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ABSTRACT: The copper-catalyzed reaction of arylcyclopropanes, N-
fluorobis(arenesulfonyl)imides, and (bpy)Zn(CF3)2 (bpy = 2,2′-bipyr-
idine) at room temperature affords the corresponding ring-opening 1,3-
aminotrifluoromethylation products in satisfactory yields. The protocol is
highly regioselective, providing a convenient entry to γ-trifluoromethylated
amines. A mechanism involving the trifluoromethylation of benzyl radicals is proposed.

Trifluoromethyl groups have been demonstrated to be
important structural motifs in pharmaceuticals and

agrochemicals owing to their profound effect on properties
such as lipophilicity, permeability, and metabolic stability. In
this context, γ-trifluoromethylated amines are a unique class of
compounds of important biological activities. For example, γ-
CF3-substituted amine Zeneca ZD 3523 (1) is a potent, orally
active antagonist of leukotrienes D4 and E4 discovered by the
Zeneca Pharmaceutical Co.1 Another example is that 3-
(trifluoromethyl)-3-arylpropylamine 2 has been identified as a
powerful inhibitor of retinol dehydrogenases for treating
ophthalmic diseases and disorders.2 However, there have
been no reports to date of general methods for the synthesis of
γ-trifluoromethylated amines despite recent advances in the
introduction of CF3 groups into organic molecules, in
particular, C(sp3)-trifluoromethylation.3

Radical trifluoromethylation has been established as a
versatile tool in the synthesis of trifluoromethylated com-
pounds, enabling the successful implementation of a number of
useful transformations such as C(sp3)−H trifluoromethylation,
decarboxylative trifluoromethylation of aliphatic carboxylic
acids, and trifluoromethylation of alkyl (or aryl) halides, as
developed by the groups of MacMillan,4 Liu,5 Cook,6 and our
group7 in the past few years. Based on the strategy, the copper-
catalyzed 1,2-aminotrifluoromethylation of alkenes has also
been accomplished by us, providing a convenient entry to β-
trifluoromethylated amines (Scheme 1a).7g Given that
arylcyclopropanes are a unique class of structurally constrained
molecules8 prone to ring-opening 1,3-difunctionalization upon
single-electron oxidation,9,10 we speculate that they might be
used as the starting materials for the concomitant introduction

of a CF3 motif and a protected amino group. Herein, we report
the copper-catalyzed ring-opening 1,3-aminotrifluoromethyla-
tion of arylcyclopropanes, providing a convenient synthesis of
γ-trifluoromethylated amines in a highly regioselective manner
(Scheme 1b).
As a start, we chose phenylcyclopropane (3a) as the model

substrate to test our idea. After an extensive screening of
reaction parameters (Table 1, also see Tables S1−S4 for
details), we were pleased to find that, with Cu(OTf)2 as the
catalyst, N-fluorobis(benzenesulfonyl)imide (NFSI)11 and
(bpy)Zn(CF3)2 (bpy = 2,2′-bipyridine)12 as the reagents,
and Zn(OTf)2 and i-PrCO2Li as the additives, the reaction of
3a in PhCF3 at room temperature (rt) furnished the desired
product 4a in almost quantitative yield (entry 1, Table 1).
Switching the catalyst to Cu(MeCN)4BF4 also led to the
formation of 4a in a high yield (entry 2, Table 1). However,
the use of other copper salts such as CuCN, CuCl2, or Cu2O in
place of Cu(OTf)2 showed a poor performance (entries 3−5,
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Scheme 1. Aminotrifluoromethylation via
Trifluoromethylation of Alkyl Radicals
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Table 1). Lowering the amount of Cu(OTf)2 from 20 to 10
mol % resulted in a decreased product yield (entry 6, Table 1),
and its role as the catalyst was further demonstrated by the
control experiment (entry 7, Table 1). The zinc complex
(bpy)Zn(CF3)2 proved to be superior over other trifluor-
omethylating agents such as the Ruppert−Prakash reagent
(TMSCF3)

