we show that imparting the 4,5-disubstitution pattern augments antibiofilm properties without compromising antibiotic resensitization activity. The activity of our lead compounds were also compared with the naturally occurring biofilm dispersant cis-2-decenoic acid 2.

Results and Discussion

The synthesis of our Weinreb intermediate and subsequent generation of a 4,5-disubstituted-2aminoimidazole-triazole pilot library is outlined in Scheme 1 Alkylation of the protected glycine ethyl ester **8** with iodoalkyne **9** delivered the protected α -amino ester **10** in 71% yield. A click reaction was then performed between **10** and vinyl bromide **11** to generate triazole **12**. Suzuki–Miyaura cross-coupling was then used to install both phenyl and naphthyl moieties (**13a** and **13b**).^[11] Weinreb amides (**14a** and **14b**) were then accessed from **13** by treatment with *N*,*O*-dimethylhydroxyamine hydrochloride and isopropylmagnesium chloride.

With Weinreb amides **14** in hand, diversity was installed through reaction of each respective amide with a variety of commercially available Grignard reagents (Scheme 2). Each of the resulting ketones was then deprotected (2 N hydrochloric

Scheme 1. Synthetic route to Weinreb amides. *Reagents and conditions*: a) *t*BuOK, THF, -78°C, 69 h (71%); b) sodium ascorbate, CuSO₄, *t*BuOH/H₂O/CH₂Cl₂, RT, 12 h (82%); c) RB(OH)₂, PdCl₂(PPh₃)₂, Na₂CO₃ (aq.), THF, 69°C, 20 h (**13a** 96%, **13b** 98%); d) *O*,*N*-dimethylhydroxyamine-HCl, *i*PrMgCl, THF, -20°C, 2 h (**14a** 69%, **14b** 56%)

aminoimidazole-triazole pilot II- Scheme 2. Pilot libraries of 4,5-disubstituted-2-AITs. *Reagents and conditions:* a) R'MgBr, THF; b) NH₄CI (aq.); c) 2 N brary is outlined in Scheme 1. Al- HCI, EtOH; d) NH₂CN, EtOH, pH 4.3. [a] Yield over three steps.

acid/ethanol) and cyclized with cyanamide to deliver the target 4,5-disubstituted-2-AIT. All derivatives, after purification, were prepared as their respective hydrochloride salts for biological screening.

The pilot library was first assessed for its ability to inhibit MRSA biofilm formation at 100 μ M using the crystal violet reporter assay.^[19] To our delight, all members in the library were capable of inhibiting biofilm formation by >95% at this concentration. A dose–response study was subsequently undertaken to determine the IC₅₀ value of each compound for biofilm inhibition (Table 1). All compounds were subjected to growth-curve analysis (A_{600}) at their respective IC₅₀ concentrations, and their antibiofilm activity was established to be non-microbicidal except for compounds **16bb**, **16bc**, **16be**, and **16bf**. We performed follow-up colony-count analysis with **16ae** and verified that biofilm modulation occurs via a non-microbicidal mechanism.

Table 1. Biofilm inhibition activity of pilot libraries against MRSA.							
Compd	IC ₅₀ [µм] ^[а]	Compd	IC ₅₀ [µм] ^[а]				
16 aa	25.73±0.28	16 ba	2.95±0.37				
16 ab	2.25 ± 0.04	16 bb ^[b]	2.19 ± 0.03				
16 ac	1.91 ± 0.02	16 bc ^[b]	10.08 ± 0.13				
16 ad	2.01 ± 0.01	16 bd	2.23 ± 0.07				
16 ae	1.42 ± 0.18	16 be ^[b]	2.15 ± 0.23				
16 af	2.10 ± 0.13	16 bf ^(b)	8.20 ± 0.10				
16 ag	1.89 ± 0.05	16 bg	1.97 ± 0.03				
[a] Values represent the mean \pm SD as determined by at least three independent parallel experiments. [b] Growth curve defects were noted at these concentrations.							

According to the data outlined in Table 1, it was generally noted that compounds with the phenyl substituent (**16a** series) present an overall trend toward increased antibiofilm activity over the **16b** series, which contains the naphthyl subunit. Additionally, several of the compounds with the naphthyl moiety were found to be microbicidal during growth-curve analysis, whereas all compounds with the phenyl moiety were determined to inhibit biofilm formation via a non-microbicidal mechanism. We also noted, as previously observed, that activity is modulated by introduction of the 4,5-disubstitution pattern. Overall, compound **16ae** is the most potent compound of the pilot library, registering an IC₅₀ value of 1.42 μ M.

One of the most striking observations is that a propyl group on the newly introduced phenyl ring correlates with increased activity. Based on this observation, a second-generation library FULL PAPERS

Figure 3. Second-generation library.

Table 2. Biofilm against MRSA.	inhibition activity	of second-generation	compounds		
Compd	IC ₅₀ [µм] ^[а]	Compd	IC ₅₀ [µм] ^[a]		
16 ah	1.50 ± 0.21	16 al	1.52 ± 0.30		
16 ai	1.45 ± 0.05	16 am	1.34 ± 0.10		
16 aj	1.89 ± 0.11	16 an	1.96 ± 0.06		
16 ak	1.39 ± 0.08	16 a o	1.95 ± 0.05		
[a] Values represent the mean \pm SD as determined by at least three independent parallel experiments.					

Table 2. To our delight, two compounds displayed improved activity, with **16 am** being the most active (1.34 μ M). Growth-curve and colony-count analyses demonstrated that none of the second-generation compounds show toxicity against bacteria at their IC₅₀ concentrations.

Once the effect of these 4,5-disubstituted-2-AITs had been evaluated on a representative Gram-positive strain (MRSA), we assessed the antibiofilm activity of these compounds against *A. baumannii*, a representative Gram-negative bacterial strain. All compounds were initially screened for the ability to inhibit biofilm formation against *A. baumannii* at 100 μ M. Each compound that showed >75% antibiofilm activity was subjected to a dose–response study to determine the IC₅₀ value for biofilm inhibition. Several compounds displayed a precipitous decrease in their biofilm inhibition properties (**16ad**, **16ag**, **16ah**, **16ai**, **16aj**, **16ak**, **16an**, **16bf**, and **16bg**) over a narrow concentration range, which typically indicates that biofilm inhibition occurs through a traditional microbicidal mechanism (IC₅₀ not determined). Other compounds with applicable IC₅₀ values are summarized in Table 3. Growth-curve analysis was

of eight compounds was synthesized (Figure 3), in which we further varied functionalities on the phenyl ring, including: methoxy, isopropyl, fluoro/difluoro, pyrrolidinyl, phenyl, and 1,3-benzodioxolyl. Antibiofilm activities of second-generation compounds were evaluated, and the IC₅₀ values of biofilm inhibition against MRSA are outlined in

Table 3. Biofilm inhibition and dispersion activity of representative compounds against A. baumannii.							
Compd	IC ₅₀ [µм] ^[а]	EC ₅₀ [µм] ^[a]	Compd	IC ₅₀ [µм] ^[а]	EC ₅₀ [µм] ^[а]		
16 ab ^[b]	15.65±0.27	-	16 am	32.03±2.88	64.55 ± 17.34		
16ac	15.57 ± 0.31	50.03 ± 8.54	16 ao	20.35 ± 0.07	60.80 ± 9.52		
16ae	11.28 ± 0.68	44.61±1.96	16 bb ^[b]	19.73 ± 0.64	-		
16 af ^[b]	61.74 ± 2.54	-	16 bd ^[b]	30.46 ± 0.57	-		
16 al	60.67 ± 3.18	-	16 be ^[b]	22.92 ± 2.14	-		
[a] Values represent the mean \pm SD as determined by at least three independent parallel experiments. [b] Growth curve defects were noted at these concentrations.							

