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SYNTHESIS OF NEW FUNCTIONALIZED CHIRAL IONIC
LIQUID AND ITS ORGANOCATALYTIC ASYMMETRIC
MICHAEL ADDITION

Jian Li1 and Li Liu2
1School of Pharmaceutical Engineering and Life Sciences, Chang Zhou
University, Changzhou, China
2Analytical Center, Chang Zhou University, Changzhou, China

GRAPHICAL ABSTRACT

Abstract A novel recyclable functionalized chiral ionic liquid has been developed to promote

asymmetric Michael additions of cyclohexanone to both aryl and alkyl nitroolefins in the

presence of 20mol% of organocatalyst 4 in MeOH. The process affords synthetically valu-

able chiral products in good yields (up to 93%) and high enantioselectivities (up to 92%).

The chiral ionic liquid could be easily reused six times without remarkable decrease in yields

and enantioselectivities.

Keywords Asymmetric Michael addition; chiral ionic liquid; recyclable

INTRODUCTION

Ionic liquids that contain tethered specialized groups are called functionalized
ionic liquids (FILs), which have been used as supports for reagents and catalysts.[1]

They are also recyclable. As FILs, chiral ionic liquids (CILs) have been designed and
synthesized in an attempt to influence the outcomes of asymmetric organic reac-
tions.[2] There are only a few CILs that can effectively influence the outcomes of
asymmetric reactions, such as Baylis–Hillman reactions,[3] the Michael additions,[4]

and aldol reactions.[5] The design and synthesis of CILs opens up a green chemistry
approach to asymmetric catalysis. The addition of carbonyl compounds to nitroalk-
enes, which in many respects may be considered a Michael-type addition, is a key
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reaction in synthetic organic chemistry for the formation of new C-C bonds.[6] It is
well known that pyrrolidine–base catalytic systems have been very effective for
asymmetric Micheal addition reactions, often yielding high enantioselectivites.[7]

Recently, some simple pyrrolidine-derived CILs were reported as efficient catalysts
for the addition of cyclic ketones and some aldehydes to nitroolefins.[8]

Our research involves the design and synthesis of pyrrolidine-derived CILs that
exhibit the ability to influence the outcomes of asymmetric reactions. In this study,
we report the design, synthesis, characterization, and application of a new type of
task-specific ionic liquid, which is derived from L-proline.

RESULTS AND DISCUSSION

Our functionalized ionic liquid, shown in Scheme 1, introduces a chiral pyrroli-
dine into an imidazolium ionic liquid. A major advantage of our current design is
that this functionalized CIL cannot only serve as organocatalyst but also is easily
recovered from the reaction mixture, making it a recyclable green ionic liquid.

Initially, aminomethylpyrrolidine 1 and sulfonyl chloride 2 were chosen as
starting materials, which can be prepared from L-proline[9] and 4-toluene sulfonyl
chloride, respectively. It was found that the reaction of 1 with 2 in CH2Cl2=CH3CN
(v=v¼ 1:1) at room temperature for 8 h, followed by stirring the resulting mixture
with trifluoroacetic acid for 2 h, afforded the desired CIL 4 in 72% yield. The FCIL
is a viscous liquid at room temperature.

The addition of cyclohexanone to trans-b-nitrostyrene was used as the test
reaction to explore the feasibility of the enantioselective Michael reaction catalyzed
by CIL 4. The organocatalyst was able to increase the reactivity of trans-b-nitrostyr-
ene in the Micheal reaction with cyclohexanone, performed at room temperature in
MeOH (Table 1, entries1). Good yield (87%) was achieved after 3 days. To achieve
good reactivity and enantioselectivity, various reaction conditions were examined;
when the reaction proceeded without solvent, the yield decreased from 87% to
75% and the enantioselectivity slightly decreased from 81% to 77% (Table 1, entries
2). We also studied the influence of acid additive on the reaction. The addition of
trifluoroacetic acid (TFA) could decrease dramatically the reaction with worse yield
(42%) and enantioselectivity (81%). As with TFA, a lesser amount of the desired

Scheme 1. Synthesis of functionalized chiral ionic liquid 4.
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adduct observed when other acids were used (Table 1, entries 6–9). Interestingly, we
were pleased to find that cooling the reaction mixture to 0 �C had a positive effect on
the enantioselectivity; the product was obtained in 89% ee and good levels of yield
were maintained.

