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ABSTRACT: As a significant pharmacophore, 1,3-disubstituted cyclohexanes are widespread in natural products and synthetic 
bioactive molecules. A palladium-catalyzed arylboration of 1,4-cyclohexadienes is reported, which allows expeditious access to an 
array of functionalized 1,3-disubstituted cyclohexanes from the readily available starting materials. Palladium catalysis enables the 
arylboration to proceed in a reversed regioselectivity compared with earlier nickel catalysis. The most striking feature of this protocol 
lies in the 1,3-regioselectivity and exclusive cis-diastereoselectivity. Intriguingly, the success of this three-component reaction does 
not rely on the application of dative ligands, but a cheap ammonium chloride salt instead. The synthetic utility of this method is 
highlighted by a series of downstream stereospecific transformations and a drug molecule synthesis. 

KEYWORDS: Alkenes, 1,3-Arylboration, Palladium, Metal migration, Stereoselectivity

Over the past few decades, fragment-based drug discovery 
(FBDD) has developed into an important strategy to identify the 
lead pharmaceutical compounds.1 However, compared with the 
sp2-rich, planar compounds, three-dimensional (3D) fragments 
are highly limited in candidate libraries.1a In this context, the 
1,3-disubstituted cyclohexane fragment is widely investigated 
as a privileged scaffold in many significant, pharmaceutically 
relevant molecules, such as anti-diabetic agent, cannabinoid 
receptors, MAO-B inhibitor and so on, as depicted in Figure 
1A.2 However, general synthetic approach towards this class of 
compounds is quite scarce.2a, 2d, 3 Therefore, the development of 
a general, efficient and stereoselective method for direct 
synthesis of 1,3-disubstituted cyclohexanes from readily 
available starting materials is a highly desirable yet challenging 
task. On the other hand, the chemical dearomatization of 
nonactivated arenes provides a powerful platform for rapid 
assembly of value-added, complex molecules from inexpensive 
fundamental aromatic compounds, which has attracted 
extensive interest in the synthetic community in the past few 
years.4 For example, a great advance in the transformation of 
simple arenes into cyclohexane derivatives has been achieved 
recently by the Sarlah group through a sequence of 
photochemical arene-arenophile cycloaddition and metal 
catalysis (Figure 1B, left).5 With this method, a set of 1,2- and 
1,4-disubstituted cyclohexanes were selectively prepared.5b,d-f 
Herein, we present a protocol which can convert benzene into a 
diverse range of functionalized 1,3-disubstituted cyclohexanes 
by combination of the well-known Birch reduction6 and an 
unprecedented arylboration7 (Figure 1B, right). Remarkably, 
the palladium catalysis allows the arylboration to proceed in an 
extraordinarily 1,3-regioselective and cis-diastereoselective 
manner.8-9 Furthermore, the incorporation of a boron group into 
the products enables further stereospecific transformations to 
afford a variety of highly functionalized 3D molecules.10
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Figure 1. Background Introduction and Reaction Design

As an extension of our interest in the application of nickel 
migration,11-12we commenced this study by exploring a nickel-
catalyzed arylboration of 1,4-cyclohexadienes, with 1,4-
cyclohexadiene (1a), bromobenzene (2a) and 
bis(pinacolato)diboron (B2pin2, 3) as model substrates. As 
depicted in Table 1, the regio- and diastereo-selectivity would 
be the main challenge of this arylboration reaction. For 
example, it was found that with a nickel(II) salt and a 1,10-
phenanthroline derivative L1 as the catalyst, only the 3,1-
arylboration product 4a was isolated, albeit in lower yield with 
a poor diastereoisomeric ratio (1:1) (entry 1). Without the 
ligand, the 1,2-arylboration product cis-5a was isolated as a 
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single isomer in this three-component reaction (Table 1, entry 
2), which is consistent with Brown’s ligand-free system.9i These 
results reveal that the epimerization should derive from nickel 
migration. After extensively screening reaction conditions, the 
diastereoselectivity could not be improved, therefore we turned 
our attentions to other transition metal catalysts.