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

conducted on each of the compounds outlined in Table 3 at their respective IC_{50} concentrations. 2-AIT conjugates **16ac**, **16ae**, **16al**, **16am**, and **16ao** were found to inhibit biofilm formation through a non-microbicidal mechanism, as no defect in the growth curve was noted over 24 h. Colony-count analysis on lead compounds **16ae** and **16ao** verified these results.

Table 4. Resensitization of MRSA to oxacillin. MIC_{Oxa} [µg mL⁻¹] Compd MIC_{Oxa} [µg mL⁻¹] Compd MIC_{Oxa} [µg mL⁻¹] Compd 16 аа (20.0 µм) 32 16ah (4.1 µм) 16ba (8.9 µм) 64 32 32 32 16 bb (1.0 µм) 32 16 ab (2.1 цм) 16 ai (2.0 цм) 16 ас (3.6 µм) 16 16ај (2.0 µм) 64 16 bc (6.6 µм) 32 16 ad (8.6 µм) 64 16 ak (2.1 µм) 64 **16 bd** (2.0 µм) 32 16 ае (1.0 µм) 64 16al (14.7 µм) 32 **16 be** (3.6 µм) 16 **16 af** (18.8 µм) 32 **16 am** (1.8 µм) 32 **16bf** (4.2 µм) 16 16 ag (2.1 µм) 64 16 an (4.0 µм) 64 16bg (1.0 µм) 32 2 (50.0 µм) 16 ао (2.0 µм) 32 Control^[a] 64 64 [a] No compound was combined with oxacillin.

The ability of lead compounds

to disperse preformed *A. baumannii* biofilms was also evaluated. EC_{50} values were determined and are summarized in Table 3. Here, we define EC_{50} as the concentration that elicits 50% dispersion of a preformed biofilm. All lead compounds were able to disperse preformed *A. baumannii* biofilms at low-micromolar concentrations, with **16ae** being the most active compound.

cis-2-Decenoic acid 2 was recently reported as a signaling molecule that possesses the ability to inhibit and disperse biofilms from both Gram-positive and Gram-negative bacterial strains as well as a representative fungal strain.^[20] Given this activity, we were eager to evaluate how this naturally occurring molecule compares with our 2-AIT derivatives under identical conditions. Compound 2 was synthesized as described by Rappe^[21] and evaluated for its antibiofilm activity by initially screening at 400 μ M for biofilm inhibition/dispersion activity against A. baumannii, MRSA, and methicillin-sensitive S. aureus (MSSA). The ability of 2 to disperse preformed biofilms against all three bacterial strains and to inhibit biofilm formation against A. baumannii at 400 μm was < 10%. Nonetheless, 2 displayed moderate biofilm inhibition activity against MRSA and MSSA. IC_{50} values were determined to be $220\pm14\,\mu\text{M}$ against MRSA and $121\pm35\,\mu\text{M}$ against MSSA. A stability study of **2** was performed by ¹H NMR spectroscopy and is described in detail in the Supporting Information.

Next, we studied the ability of our 2-AIT library to resensitize MRSA to oxacillin. This antibiotic was specifically chosen because the parent compound **6** had minimal effect on the ability to resensitize MRSA to oxacillin (about twofold). Therefore, it represented an ideal canvas to test whether our 4,5-disubstituted-2-AIT library possesses enhanced activity. We were also interested in determining whether, like 2-AI-derived antibiofilm agents, *cis*-2-decenoic acid modulates planktonic response to antibiotics. We first determined the minimum inhibitory concentration (MIC) values of each compound against MRSA. A fourth of each respective MIC value was subsequently used as the concentration to test antibiotic resensitization. This concentration was chosen because in previous studies, no microbicidal activity is typically observed at 25% of the MIC values of our 2-AI antibiofilm agents.

Bacteria were pretreated with each compound for 30 min, and the MIC of oxacillin was subsequently determined. All MIC values of oxacillin combined with each of the 4,5-disubstituted-2-AITs and *cis*-2-decenoic acid **2** are summarized in Table 4. Compounds **16ac**, **16be**, and **16bf** resensitized MRSA to the effects of oxacillin by fourfold (roughly twofold over parent molecule **6**). Next, the lead compounds were subjected to the checkerboard assay,^[22] in which the synergistic activity of the combined agents was evaluated. The Σ FIC values of **16ac**, **16be**, and **16bf** were determined to be 0.25, 0.19, and 0.5 respectively, indicating that these three 2-AIT derivatives work synergistically with oxacillin (Σ FIC = FIC_{Compd} + FIC_{Oxa}, for which FIC_{Compd} = [MIC_{Compd} in combination]/[MIC_{Compd} alone], and FIC_{Oxa} = [MIC_{Oxa} in combination]/[MIC_{Oxa} alone]).

In the resensitization and checkerboard assays we also observed that in between the thoroughly clear and turbid wells, there were wells that contained a minute amount of bacteria that were barely visible by the naked eye. This is in contrast to MIC assays with conventional antibiotics in which there is an abrupt transition between turbid and clear wells. Although all our MIC values were recorded from completely clear wells, we were interested in determining the bacterial density of these wells that contained the barely visible bacterial precipitate. We performed colony-count analysis on selected wells from the checkerboard assay of 16 be, and these results are summarized in Table 5. Comparing the activity of **16 be** plus 16 μ g mL⁻¹ oxacillin against 16 µg mL⁻¹ oxacillin alone reveals that the combination is 99.9% more effective. However, we note from growth-curve analysis that 16be does alter early (0-8 h) MRSA growth characteristics, although bacterial CFUs are identical after 16 h.

Conclusions

In summary, we have successfully synthesized a variety of 4,5disubstituted-2-aminoimidazole-triazole conjugates through a Weinreb amide approach. The antibiofilm activity of these compounds was evaluated, and compounds **16ae**, **16ak**, and **16am** were identified as the most active. Growth-curve and colony-count analyses indicated that lead compounds inhibit biofilm formation via a non-microbicidal mechanism. Further comparison of lead compounds against the naturally occurring dispersant *cis*-2-decenoic acid revealed that appropriately designed 2-AI derivatives are two orders of magnitude more potent. 2-AI-based antibiofilm agents can also be simultaneously augmented for both their antibiofilm properties and their antibiotic resensitization activity. The fact that not all lead compounds have the ability to resensitize MRSA to the effects

of oxacillin indicates that antibiofilm properties and resensitization potentially act through distinct mechanisms. However, we note that a single molecular scaffold based on the 2-AI framework can be designed to target both properties simultaneously.