With the optimal conditions in hand, a variety of different substitutions were
investigated, and the results are summarized in Table 2. Generally, various nitrostyr-
enes bearing both electron-withdrawing (Table 2, entries 2) and electron-donating
ary group (Table 2, entries 7) gave the desired products with good selectivities (dr
up to 94:6 and ee up to 88) in good yield. Noticeably, when the para- position of
nitrostyrenes was the methoxyl group, the greatest enantioselectivity (92%) was
obtained. This result is better than the result of Headley for the same substitution
(ee 90%).[8] Compared to Headley’s catalyst, there is a benzene ring between sulfona-
mide group and imidazolium cation in catalyst 4. It is speculated that the benzene
ring has greater steric hindrance and rigidity than aliphatic chain, affecting the value
of the reaction enantioselectivity. In addition, alkylnitroolefin also worked in this
reaction. For example, (E)-1-nitropent-1-ene gave the corresponding product with
diastereoselecty (75:25) and enantioselectivity (36%) in moderate yield (45%).

The asymmetric Michael reaction of cyclohexanone with trans-b-nitrostyrene
under optimal conditions was chosen as the model reaction to examine the recycl-
ability of the functionalized chiral ionic liquid 4. Because the catalyst 4 was insoluble
in ether but soluble in water, it could be easily seperated from product and immobi-
lized in water. After the reaction was completed, the reaction mixture was concen-
trated, and the remainder was added into water and extracted twice with ether.
Concentration and purification by chromatography column led to adduct 7a. The

Table 1. Effects of additives on the reaction of cyclohexanone to trans-nitrostyrenea

Entry Solvent Additive T (�C) Yieldb (%) Syn=antic Ee d (%)

1 MeOH — 25 87 88:12 81

2 Neat — 25 75 97:3 77

3 MeOH — 0 84 99:1 89

4 Neat — 0 63 95:5 86

5 MeOH TFA 0 42 94:6 81

6 MeOH AcOH 0 63 93:7 57

7 MeOH PhCOOH 0 72 93:7 40

8 MeOH HCOOH 0 79 94:6 54

9 MeOH PTSA 0 — — —

aUnless otherwise noted, all reactions were carried out in solvent (100 ml) using 5 (0.0196 g, 2 eq) and 6a

(0.0149 g, 1 eq) in the presence of 20mol% of 4.
bIsolated yields.
cThe trans=cis ratios are determined by 1H NMR.
dDetermined by HPLC using Chiracel AD-H=AS-H column.
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Table 2. Micheal addition reaction of cyclohexanone to trans-nitroolefins catalyzed by 4a

Entry Product Yield (%)b Syn=antic Ee (%)d

1 84 99:1 89

2 93 85:15 88

3 76 94:6 89

4 81 93:7 86

5 67 96:4 79

6 72 99:1 91

7 82 94:6 87

(Continued )
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functionalized CIL 4 immobilized in water was washed with ether and reused for the
next run of the reaction. These recycling processes of the asymmetric reaction could
be repeated six times without remarkable decrease in yields and enantioselectivities.

CONCLUSION

In summary, a new recyclable functionalized CIL has been developed for the
Michael reaction of cyclohexanone with trans-b-nitrostyrene. The original FCIL
promoted asymmetric Micheal additions of cyclohexanone to both aryl and alkyl
nitroolefins in the presence of 20mol% of organocatalyst 4 in MeOH. The process
affords synthetically valuable chiral products in good yields (up to 93%) and high
enantioselectivities (up to 92%). The FCIL catalyst was easily recycled and reused

Table 2. Continued

Entry Product Yield (%)b Syn=antic Ee (%)d

8 85 94:6 92

9 45 75:25 36

aUnless otherwise noted, all reactions were carried out in solvent (100ml) using 5 (0.0196 g, 2 eq) and 6

(0.0149 g, 1 eq) in the presence of 20mol% of 4.
bIsolated yields.
cThe trans=cis ratios are determined by 1H NMR.
dDetermined by HPLC using Chiracel AD-H=AS-H column.