Table 1. Reaction Optimization

1a

Bpin
1 3

Bpin

1,2-product
(5)

3,1-product
(4)

1,3-product
(6)

ArX (2)
B2pin2 (3) Ar Ar

[M]

chemo- and diastereo-selectivity

Ar
Bpin

Entry Derivation from conditions A Results
1 no change 30%(1:1)a 4a
2 no ligand 33% cis-5a 

Derivation from conditions B cis-6a, [%]
3 no change 82(78)b

4 Pd(OAc)2 instead of Pd(acac)2 57
5 NiBr2·DME instead of Pd(acac)2 0
6 TBAC instead of TMAC 23
7 TMAB instead of TMAC 20
8 TMAI instead of TMAC 6
9 NaHCO3 instead of NaOAc 39
10 Na2CO3 instead of NaOAc 56
11 DCE instead of CHCl3 45
12 Dioxane instead of CHCl3 52
13 no TMAC 5
14 no NaOAc 2

Conditions A: NiBr2·DME (5 mol %), L1 (5 mol %), 1a (1.0 mmol), 
2a (0.5 mmol), B2pin2 (3, 0.75 mmol), LiOMe (1.0 mmol), in DMF, 
30 °C, 24 h. Isolated yield. a The ratio in parenthese is cis-/trans-
4a. Conditions B: Pd(acac)2 (5 mol %), 1a (0.4 mmol), 2b (0.2 
mmol), B2pin2 (3, 0.2 mmol), TMAC (0.2 mmol), NaOAc (0.4 
mmol), in anhydrous CHCl3, 60 °C, 24 h; GC yields against 
naphthalene. b 1a (0.6 mmol), isolated yield. 

L1

N N
Me

2b

O

OMe
IBr

2a

After carefully surveying a series of commonly used metal 
catalysts, Pd(acac)2 proved to be most efficient in this three-
component transformation. As illustrated in Table 1, entry 3, 
when aryl iodide 2b was used, the 1,3-arylboration product cis-
6a was isolated in 78% yield. Notably, only a single cis-isomer 
was detected in this reaction. In addition, no 1,2-arylboration 
products were observed in the Pd-catalyzed conditions. Further 
catalyst evaluation indicated that Pd(acac)2 gave the best yield 
(Table 1, entries 3 and 4). Replacing the palladium catalyst with 
nickel salt resulted in no desired product formation (Table 1, 
entry 5). The importance of tetramethylammonium chloride 
(TMAC) additive was highlighted by replacing it with 
tetrabuthylammonium chloride (TBAC), 
tetramethylammonium bromide (TMAB) and 
tetramethylammonium iodide (TMAI) leading to dramatically 
decreased yields (Table 1, entries 6-8). These results indicate 
that both the cation and anion of the amounium salt are crucial 
to this three-component reaction. The additive likely plays a 
role to generate an active anionic palladium complex and/or 
stablize the Pd(0) catalyst from precipitation.13 Moreover, the 
examination of bases and solvents indicated that NaOAc and 
CHCl3 were the best choices (Table 1, entries 9-12). Control 

experiments revealed that both the additive and the base played 
an essential role for the success of this aryboration reaction 
(Table 1, entries 13 and 14).
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Scheme 1. Proposed Mechanism

Subsequently, a catalytic cycle involving cis-2,3-palladium 
migration was proposed to rationalize this stereoselective 
transformation. As shown in Scheme 1, the reaction is initiated 
by oxidative addition of ArI with a Pd(0) species (I). In the 
presence of the ammonium salt (TMAC), a new Pd(II) complex 
III is probably generated from the Pd(II) complex II, which 
reacts with  the unconjuagated diene 1a to deliver intermediate 
IV. Then the intermediate IV rapidly undergoes β-H 
elimination and migratory insertion. The excellent 
stereoselectivity observed in products suggest that the Pd-H 
does not diassociate from the substrate in this process, which is 
in accordance with Larock’s observations in the Pd-catalyzed 
carboarylation reactions.14,15 Therefore, the migratory insertion 
preceeds in a coplanar manner affording a stable π-allylPd(II) 
complex VI. Subsequent transmetalation with B2pin2 forms 
intermediate VII, which delivers the arylboration product 6 and 
the Pd(0) catalyst by reductive elimination. Interestingly, the 
migratory insertion of Pd-H also proceeds in a highly 
regioselective manner, as no 1,2- and 1,4-products are 
observed.

With the optimal reaction conditions in hand, we next turned 
our attention to the investigation of the generality of this 
palladium-catalyzed arylboration reaction. As outlined in Table 
2, both electron-rich and electron-deficient aryl iodides 
successfully yielded the cis-1,3-arylboration products in 
moderate to good yields. Accordingly, a number of 1,3-
disubstituted cyclohexene derivatives were prepared. 
Significantly, in all cases, the cis-1,3-arylboration products 
were isolated as a single constitutional isomer. Remarkably, this 
reaction exhibited extraordinary functional group compatibility. 
A broad set of functional groups, such as ethers (OR), chlorides 
(Cl), bromides (Br), esters (COOR), ketones (C=O), amides 
(CONHR), cyano (CN), trifluoromethylsulfonates (OTf), 
olefins (C=C), as well as arylamines (ArNH2), phenols (ArOH), 
alcohols (ROH) and indoles are all well tolerated in this reaction. 
Ortho-substituted (Cl and OBn) aryl iodides can also furnish the 
desired products in good yields (6f, 6k and 6o). It is worthy 
highlighting that this palladium-catalyzed arylboration shows 
good chemoselectivity towards polyhalogenated arenes (6p-6s), 
which provides further opportunities for iterative cross-
couplings.16 Moreover, this method could be used to directly 
modify the complex bioactive molecules and their derivatives 
(6x-6z and 6ab).
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Table 2. Reaction Scopes a