Experimental Section

General experimental

All reagents used for chemical synthesis were purchased from commercially available sources were and used without further purification. Chromatography was performed with 60 Å mesh standard-grade silica gel from Sorbtech (Atlanta, GA, USA). Infrared spectra were collected on an FT/IR-4100 spectrophotometer (v_{max} in cm⁻¹). UV absorbance was recorded on a Genesys 10 scanning UV/Vis spectrophotometer (λ_{max} in nm). NMR solvents were obtained from Cambridge Isotope Labs and used as is. $^1\mathrm{H}\,\mathrm{NMR}$ (400 MHz) and ^{13}C NMR (100 MHz) spectra were recorded at 25 °C on Varian Mercury spectrometers. Chemical shifts (δ) are given in ppm relative to tetramethylsilane or the respective NMR solvent; coupling constants (J) are in Hertz (Hz). Abbreviations used are: s =singlet, bs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, bt = broad triplet, q = quartet, m = multiplet, bm = broad multiplet. Mass spectra were obtained at the NCSU Department of Chemistry Mass Spectrometry Facility. Purity of tested compounds was confirmed to be > 95% by LC-MS analysis unless otherwise stated.

MRSA (ATCC #BAA-44), MSSA (ATCC #29213) and *A. baumannii* (ATCC #19606) were obtained from the American Type Culture Collection. Mechanically defibrinated sheep blood (DSB100) was obtained from Hemostat Labs. Oxacillin sodium salt was purchased from Fluka (cat. #28221). All other reagents were purchased from commercially available sources.

Synthesis of N-methoxy-N-methylamide-triazole precursors (14a, 14b): Ethyl 2-(diphenylmethyleneamino)non-8-ynoate (10): N-(Diphenylmethylene)glycine ethyl ester 8 (4.010 g, 15 mmol) and anhydrous THF (110 mL) were added to a 250 mL round-bottomed flask. The solution was stirred under N $_2$ at -78 °C for 15 min. tBuOK (2.020 g, 18 mmol) was added, and the resulting solution was allowed to warm to 0°C and stirred for 1 h. 7-lodohept-1-yne 9 (4.329 g, 19.5 mmol) was prepared as described by Knapp et al.^[23] and added to the mixture. The mixture was then warmed and stirred at room temperature for 69 h. The reaction was quenched by 100 mL H_2O and extracted with EtOAc (2×100 mL). The combined organic extracts were washed with 100 mL brine, dried over Na2SO4, and the solvent was evaporated under reduced pressure. Purification of the residue was carried out on a silica gel column and eluted with CH2Cl2/MeOH (9:1) to give the desired product 10 (3.854 g, 71%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (m, 1H), 7.64 (m, 1H), 7.44 (m, 2H), 7.39 (m, 1H), 7.38 (m, 1 H), 7.35 (m, 1 H), 7.33 (m, 1 H), 7.17 (m, 2 H), 4.17 (m, 2 H), 4.04 (t, J=6.8 Hz, 1 H), 2.13 (td, J=2.4, 7.2 Hz, 2 H), 1.92 (m, 2 H), 1.91 (t, J=2.8 Hz, 1 H), 1.49 (m, 2 H), 1.32 (m, 4 H), 1.26 (t, J=7.6 Hz, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.7$, 170.6, 139.8, 136.8, 130.5, 129.0, 128.8, 128.7, 128.3, 128.1, 84.8, 68.4, 65.6, 61.1, 33.7, 28.7, 28.5, 25.7, 18.5, 14.5 ppm; IR ν_{max} = 3280, 3136, 3064, 2923, 2855, 1955, 1735, 1660, 1599, 1447, 1317, 1278, 1177, 1073, 1030, 941, 920, 763, 700 cm⁻¹; $\lambda_{max} = 252 \text{ nm}$; HRMS (FAB) calcd for $C_{24}H_{27}NO_2 [M+H]^+$: 362.2115, found: 362.2117.

(E)-Ethyl-7-[1-(3-bromo-2-methylallyl)-1H-1,2,3-triazol-4-yl]-2-(diphenylmethyleneamino)heptanoate (12): Compound 10 (3.354 g, 9.29 mmol) was dissolved in a solvent mixture of 18 mL CH₂Cl₂, 36 mL tBuOH, and 36 mL H₂O in a 150 mL round-bottomed flask. (E)-3-Azido-1-bromo-2-methylprop-1-ene 11 (1.950 g, 11.14 mmol) was prepared as described by Handa et al.^[24] and added to the solution at room temperature. With vigorous stirring, CuSO₄ (0.222 g, 1.39 mmol) and sodium ascorbate (0.736 g, 3.71 mmol) were added, and the resulting solution was stirred at room temperature for 12 h. The mixture was extracted with CH₂Cl₂ (3×20 mL). The combined organic extracts were washed with 20 mL brine, dried over Na₂SO₄, and the solvent was removed in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc, 1:1) to afford the target compound 12 (4.105 g, 82%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (d, J = 8.0 Hz, 2 H), 7.29 (m, 3 H), 7.18 (m, 4 H), 7.03 (d, J=6.8 Hz, 2 H), 6.14 (s, 1 H), 4.74 (s, 2 H), 4.01 (m, 2H), 3.93 (m, 1H), 2.51 (t, J=7.2 Hz, 2H), 1.80 (m, 2H), 1.56 (s, 3 H), 1.50 (m, 2 H), 1.14 (m, 4 H), 1.10 ppm (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.4$, 170.4, 148.7, 139.6, 136.5, 136.5, 130.5, 128.9, 128.8, 128.7, 128.2, 127.9, 121.0, 108.0, 65.5, 60.9, 55.6, 33.7, 29.3, 29.1, 25.8, 25.7, 17.2, 14.4 ppm; IR $v_{max} = 3136$, 3061, 3024, 2929, 2856, 2110, 1959, 1896, 1732, 1623, 1445, 1369, 1289, 1181, 1030, 957, 781, 699 cm $^{-1}$; $\lambda_{\rm max}\!=\!250$ nm; HRMS (FAB) calcd for C₂₈H₃₃BrN₄O₂ [*M*+H]⁺: 537.1860, found: 537.1867.