Table 3. Recycling studies of FCIL 4–catalyzed Micheal reaction of cyclohexanone

with trans-b-nitrostyrene under standard reaction conditions

Run Time (d) Yielda (%) Eeb (%)

1 3 84 89

2 3 87 89

3 3 82 87

4 3 84 88

5 4 87 89

6 5 81 83

aIsolated yields.
bDetermined by HPLC using Chiracel OD-H column.
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up to six times without significant loss of ability to influence the reactivies and
enantioselectivities of reactions.

EXPERIMENTAL

1H NMR spectra were determined in CDCl3 on a Brucker ARX-300
(300MHz) instrument with tetramethylsilane (TMS) as internal standard.
High-resolution mass spectral analyses (HRMS) were measured using electrospray
ionization (ESI). The enantiomer excess was determined by high-performance liquid
chromato (HPLC) analysis on a chiralcel AD-H =AS-H column. trans-Nitroalkenes
were prepared according to the literature procedures.[10]

General Procedure for Compound 2

4-(Bromomethyl) benzene-1-sulfonyl chloride [11] (2.70 g, 10mmol) was added
to a solution of 1-methylimidazole (0.82 g, 10mmol) in CH3CN (10ml). The mixture
was stirred at reflux for 12 h and concentrated. The resulting residue was chromato-
graphed with the eluent (CH2Cl2=MeOH: 20= 1–10=1) to give the yellow oil (1.43 g,
41%) of 2. 1H NMR (300MHz, D2O) d (ppm): 8.49 (s, 1H), 7.67–7.62 (m, 2H),
7.45–7.42 (m, 2H), 7.35–7.33 (m, 2H), 5.43 (s, 2H), 3.82 (s, 3H); 13C NMR
(75MHz, CD3OD) d (ppm): 142.1, 140.2, 139.4, 129.0, 128.5, 125.3, 121.0, 55.1,
45.1; HRMS (ESI) calcd. for C11H12ClN2O2S

þ(Mþ): 271.0303, found; 271.0302.

General Procedure for Compound 4

The corresponding ionic liquid 2 (1.06 g, 3mmol) was added to a solution of 1
(0.60 g, 3mmol) in CHCl2=CH3CN (10ml, v=v¼ 1:1). The mixture was stirred at
room temperature for 8 h (monitored by thin-layer chromatography, TLC) and con-
centrated. The resulting residue was chromatographed with the eluent (CH2Cl2=
MeOH: 20=1–10=1) to give the crude yellow oil. The Boc protective group in the
obtained pale yellow solid 3 was deprotected by using CF3COOH=CH2Cl2 solution
(25ml, v=v¼ 1:1) with shaking at room temperature for 3 h, and the solution was
evaporated under reduced pressure. The crude product was chromatographed over
silica gel, and elution (MeOH=CH2Cl2: 1=7) gave 0.90 g (72%) of 4. [a]D25¼�13.3
(c 1.50, MeOH). 1H NMR (300MHz, D2O) d (ppm): 8.78 (s, 1H), 7.82–7.76 (m,
2H), 7.51–7.38 (m, 4H), 5.40 (s, 2H), 3.81 (s, 3H), 3.44–3.43 (m, 1H), 3.12–3.06
(m, 2H), 2.96–2.93 (m, 2H), 1.88–1.45 (m, 4H); 13C NMR (75MHz, CD3OD) d
(ppm):140.2, 139.1, 137.1, 129.0, 127.6, 124.1, 122.5, 119.8, 59.9, 51.8, 45.2, 43.0,
35.4, 34.8, 27.1, 22.8; HRMS (ESI) calcd. for C16H23N4O2S

þ(Mþ): 335.1536; found;
335.1534.

General Procedure for Recycling

Cyclohexanone (196mg, 2mmol) and aryl and alkyl nitroolefins (0.1mmol)
were added to the solution of organocatalyst 4 (8.3mg, 0.02mmol) in MeOH
(100 ml). The reaction mixture was stirred at 0 �C for 3 days and concentrated. The
remainder was added into water (10ml) and extracted with ether (10ml� 2). The
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ether phase was concentrated and purified by chromatography column, which led to
adduct 7a, and the water phase was used for the next cycle.