13 (entry 8, Table 1, also see Table S2 for details).
In the meantime, the additives had a dramatic influence on the
transformation. Among various additives screened (also see
Table S3 for details), the combination of Zn(OTf)2 and i-
PrCO2Li offered the best result. Replacing i-PrCO2Li by other
salts such as LiOAc caused a slight decrease in product yield
(entry 9, Table 1). Interestingly, a low yield of 4a was observed
with the use of only one additive, while no expected product
was observed without any additive at all (entries 10−12, Table
1). Similar phenomena were also observed in our previous
investigations.7g While the detailed reason remains unclear for
the synergistic effect of additives, it might be possible that the
use of the two salts helps to have a better control over the rate
of transmetalation of the CF3 group from zinc to copper (vide
infra). Finally, PhCF3 turned out to be a solvent better than
dichloromethane (DCM) or acetonitrile (entries 13 and 14,
Table 1).
With the optimized conditions, we set out to examine the

scope of the method. As summarized in Scheme 2,
arylcyclopropanes with p-alkyl, acyloxy, or halogen substitution
all underwent the condensation with NFSI and (bpy)Zn(CF3)2
at rt, producing the corresponding 1,3-aminotrifluoromethyla-
tion products 4b−4j in excellent yields. Note that the aryl
bromide function in 4i makes possible further elaboration of
the product into more complex molecules (see below). The
reaction of meta- and ortho-substituted arylcyclopropanes also
proceeded smoothly to afford the expected products 4k−4n in
acceptable yields. The protocol was also applicable to 1,2-
disubstituted cyclopropanes, as exemplified by the efficient
synthesis of 4o and 4p. Sensitive functional groups such as free
hydroxyl group were well tolerated by the oxidative process, as

evidenced by the generation of 4q. In another case, the
reaction of tetrahydrocyclopropa[a]indene (3r) delivered 2,3-
disubstituted indene 4r in a highly stereoselective (92:8)
manner in favor of the trans configuration. Interestingly the
ring-opening of 3r was highly chemoselective in that no ring
expansion product (i.e., 1,3-disubstituted tetrahydronaphtha-
lene) could be detected. Furthermore, the use of cyclo-
propylestrone furnished γ-CF3-amine 4s, indicating that the
method was suitable for late-stage modification of complex
molecules.
While γ-trifluoromethylated amine 4l having a meta-methyl

substitution on the aromatic ring was achieved in 80% yield,
the meta-ethoxycarbonyl-substituted analogue (4m) was
obtained in a lower (40%) yield. As a comparison, p-
methoxycarbonyl-substituted product 4t was isolated in only
12% yield. The electron-withdrawing substitution on the

Table 1. Optimization of Reaction Conditions

entrya variation from the “standard conditions” yieldb (%)

1 none 98
2 Cu(MeCN)4BF4 in place of Cu(OTf)2 96
3 CuCN in place of Cu(OTf)2 67
4 CuCl2 in place of Cu(OTf)2 46
5 Cu2O in place of Cu(OTf)2 9
6 less amount (10 mol %) of Cu(OTf)2 used 60
7 without Cu(OTf)2 0
8 TMSCF3 in place of (bpy)Zn(CF3)2 0
9 LiOAc in place of i-PrCO2Li 88
10 without i-PrCO2Li 4
11 without Zn(OTf)2 14
12 without i-PrCO2Li and Zn(OTf)2 0
13 DCM in place of PhCF3 51
14 MeCN in place of PhCF3 trace

aThe reaction was carried out on 0.10 mmol scale in PhCF3 (2.0 mL).
bIsolated yield based on 3a.