(E)-Ethyl-2-(diphenylmethyleneamino)-7-[1-(2-methyl-3-phenyl-allyl)-1*H*-1,2,3-triazol-4-yl]heptanoate (13 a): Compound 12 (0.802 g, 1.50 mmol) and THF (8 mL) were added to a vial $(23 \times 85 \text{ mm})$. PhB(OH)₂ (0.367 g, 3.00 mmol) was then added and subsequently treated with dichlorobis(triphenylphosphine)palladium(II) (0.056 g, 0.08 mmol) and an aqueous solution of Na₂CO₃ (2 m,

2247

2.38 mL) under vigorous stirring. The resulting mixture was initially sonicated for 15 s and then stirred at $69\,^\circ\text{C}$ for 20 h. The reaction was extracted with EtOAc (3 \times 3 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and the solvent was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ and purified by column chromatography (hexane/EtOAc, 1:1) to give the desired compound 13a (0.771 g, 96%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, J = 7.2 Hz, 2 H), 7.42 (m, 3H), 7.31 (m, 9H), 7.17 (m, 2H), 6.46 (s, 1H), 4.95 (s, 2H), 4.15 (m, 2H), 4.05 (t, J=7.2 Hz, 1H), 2.68 (t, J=7.6 Hz, 2H), 1.94 (m, 2H), 1.77 (s, 3 H), 1.65 (m, 2 H), 1.31 (m, 4 H), 1.23 ppm (t, J=7.2 Hz, 3 H); ^{13}C NMR (100 MHz, CDCl_3): $\delta\!=\!172.7,$ 170.6, 148.8, 139.8, 136.7, 132.5, 130.6, 130.3, 130.0, 129.2, 129.1, 128.9, 128.8, 128.5, 128.3, 128.1, 127.4, 120.8, 65.7, 61.1, 58.7, 33.8, 29.5, 29.2, 26.0, 25.9, 15.9, 14.5 ppm; IR ν_{max} = 3277, 3136, 3097, 2931, 2858, 2092, 1948, 1713, 1593, 1563, 1452, 1437, 1369, 1298, 1248, 1024, 986, 742, 700 cm⁻¹; $\lambda_{max} = 229 \text{ nm}$; HRMS (FAB) calcd for $C_{34}H_{38}N_4O_2$ [*M*+H]⁺: 535.3068, found: 535.3056.

(E)-Ethyl-2-(diphenylmethyleneamino)-7-[1-(2-methyl-3-(naph-

thalen-1-yl)allyl]-1H-1,2,3-triazol-4-yl)heptanoate (13b): Compound 12 (0.856 g, 1.60 mmol) and 1-naphthylboronic acid (0.549 g, 3.19 mmol) was treated with dichlorobis(triphenylphosphine)palladium(II) (0.056 g, 0.08 mmol) and an aqueous solution of Na₂CO₃ (2 M, 2.40 mL) according to the procedure above. Purification by column chromatography gave the desired compound **13b** (0.919 g, 98%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.87 (m, 2H), 7.78 (d, J=8.4 Hz, 1H), 7.63 (d, J=7.2 Hz, 2H), 7.42 (m, 8H), 7.32 (m, 3H), 7.15 (m, 2H), 6.87 (s, 1H), 5.12 (s, 2H), 4.16 (m, 2H), 4.04 (t, J=7.2 Hz, 1H), 2.71 (t, J=7.6 Hz, 2H), 1.93 (m, 2H), 1.67 (m, 5H), 1.34 (m, 4H), 1.25 ppm (t, J=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 172.7, 170.6, 149.0, 139.8, 136.7, 134.6, 133.8, 133.7, 131.9, 130.5, 129.1, 128.9, 128.8, 128.3, 128.1, 128.0, 128.0, 127.8, 127.0, 126.4, 126.2, 125.5, 124.8, 120.8, 65.7, 61.1, 58.1, 33.8, 29.6, 29.3, 26.0, 25.9, 16.1, 14.5 ppm; IR v_{max}=3137, 3058, 2926, 2855, 1958, 1732, 1621, 1445, 1369, 1286, 1180, 1044, 1029, 783, 698 cm⁻¹; $\lambda_{max} = 234$, 287 nm; HRMS (FAB) calcd for $C_{38}H_{40}N_4O_2$ [*M*+H]⁺: 585.3224, found: 585.3226.

(E)-2-(Diphenylmethyleneamino)-N-methoxy-N-methyl-7-[1-(2-

methyl-3-phenylallyl)-1H-1,2,3-triazol-4-yl]heptanamide (14 a): Compound 13 a (0.441 g, 0.83 mmol) and anhydrous THF (2 mL) were added to a vial (23×85 mm). The solution was stirred under N_2 at -20 °C until 13a was dissolved. The solution was treated with N,O-dimethylhydroxyamine·HCl (0.242 g, 2.48 mmol), and iPrMgCl (2м, 2.48 mL) was then added dropwise in order to keep the reaction temperature below -5 °C. The resulting solution was stirred at 0°C for 2 h. The reaction was quenched with NH₄Cl (20%, 2 mL) and then extracted with EtOAc (3×2 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and the solvent was removed in vacuo. Purification of the residue took place on a silica gel column and was eluted with EtOAc to give the desired product 14a (0.311 g, 69%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.64$ (d, J = 7.6 Hz, 2 H), 7.42 (m, 3 H), 7.30 (m, 9H), 7.16 (m, 2H), 6.48 (s, 1H), 4.98 (s, 2H), 4.31 (t, J= 6.4 Hz, 1 H), 3.22 (s, 3 H), 3.13 (s, 3 H), 2.67 (t, J=7.2 Hz, 2 H), 2.02 (m, 2H), 1.79 (s, 3H), 1.64 (m, 2H), 1.29 ppm (m, 4H); $^{13}\mathrm{C}\,\mathrm{NMR}$ $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 173.6$, 169.7, 149.0, 139.8, 137.2, 136.7, 132.5, 130.4, 130.0, 129.2, 129.0, 128.7, 128.7, 128.5, 128.2, 128.1, 127.4, 120.7, 63.1, 61.1, 58.7, 33.8, 32.5, 29.4, 29.2, 26.2, 25.9, 15.9 ppm; IR v_{max}=3057, 3024, 2933, 2856, 1666, 1621, 1597, 1576, 1445, 1386, 1285, 1178, 1046, 1021, 990, 782, 699 cm⁻¹; $\lambda_{max} = 246$ nm; HRMS (FAB) calcd for $C_{34}H_{39}N_5O_2$ [*M*+H]⁺: 550.3177, found: 550.3177.