General Procedure for Compounds 7a–7j [12,13]

Cyclohexanone (196mg, 2mmol) and aryl and alkyl nitroolefins (0.1mmol)
were added to the solution of organocatalyst 4 (8.3mg, 0.02mmol) in MeOH
(100 ml). The reaction mixture was stirred at 0 �C for 3 days and concentrated. The
residual was purified by preparative TLC or column chromatography, affording
the desired products 7a–7j.

(S)-2-((R)-2-Nitro-1-phenylethyl)cyclohexanone 7a. The ee of the product
was determined by chiral HPLC analysis [Chiralpak AS column, hexane=
i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (minor)¼ 18.20min, tr (major)¼ 26.26min],
], 89% ee. [a]D25¼�18.3 (c 0.75, CHCl3);

1H NMR (300MHz, CDCl3) d (ppm):
7.37–7.17 (m, 5H), 4.93 (dd, J¼ 12.6, 4.5Hz,1H), 4.62 (dd, J¼ 12.3, 9.9Hz, 1H),
3.74 (m, 1H), 2.76–2.66 (m, 1H), 2.50–2.40 (m, 2H), 2.09–2.07 (m, 1H), 1.78–1.56
(m, 4H), 1.27–1.23 (m, 1H).

(S)-2-((R)-2-Nitro-1-(2-nitrophenyl)ethyl)cyclohexanone 7b. The ee of
the product was determined by chiral HPLC analysis [Chiralpak AD column,
hexane=i-PrOH¼ 95=5, 1.0ml=min, 238 nm; tr (minor)¼ 29.06min, tr
(major)¼ 42.71min], 88% ee. [a]D25¼�19.8 (c 0.43, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.88–7.84 (m, 1H), 7.64–7.58 (m, 1H) 7.49–7.42 (m, 2H),
4.95–4.92 (m, 2H), 4.39–4.33 (m, 1H), 2.98–2.94 (m, 1H), 2.49–2.39 (m, 2H),
2.13–2.11 (m, 1H), 1.87–1.47 (m, 6H), 1.27–1.21 (m, 2H).

(S)-2-((R)-1-(4-Fluorophenyl)-2-nitroethyl)cyclohexanone 7c. The ee of
the product was determined by chiral HPLC analysis [Chiralpak AS column,
hexane=i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (minor)¼ 21.28min, tr
(major)¼ 29.49min], 89% ee. [a]D25¼�25.4 (c 1.13, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.18–7.14 (m, 2H), 7.06–7.00 (m, 2H), 4.98 (dd, J¼ 12.3Hz,4.2Hz,
Hz, 1H), 4.65 (dd, J¼ 12.0Hz, 9.9Hz, 1H), 3.76 (m, 1H), 2.72–2.64 (m, 1H),
2.48–2.35 (m, 2H), 2.13–2.09 (m, 1H), 1.78–1.57 (m, 4H), 1.27–1.22 (m, 1H).

(S)-2-((R)-1-(4-Chlorophenyl)-2-nitroethyl)cyclohexanone 7d. The ee of
the product was determined by chiral HPLC analysis [Chiralpak AS column,
hexane=i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (major)¼ 18.75min, tr (min-
or)¼ 28.36min], 86% ee. [a]D25¼�30.1 (c 0.88, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.33–7.28 (m, 2H), 7.16–7.12 (m, 2H), 4.98 (dd, J¼ 12.6Hz,
4.5Hz, 1H), 4.66 (dd, J¼ 12.6Hz, 10.2Hz, 1H), 3.79–3.77 (m, 1H), 2.72–2.62 (m,
1H), 2.48–2.35 (m, 2H), 2.16–2.08 (m, 1H), 1.72–1.57(m, 4H), 1.27–1.22 (m, 1H).