Scheme 2. 1,3-Aminotrifluoromethylation

aConditions: 3 (0.10 mmol), Cu(OTf)2 (0.02 mmol), (Ar2O2)2NF
(0.20 mmol), (bpy)Zn(CF3)2 (0.15 mmol), Zn(OTf)2 (0.05 mmol),
i-PrCO2Li (0.10 mmol), PhCF3 (2.0 mL), rt, 24 h. bIsolated yield
based on 3. cThe substrate was in 1,2-trans configuration. ddr = 45:55
determined by 19F NMR. edr = 50:50 determined by 19F NMR.
ftrans/cis = 92:8 determined by 19F NMR. gReaction time: 48 h.
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aromatic ring had a negative impact on the reaction probably
by making the arylcyclopropanes more difficult to oxidize. To
overcome this limitation, we switched NFSI to its p-
trifluoromethylated derivative.14 We were delighted to find
that the same substrate 3t now delivered the desired products
4u in a much higher (48%) yield in comparison with 4t (12%
yield). Similarly, the reaction of (m-methoxycarbonylphenyl)-
cyclopropane (3m) with (p-CF3-C6H4SO2)2NF provided 4v in
a higher (58%) yield compared to its reaction with NFSI (to
give 4m in 40% yield). The protocol could be further extended
to heteroarylcyclopropanes. For example, thiophenylcyclopro-
pane 3w furnished the expected product 4w in 76% yield on
reaction with (p-CF3-C6H4SO2)2NF. The above experiments
clearly demonstrated that the p-CF3 substitution increased the
reaction efficiency. Presumably, the p-CF3-substitution renders
the N−F reagent a stronger oxidant than NFSI, thus facilitating
the oxidative ring opening of electron-deficient arylcyclopro-
panes. This assumption was further supported by our
observation that a much weaker oxidant, (PhSO2)EtN-F,
failed to give the desired product 4x.
In addition to being general, the 1,3-aminotrifluoromethy-

lation was highly regioselective in that the trifluoromethyl
group was always attached to the benzylic carbon. Moreover,
the reaction could be easily scaled up without an obvious
decrease in product yield, as exemplified by the gram-scale
synthesis of 4i (Scheme 3). One of the sulfonyl groups in 4i

was readily removed by acid hydrolysis at rt to give
sulfonamide 5 in almost quantitative yield. Further treatment
of 5 with Mg/MeOH at rt furnished the corresponding free
amines under mild conditions, which could be easily converted
to amides such as 6 according to the conventional methods. In
another case, the palladium-catalyzed Heck coupling of 4i with
ethyl acrylate led to the easy synthesis of alkene 7. These
experiments further demonstrated the potential of 1,3-
aminotrifluoromethylation products in the synthesis of
structurally complex trifluoromethylated compounds.
A mechanism involving the trifluoromethylation of benzyl

radicals could be inferred from the above experiments. Indeed,
the reaction was completely inhibited by the addition of a
stoichiometric amount of TEMPO (2,2,6,6-tetramethylpiper-
idin-N-oxyl) or BHT (2,6-di-tert-butyl-4-methylphenol), thus
providing additional evidence for the radical intermediacy.
A plausible mechanism can thus be proposed based on the

above results and literature reports, as depicted in Figure 1.
Transmetalation of CF3 anion from (bpy)Zn(CF3)2 to CuI

forms the CuI−CF3 species that is then captured by NFSI to

give the CuIII intermediate A.15 The oxidation of arylcyclo-
propanes by A generates arylcyclopropanes radical cation B,
(PhSO2)2N

− anion, and CuII−CF3 complex. The interaction of
(PhSO2)2N

− anion with radical cation B results in the ring-
opening of the latter, and the corresponding benzyl radical C is
produced. Finally, the CF3 group transfer from the CuII−CF3
complex to radical C furnishes the 1,3-aminotrifluoromethy-
lation product and regenerates the CuI catalyst.
In conclusion, we have successfully developed the

unprecedented protocol for the 1,3-aminotrifluoromethylation
of arylcyclopropanes, providing a convenient entry to γ-
trifluoromethylated amines. As the procedure is catalytic in
copper, broad in scope, and operationally simple, the method
should find important applications in the synthesis of
trifluoromethylated molecules of biological interests.
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