(E)-2-(Diphenylmethyleneamino)-N-methoxy-N-methyl-7-{1-[2methyl-3-(naphthalen-1-yl)allyl]-1H-1,2,3-triazol-4-yl}heptanamide (14b): Compound 13b (0.664 g, 1.14 mmol) was treated with N,O-dimethylhydroxyamine·HCl (0.444 g, 4.55 mmol) and iPrMgCl (2 M, 4.55 mL) according to the procedure above. Purification by column chromatography gave the desired compound 14b (0.378 g, 56%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.83$ (d, J=8.0 Hz, 1 H), 7.76 (d, J=7.2 Hz, 1 H), 7.69 (d, J=8.4 Hz, 1 H), 7.62 (d, J=8.4 Hz, 2 H), 7.38 (m, 7 H), 7.24 (m, 4 H), 7.11 (m, 2 H), 6.79 (s, 1 H), 5.03 (s, 2 H), 4.30 (t, J=5.6 Hz, 1 H), 3.16 (s, 3 H), 3.07 (s, 3 H), 2.67 (t, J=7.2 Hz, 2 H), 2.02 (m, 2 H), 1.64 (m, 2 H), 1.60 (s, 3 H), 1.29 ppm (m, 4H); 13 C NMR (100 MHz, CDCl₃): $\delta = 173.3$, 169.7, 148.8, 139.7, 137.1, 134.7, 133.8, 133.7, 131.9, 130.4, 129.0, 128.7, 128.7, 128.5, 128.2, 128.0, 128.0, 127.6, 126.9, 126.4, 126.2, 125.5, 124.9, 121.1, 63.0, 61.1, 57.9, 33.8, 32.4, 29.5, 29.2, 26.2, 25.9, 16.0 ppm; IR ν_{max} = 3396, 3135, 3058, 2935, 2857, 1682, 1623, 1594, 1577, 1506, 1445, 1286, 1045, 955, 784, 700 cm⁻¹; $\lambda_{max} = 259$, 287 nm; HRMS (FAB) calcd for $C_{38}H_{41}N_5O_2$ [*M*+H]⁺: 600.3333, found: 600.3329.

Procedure for one-pot synthesis of 4,5-disubstituted-2-aminoimidazole-triazole conjugates from the Weinreb amide (16aa (E)-5-Methyl-4-{5-[1-(2-methyl-3-phenylallyl)-1H-16 ba): and 1,2,3-triazol-4-yl]pentyl}-1H-imidazol-2-amine (16aa): Compound 14a (0.046 g, 0.084 mmol) was dissolved in 1.5 mL anhydrous THF in a vial (23×85 mm). The solution was stirred under N₂ at -20 °C, and MeMgBr (3 m, 0.09 mL) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 4 h. The reaction was cooled to 0°C and guenched with NH₄Cl (20%, 2 mL), then extracted with EtOAc (3×2 mL). The combined organic extracts were washed with brine, dried over Na2SO4, and the solvent was removed under reduced pressure. The residue was redissolved in 1.5 mL EtOH, and HCl (2 M, 0.75 mL) was added and stirred at room temperature for 12 h. The solution was then adjusted to pH 4.3 with NaOH (0.1 M). Cyanamide (0.016 g, 0.38 mmol) was then added, and the resulting mixture was heated at 95 $^\circ\text{C}$ for 3 h. The EtOH was removed in vacuo and the residue was purified by column chromatography (CH₂Cl₂/MeOH satd. NH₃ 4:1) to afford the target product 16aa (0.025 g, 82%) in its free-base form. Addition of concentrated HCl to a MeOH solution (2 mL) of the free base followed by solvent evaporation under reduced pressure delivered the corresponding 16 aa as its HCl salt: ¹H NMR (400 MHz, CD₃OD): δ = 8.56 (s, 1 H), 7.33 (m, 4 H), 7.26 (m, 1 H), 6.78 (s, 1 H), 5.33 (s, 2H), 2.92 (t, J=7.6 Hz, 2H), 2.47 (t, J=7.2 Hz, 2H), 2.06 (s, 3H), 1.85 (s, 3H), 1.81 (m, 2H), 1.63 (m, 2H), 1.43 ppm (m, 2H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 146.2$, 145.3, 136.4, 132.4, 130.2, 128.9, 128.2, 127.4, 126.4, 121.7, 117.6, 60.9, 28.3, 28.0, 27.9, 23.2, 22.8, 14.7, 7.6 ppm; IR ν_{max} = 3399, 2920, 2850, 2110, 1682, 1457, 1403, 1180, 1052, 797, 699 cm $^{-1}$; $\lambda_{max}\!=\!202,\ 237$ nm; HRMS (FAB) calcd for C₂₁H₂₈N₆ [*M*+H]⁺: 365.2448, found: 365.2438.

(E)-5-Methyl-4-{5-[1-(2-methyl-3-{naphthalen-1-yl}allyl)-1H-1,2,3-

triazol-4-yl]pentyl}-1H-imidazol-2-amine (16 ba): According to the procedure above, **14b** (0.082 g, 0.14 mmol) was treated with MeMgBr (3 м, 0.09 mL) followed by deprotection with HCl (2 м, 1.2 mL) and cyclization with cyanamide (0.027 g, 0.65 mmol). Purification by column chromatography gave the desired product **16 ba** (0.050 g, 88%) in its free-base form. Addition of concentrated HCl to a MeOH solution (2 mL) of the free base followed by solvent evaporation under reduced pressure delivered the corresponding **16 ba** as its HCl salt: ¹H NMR (400 MHz, CD₃OD): δ =7.95 (s, 1H), 7.88 (m, 1H), 7.84 (m, 1H), 7.79 (d, *J*=8.4 Hz, 1H),7.48 (m, 3H), 7.31 (d, *J*=7.6 Hz, 1H), 6.86 (s, 1H), 5.22 (s, 2H), 2.73 (t, *J*=7.2 Hz, 2H), 2.37 (t, *J*=7.2 Hz, 2H), 1.97 (s, 3H), 1.71 (m, 2H),1.62 (s, 3H),

1.56 (m, 2 H), 1.34 ppm (m, 2 H); ¹³C NMR (100 MHz, CD₃OD): δ = 148.2, 146.2, 134.8, 133.9, 133.9, 131.9, 128.3, 127.6, 127.2, 126.5, 126.0, 125.8, 125.1, 124.6, 122.7, 121.7, 117.5, 57.3, 29.0, 28.4, 28.1, 24.9, 22.8, 14.8, 7.5 ppm; IR ν_{max} = 3410, 2925, 2853, 2104, 1958, 1680, 1402, 1261, 1180, 1021, 954, 805, 698 cm⁻¹; λ_{max} = 207, 286 nm; HRMS (FAB) calcd for C₂₅H₃₀N₆ [*M*+H]⁺: 415.2605, found: 415.2600.

Synthesis of selected 4,5-disubstituted-2-aminoimidazole-triazole conjugates (16ae, 16ak, and 16am): General procedure for the preparation of a-diphenylmethyleneamino ketones: Compound 14a (or 14b) was dissolved in 1.5 mL anhydrous THF in a vial (23×85 mm). The solution was stirred under N₂ at -20 °C, and the appropriate Grignard reagent was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 2-4 h until completion of the reaction was confirmed by TLC analysis. The reaction was cooled to 0 °C and quenched with NH₄Cl (20%, 2 mL), then extracted with EtOAc (3×2 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and purified by column chromatography (hexane/EtOAc, 1:1) to give the desired α -diphenylmethyleneamino ketones. All α -diphenylmethyleneamino ketones were then subjected to deprotection/cyclization (detailed below).