(S)-2-((R)-1-(4-Bromophenyl)-2-nitroethyl)cyclohexanone 7e. The ee of
the product was determined by chiral HPLC analysis [Chiralpak AS column,
hexane=i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (minor)¼ 19.99min, tr
(major)¼ 31.37min], 79% ee. [a]D25¼�22.3 (c 0.50, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.48–7.44 (m, 2H), 7.09–7.06 (m, 2H), 4.97 (dd, J¼ 12.6Hz,
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4.5Hz, 1H), 4.65 (dd, J¼ 12.6Hz, 9.9Hz, 1H), 3.77 (m, 1H), 2.69–2.58 (m, 1H),
2.46–2.37 (m, 2H), 2.09 (m, 1H), 1.78–1.56 (m, 4H), 1.26–1.21 (m, 1H).

(S)-2-((R)-1-(2,4-Dichlorophenyl)-2-nitroethyl)cyclohexanone 7f. The ee
of the product was determined by chiral HPLC analysis [Chiralpak AS column,
hexane=i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (minor)¼ 14.64min, tr
(major)¼ 24.31min], 91% ee. [a]D25¼�33.9 (c 0.55, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.43 (d, J¼ 2.1Hz, 1H), 7.24 (m, 2H), 4.91–4.89 (m, 2H), 4.27
(m, 1H), 2.93–2.84 (m, 1H), 2.48–2.38 (m, 2H), 2.16–2.11 (m, 1H), 1.87–1.60 (m,
4H), 1.41–1.22 (m, 1H).

(S)-2-((R)-2-Nitro-1-p-tolylethyl)cyclohexanone 7g. The ee of the product
was determined by chiral HPLC analysis [Chiralpak AS column, hexane=
i-PrOH¼ 90=10, 0.7ml=min, 238 nm; tr (minor)¼ 13.08min, tr (major)¼ 19.93min],
], 87% ee. [a]D25¼�11.1 (c 1.21, CHCl3);

1H NMR (300MHz, CDCl3) d (ppm):
7.16–7.13 (m, 2H), 7.08–7.05 (m, 2H), 4.96 (dd, J¼ 12.0Hz, 4.5Hz, 1H), 4.66 (dd,
J¼ 12.3Hz, 9.9Hz, 1H), 3.78 (m, 1H), 2.69 (m, 1H), 2.49–2.39 (m, 2H), 2.33 (s,
3H), 2.08 (m, 1H), 1.79–1.57 (m, 4H), 1.27–1.23 (m, 1H).

(S)-2-((R)-1-(4-Methoxyphenyl)-2-nitroethyl)cyclohexanone 7h. The ee
of the product was determined by chiral HPLC analysis [Chiralpak AD column,
hexane=i-PrOH¼ 75=25, 0.7ml=min, 238 nm; tr (minor)¼ 9.95min, tr
(major)¼ 11.32min], 92% ee. [a]D25¼�15.4 (c 0.43, CHCl3);

1H NMR (300MHz,
CDCl3) d (ppm): 7.28 (m, 2H), 6.88 (m, 2H), 4.95 (dd, J¼ 12.6Hz, 4.5Hz, 1H),
4.64 (dd, J¼ 12.6Hz, 4.5Hz, 1H), 3.80 (s, 3H), 3.79–3.72 (m, 1H), 2.70–2.62 (m,
1H), 2.47–2.40 (m, 2H), 2.12–2.06 (m, 1H), 1.81–1.57 (m, 4H), 1.27–1.23 (m, 1H).

(S)-2-((S)-1-Nitrohexan-2-yl)cyclohexanone 7i. The ee of the product was
determined by chiral HPLC analysis [Chiralpak AS column, hexane=i-PrOH¼ 90=
10, 0.5ml=min, 210 nm; tr (minor)¼ 12.38min, tr (major)¼ 13.82min], 36% ee.
[a]D25¼�20.7 (c 0.25, CHCl3);

1H NMR (300MHz, CDCl3) d (ppm): 4.61–4.55
(m, 1H), 4.45–4.39 (m, 1H), 2.62–2.40 (m, 4H), 2.13–2.11 (m, 2H), 1.93 (m, 1H),
1.48–1.27 (m, 9H), 0.96–0.92 (m, 3H).
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