(E)-2-(Diphenylmethyleneamino)-7-[1-(2-methyl-3-phenylallyl)-

1H-1,2,3-triazol-4-yl]-1-(4-propylphenyl)heptan-1-one (15 ae): Compound 14a (0.050 g, 0.091 mmol) was treated with (4-propylphenyl)MgBr (0.5 m, 1.82 mL) according to the general procedure. Purification by column chromatography gave the desired product **15 ae** (0.049 g, 88%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃): δ = 7.80 (d, J = 8.4 Hz, 2 H), 7.66 (m, 2 H), 7.28 (m, 12 H), 7.19 (d, J = 8.0 Hz, 2 H), 7.07 (m, 2 H), 6.47 (s, 1 H), 4.96 (s, 2 H), 4.76 (dd, J=5.6, 7.6 Hz, 1 H), 2.66 (t, J=7.6 Hz, 2 H), 2.60 (t, J=7.6 Hz, 2 H), 1.98 (m, 2H), 1.78 (s, 3H), 1.63 (m, 4H), 1.30 (m, 4H), 0.93 ppm (t, J=7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.0$, 169.6, 148.8, 148.4, 139.6, 136.8, 136.6, 133.9, 132.4, 130.3, 129.8, 129.2, 129.0, 128.9, 128.7, 128.7, 128.6, 128.4, 128.1, 127.8, 127.3, 120.6, 69.9, 58.6, 38.1, 35.2, 29.3, 29.0, 26.4, 25.7, 24.3, 15.7, 13.9 ppm; IR $\nu_{max} = 3058$, 2926, 2855, 1958, 1661, 1604, 1447, 1277, 1047, 941, 741, 700 cm⁻¹; $\lambda_{max} = 248 \text{ nm}; \text{ HRMS (FAB) calcd for } C_{41}H_{44}N_4O [M+H]^+: 609.3588,$ found: 609.3571.

(E)-2-(Diphenylmethyleneamino)-1-(4-fluorophenyl)-7-[1-(2-

methyl-3-phenylallyl)-1*H***-1,2,3-triazol-4-yl]heptan-1-one** (**15** ak): Compound **14a** (0.063 g, 0.11 mmol) was treated with (4-fluorophenyl)MgBr (1 м, 1.15 mL) according to the general procedure. Purification by column chromatography gave the desired product **15 ak** (0.053 g, 79%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃): δ =8.01 (m, 2H), 7.65 (m, 2H), 7.41 (m, 3H), 7.32 (m, 5H), 7.28 (m, 4H), 7.05 (m, 4H), 6.47 (s, 1H), 4.97 (s, 2H), 4.69 (dd, *J*=6.0, 8.4 Hz, 1H), 2.67 (t, *J*=8.0 Hz, 2H), 1.98 (m, 2H), 1.78 (d, *J*=1.2 Hz, 3H), 1.63 (m, 2H), 1.29 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 198.9, 169.9, 166.9, 164.4, 148.7, 139.4, 136.6, 136.6, (132.4, 132.4, 132.4), (132.1, 132.0), 130.5, 129.9, 129.0, 128.9, 128.8, 128.4, 128.2, 127.8, 127.3, 120.6, 115.7, 115.5, 70.6, 58.6, 35.2, 29.3, 29.0, 26.3, 25.7, 15.8 ppm; IR ν_{max}=3077, 2918, 2849, 1961, 1682, 1597, 1446, 1230, 1156, 1049, 781, 698 cm⁻¹; λ_{max} =248 nm; HRMS (FAB) calcd for C₃₈H₃₇FN₄O [*M*+H]⁺: 585.3024, found: 585.3026.

(E)-1-(Biphenyl-4-yl)-2-(diphenylmethyleneamino)-7-[1-(2-

methyl-3-phenylallyl)-1*H*-1,2,3-triazol-4-yl]heptan-1-one (15 am): Compound 14a (0.066 g, 0.12 mmol) was treated with biphenyl-4yl-MgBr (0.5 M, 2.4 mL) according to the general procedure. Purification by column chromatography gave the desired product **15 am** (0.059 g, 77%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, J = 8.4 Hz, 2 H), 7.68 (m, 2H), 7.59 (m, 4H), 7.42 (m, 5H), 7.27 (m, 10H), 7.09 (m, 2H), 6.45 (s, 1H), 4.94 (s, 2H), 4.79 (t, J = 7.2 Hz, 1H), 2.67 (t, J = 8.0 Hz, 2 H), 2.03 (m, 2 H), 1.77 (s, 3 H), 1.64 (m, 2 H), 1.32 ppm (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 199.8, 169.6, 148.6, 145.4, 139.8, 139.4, 136.6, 136.4, 134.7, 132.2, 130.3, 129.7, 129.6, 128.9, 128.9, 128.7, 128.7, 128.6, 128.2, 128.1, 128.0, 127.7, 127.2, 127.1, 127.0, 120.4, 70.1, 58.4, 35.0, 29.2, 28.9, 26.2, 25.6, 15.6 ppm; IR ν_{max} = 3062, 2928, 2854, 1948, 1683, 1600, 1447, 1277, 1120, 1044, 856, 748, 697 cm⁻¹; λ_{max} = 229, 252 nm; HRMS (FAB) calcd for C₄₄H₄₂N₄O [*M* + H]⁺: 643.3431, found: 643.3422.

Deprotection/cyclization procedure to access 2-aminoimidazoles from diphenylmethyleneamino ketones: The appropriate α -diphenylmethyleneamino ketone was dissolved in 1.5 mL EtOH. HCl (2 M) was added to the solution, which was stirred at room temperature for 12 h. The resulting solution was adjusted to pH 4.3 with NaOH (0.1 M). Then the mixture was treated with cyanamide and heated at 95 °C for 3 h. The EtOH was removed under reduced pressure, and the resulting solid was washed with Et₂O (1×3 mL). Purification by column chromatography (CH₂Cl₂/MeOH satd. NH₃ 4:1) afforded the desired compound in its free-base form. Addition of concentrated HCl to a MeOH solution (2 mL) of the free base followed by solvent evaporation under reduced pressure delivered the corresponding 2-aminoimidazole as its HCl salt.

(E)-4-{5-[1-(2-Methyl-3-phenylallyl)-1H-1,2,3-triazol-4-yl]pentyl}-

5-(4-propylphenyl)-1*H*-imidazol-2-amine (16 ae): Compound 15 ae (0.053 g, 0.087 mmol) was treated with HCl (2м, 0.44 mL), then reacted with cyanamide (0.110 g, 2.61 mmol) according to the general procedure. Purification by column chromatography afforded the target compound 16ae (0.030 g, 74%) over two steps as a yellow oil: ¹H NMR (400 MHz, CD₃OD): δ = 7.94 (s, 1 H), 7.33 (m, 4H), 7.28 (m, 5H), 6.57 (s, 1H), 5.11 (s, 2H), 2.72 (t, J=7.6 Hz, 2H), 2.64 (t, J=8.0 Hz, 2 H), 2.59 (t, J=8.0 Hz, 2 H), 1.77 (d, J=1.2 Hz, 3H), 1.70 (m, 4H), 1.64 (m, 2H), 1.39 (m, 2H), 0.92 ppm (t, J= 7.6 Hz, 3 H); $^{13}{\rm C}$ NMR (100 MHz, CD_3OD): $\delta\,{=}\,$ 148.8, 148.1, 144.6, 138.0, 133.3, 131.5, 130.4, 130.1, 129.5, 128.4, 128.3, 127.1, 124.5, 124.0, 123.7, 60.0, 38.8, 29.9, 29.8, 29.5, 25.8, 25.7, 25.0, 15.9, 14.2 ppm; IR $\nu_{\rm max}\!=\!3360,\,2919,\,2849,\,1955,\,1682,\,1457,\,1128,\,1081,$ 702 cm⁻¹; $\lambda_{max} = 204$, 250 nm; HRMS (FAB) calcd for C₂₉H₃₆N₆ [*M*+ H]⁺: 469.3074, found: 469.3086.

(E)-5-(4-Fluorophenyl)-4-{5-[1-(2-methyl-3-phenylallyl)-1H-1,2,3-

triazol-4-yl]pentyl}-1*H*-**imidazol-2-amine** (**16 ak**): Compound **15 ak** (0.053 g, 0.091 mmol) was treated with HCl (2 M, 0.91 mL), then reacted with cyanamide (0.153 g, 3.63 mmol) according to the general procedure. Purification by column chromatography afforded the target compound **16ak** (0.038 g, 95%) over two steps as a colorless oil: ¹H NMR (400 MHz, CD₃OD): δ =8.50 (s, 1 H), 7.48 (m, 2 H), 7.33 (m, 4 H), 7.22 (m, 3 H), 6.76 (s, 1 H), 5.31 (s, 2 H), 2.87 (t, *J*=7.6 Hz, 2 H), 2.66 (t, *J*=7.2 Hz, 2 H), 1.85 (d, *J*=1.2 Hz, 3 H), 1.76 (m, 4 H), 1.44 ppm (m, 2 H); ¹³C NMR (100 MHz, CD₃OD): δ =165.4, 162.9, 148.2, 146.6, 137.7, 133.7, 131.5, 130.8, 130.7, 130.2, 129.5, 128.7, 127.5, 126.0, 124.4, 122.8, (117.3, 117.1), 62.1, 29.6, 29.5, 29.0, 24.8, 24.5, 16.0 ppm; IR ν_{max} =3349, 2923, 2855, 1683, 1515, 1456, 1226, 1159, 1066, 838, 701 cm⁻¹; λ_{max} =204, 242 nm; HRMS (FAB) calcd for C₂₆H₂₉FN₆ [*M*+H]⁺: 445.2510, found: 445.2508.

(*E*)-5-(**Biphenyl-4-yl**)-4-{5-[1-(2-methyl-3-phenylallyl)-1*H*-1,2,3-triazol-4-yl]pentyl}-1*H*-imidazol-2-amine (16am): Compound 15am (0.059 g, 0.092 mmol) was treated with HCl (2 M, 0.92 mL), then reacted with cyanamide (0.154 g, 3.67 mmol) according to the general procedure. Purification by column chromatography afforded the target compound 16am (0.026 g, 57%) over two steps as a color-

2249

less oil: ¹H NMR (400 MHz, CD₃OD): δ = 8.41 (s, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.64 (m, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.30 (m, 6H), 6.70 (s, 1H), 5.23 (s, 2H), 2.84 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 7.6 Hz, 2H), 1.80 (d, J = 1.2 Hz, 3H), 1.74 (m, 4H), 1.45 ppm (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ = 148.3, 146.8, 142.5, 141.3, 137.7, 133.4, 131.6, 130.2, 130.2, 129.5, 129.0, 128.8, 128.7, 128.6, 128.0, 127.2, 124.6, 123.4, 61.8, 29.6, 29.4, 29.1, 25.0, 24.6, 15.9 ppm; IR ν_{max} = 3394, 2918, 2847, 1957, 1683, 1456, 1121, 1024, 702 cm⁻¹; λ_{max} = 204, 240, 289 nm; HRMS (FAB) calcd for C₃₂H₃₄N₆ [*M*+H]⁺: 503.2918, found: 503.2917.

Biological screening

Inhibition assays of selected compounds against MRSA and A. baumannii: Inhibition assays were performed by taking overnight cultures of MRSA or A. baumannii and subculturing at an OD₆₀₀ of 0.01 into tryptic soy broth with a 0.5% glucose supplement (TSBG) for MRSA or Luria-Bertani (LB) media for A. baumannii. Stock solutions of predetermined concentrations of the test compound were prepared in the resulting bacterial suspension, and aliquots of 100 μ L from stock solutions were distributed to the wells of a 96-well plate. Plates were covered, sealed (GLAD Press'n Seal film) and incubated under stationary conditions at 37 °C for 24 h. The media was then discarded, and the plates were washed thoroughly with H₂O. Each well was stained with crystal violet (CV; 110 $\mu\text{L},$ 0.1 % solution) at room temperature for 30 min. After thorough washing with H₂O again, the remaining stain was dissolved in 95% EtOH (200 µL) and 125 µL was transferred to corresponding wells of a polystyrene microtiter dish. Biofilm inhibition was quantified by measuring the OD₅₄₀ value of each well. Blank wells were employed as background controls.

Dispersion assays of selected compounds against A. baumannii: Dispersion assays were performed by taking overnight cultures of A. baumannii and subculturing at an OD₆₀₀ of 0.01 into LB media. Aliquots (100 µL) of the resulting bacterial suspension were distributed to the wells of a 96-well plate. Plates were then wrapped (GLAD Press'n Seal film) followed by incubation under stationary conditions at 37 °C for 24 h. The media was then discarded from the wells, and the plates were washed thoroughly with H₂O. Stock solutions of predetermined concentrations of the test compound were prepared in LB, and 100 µL was transferred from stock solutions into the 96-well plate with preformed biofilms. Media alone was added as a control. Sample plates were incubated at 37 °C for 24 h. The media was discarded from the wells after incubation, and the plates were washed thoroughly with H₂O. Each well was stained with CV (110 μ L, 0.1% solution) at room temperature for 30 min and then washed with H₂O again. The remaining stain in each well was dissolved in 95% EtOH (200 µL) and 125 µL was transferred to corresponding wells of a polystyrene microtiter dish. The biofilm dispersal effect was quantified by measuring the OD₅₄₀ value of each well. Blank wells were employed as background controls.

Broth microdilution method for antibiotic resensitization: Mueller–Hinton broth (MHB) was inoculated ($5 \times 10^5 \text{ CFU mL}^{-1}$) with MRSA. Aliquots (4 mL) of the resulting bacterial suspension were distributed to culture tubes and compound, from 100 mM DMSO stock, was added to give the final testing concentration. Bacteria not treated with the tested 2-Al derivative served as the control. After sitting for 30 min at room temperature, 1 mL of each sample was transferred to a new culture tube and oxacillin sodium salt was added from 128 mg mL⁻¹ H₂O stock to give a final concentration of 128 μ g mL⁻¹. Rows 2–12 of a 96-well microtiter plate were

filled (100 μ L per well) from the remaining 3 mL bacterial subcultures, allowing the concentration of compound to be kept uniform throughout the antibiotic dilution procedure. After standing for 10 min, aliquots (200 μ L) of the samples containing antibiotic were distributed to the corresponding first-row wells of the microtiter plate. Row 1 wells were mixed six to eight times, and then 100 μ L were transferred to row 2. Row 2 wells were mixed six to eight times, followed by a 100 μ L transfer from row 2 to row 3. This procedure was repeated to serially dilute the rest of the rows of the microtiter plate, with the exception of the final row, to which no antibiotic was added (to check for growth of bacteria in the presence of compound alone). The plate was then covered and incubated under stationary conditions at 37 °C. After 16 h, MIC values were recorded as the lowest concentration of antibiotic at which no visible growth of bacteria was observed.

Checkerboard assay: MHB was inoculated with MRSA (5 \times $10^5\,\text{CFU}\,\text{mL}^{-1})$ and 100 μL aliquots were distributed to all wells of a 96-well plate except well 1A. Inoculated MHB (200 $\mu\text{L})$ containing compound (at $2 \times$ the highest concentration being tested) was added to well 1A, and 100 μL of the same sample was placed in each of wells 2A-12A. Column A wells were mixed six to eight times, and then 100 μL were withdrawn and transferred to column B. Column B wells were mixed six to eight times, followed by a 100 µL transfer to column C. This procedure was repeated to serially dilute the rest of the columns of the plate up to column G (column H was not mixed to allow determination of the MIC of antibiotic alone). Inoculated media (100 μ L) containing antibiotic at 2× the highest concentration being tested was placed in wells A1-H1 and serially diluted in the same manner to row 11 (row 12 was not mixed to allow determination of the MIC of compound alone). The plates were incubated for 16 h at 37 °C. The MIC values (lowest concentration at which there was no visible growth of bacteria) of both compound and antibiotic in the combination were recorded. as well as the MIC values of compound alone (from row 12) and antibiotic alone (from column H). The Σ FIC values were calculated as follows: $\Sigma FIC = FIC_{Compd} + FIC_{Antibiotic'}$ for which $FIC_{Compd} = [MIC_{Compd}]$ in combination]/[MIC_{Compd} alone], and $FIC_{Antibiotic} = [MIC_{Antibiotic}$ in combination]/[MIC_{\mbox{\sc Antibiotic}} alone]. The combination is considered synergistic if $\Sigma FIC \leq 0.5$, indifferent if $0.5 < \Sigma FIC < 2$, and antagonistic if $\Sigma FIC \ge 2$.

Acknowledgements

The authors thank the UNCGA competitive research fund and the US DoD Defense Medical Research and Development Program (DMRDP, # W81XWH-11-2-0115) for support of this work. The DMRDP is administered by the Department of the Army; the US Army Medical Research Acquisition Activity [820 Chandler Street, Fort Detrick, MD 21702-5014 (USA)] is the awarding and administering acquisition office. The content of this manuscript does not necessarily reflect the position or the policy of the US Government, and no official endorsement should be inferred.

Keywords: aminoimidazoles • antibiotic resensitization biofilms • MRSA • synergism

- [1] J. A. Alanis, Arch. Med. Res. 2005, 36, 697-705.
- [2] B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J. G. Bartlett, J. Edwards, *Clin. Infect. Dis.* 2008, 46, 155–164.
- [3] T. C. Mah, G. A. O'Toole, Trends Microbiol. 2001, 9, 34-39.
- [4] J. S. Dickschat, Nat. Prod. Rep. 2010, 27, 343-369.

- [5] T. B. Rasmussen, M. Givskov, Int. J. Med. Microbiol. 2006, 296, 149-161.
- [6] D. Davies, Nat. Rev. Drug Discovery 2003, 2, 114-122.
- [7] N. Fusetani, Nat. Prod. Rep. 2004, 21, 94-104.
- [8] J. J. Richards, R. W. Huigens, T. E. Ballard, A. Basso, J. Cavanagh, C. Melander, Chem. Commun. 2008, 1698–1700.
- [9] J. J. Richards, T. E. Ballard, C. Melander, Org. Biomol. Chem. 2008, 6, 1356–1363.
- [10] S. A. Rogers, C. Melander, Angew. Chem. 2008, 120, 5307-5309; Angew. Chem. Int. Ed. 2008, 47, 5229-5231.
- [11] S. Reyes, R. W. Huigens, Z. Su, M. L. Simon, C. Melander, Org. Biomol. Chem. 2011, 9, 3041–3049.
- [12] J. J. Richards, S. Reyes, S. D. Stowe, A. T. Tucker, T. E. Ballard, J. Cavanagh, C. Melander, J. Med. Chem. 2009, 52, 4582–4585.
- [13] T. E. Ballard, J. J. Richards, A. Aquino, C. S. Reed, C. Melander, J. Org. Chem. 2009, 74, 1755-1758.
- [14] T. E. Ballard, J. J. Richards, A. L. Wolfe, C. Melander, *Chem. Eur. J.* **2008**, *14*, 10745 10761.
- [15] J. J. Richards, C. S. Reed, C. Melander, *Bioorg. Med. Chem. Lett.* 2008, 18, 4325–4327.

- [16] J. J. Richards, T. E. Ballard, R. W. Huigens, C. Melander, *ChemBioChem* 2008, 9, 1267–1279.
- [17] S. A. Rogers, R. W. Huigens, J. Cavanagh, C. Melander, Antimicrob. Agents Chemother. 2010, 54, 2112–2118.
- [18] Z. Su, S. A. Rogers, W. S. McCall, A. C. Smith, S. Ravishankar, T. Mullikin, C. Melander, Org. Biomol. Chem. 2010, 8, 2814–2822.
- [19] G. A. O'Toole, R. Kolter, Mol. Microbiol. 1998, 30, 295-304.
- [20] D. G. Davies, C. N. H. Marques, J. Bacteriol. 2009, 191, 1393-1403.
- [21] C. Rappe, Org. Synth. 1973, 53, 123-126.
- [22] G. Orhan, A. Bayram, Y. Zer, I. Balci, *J. Clin. Microbiol.* **2005**, *43*, 140–143.
- [23] F. F. Knapp, P. C. Srivastava, A. P. Callahan, E. B. Cunningham, G. W. Kabalka, K. A. R. Sastryt, J. Med. Chem. 1984, 27, 57–63.
- [24] M. Handa, K. A. Scheidt, M. Bossart, N. Zheng, W. R. Roush, J. Org. Chem. 2008, 73, 1031 – 1035.

Received: June 28, 2011 Revised: August 26, 2011 Published online on September 16, 2011

ChemMedChem 2011, 6, 2243 – 2251 © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemmedchem.org 2251

FULL PAPERS