 

Bpin

O

O
H

H

H

O

Bpin

O

O
H

H

H

Bpin

H2N

H
N

Bpin

Ph

O

Bpin
MeO

MeO
OMe TfO

Bpin

Br

Bpin Bpin

Br Cl

Cl

Br

Bpin

O

BpinH H

H

cis-6

6b
61%b (81%)

6c
63% (67%)b

6j
67%/64%c (75%)

6g
80% (97%)

6e
65% (83%)

6f
84% (92%)

6h
53%b (65%)

6i
62% (78%)

6k
71%b (83%)

6l
45% (57%)

6o
53%b (62%)

6m
52%b (68%)

6n
44% (60%)

6p
65%b (71%)

6q
44% (58%)

6r
61%b (69%)

6s
56%b (59%)

6t
61%b (70%)

6u
62%b (70%)

6v
75%b (82%)

6w
60%b (61%)

6x
65%b (70%)

6y
73%b (88%)

Bpin

NC

6d
50% (57%)

Bpin

HO
HO

Bpin

6z
71%b (87%)

6ab
53%b (77%)

Bpin

O

Me
Me

Bpin
Bpin

Me
substituted 1,4-diene 6ad: 33%b 6ad': 24%b

+

6ac
47% (59%)

MeO

O

Bpin

6a
78%b (82%)

MeO
MeO

O
O

6aa
33% (78%)

Bpin

Bpin

H2N MeOO
MeHN

7c: 38%b 7d: 51%b7b: 53%7a: 55%

8a: 78%b

Bpin

4-VCH (1d)

Bpin Bpin
Bpin

MeO2C Bpin
F S

Me

8b: 46%b

O
MeO

Bpin

Ph

MeO

9: 79%d

1,3-diene (1g)

1e

Bpin

Ph

Bpin

Ph
+

79%b (1:1)

Ph

10: 75%

MeO2Callylbenzene (1f)

1,5-COD (1c)

11 11'

other olefins

Bpin Bpin

MeO

Bpin

Bpin Bpin

Me

O

N
Ph

Bpin

MeO

Bpin

Bpin

OBn

1 2 3
TMAC (1 equiv)

CHCl3 , 60 °C, 24 h

Pd(acac)2 (5 mol %)
NaOAc (2 equiv)

B2pin2

Bpin
MeHN

O

Bpin

Bpin

H
N

ClH2N

Cl
H
N

Bpin
Boc

XAr
BpinAr

F S

Me

Bpin

NH

N

serotonin receptor

Me
Me

Bpin Me

Bpin

48%b (1.5:1)

+

Isoprene (1h)

Bpin

1,3-cyclohexadiene (1i)12 12' 13: 72%b

1b

B(OH)2

a Isolated yields on 0.5 mmol scale; the number in parentheses is NMR yield. b Yield of the corresponding alcohol after oxidation. c Isolated 
yields on 6.0 mmol scale; d CsF instead of NaOAc, DCE instead of CHCl3. 

Additionally, the carboboration product 6ac can be obtained in 
a moderate yield as well, when 2-iodocyclohexenone was used 
as the substrate. Finally, substituted 1,4-cyclohexadiene 1b was 
also able to provide 1,3-arylboration products in a good yield, 
albeit with a poor regioisomeric ratio (6ad and 6ad’). 
Fortunately, the two isomers could be separated by flash 
column chromatography.

To further demonstrate the synthetic value of this palladium-
catalyzed arylboration reaction, the scope of other dienes was 
explored. As shown in Table 2, when 1,5-cyclooctadiene (1,5-
COD) was used as the reactant, surprisingly, a series of cis-1,2-
arylboration products were selectively obtained (7a-7d), 
probably owing to the second double bond plays a role of ligand 
to facilitate the reductive elimination at the original position.17 
Moreover, the products of regioselective 1,2-arylboration only 

occurred at the terminal double bond, when 4-vinylcyclohexene 
(4-VCH) was used (8a and 8b). It is noteworthy that this is the 
first example to achieve a selective 1,2-arylboration with 
unactivated terminal olefins.9 Furthermore, replacing B2pin2 
with arylboronic acid (1e) led to the formation of cis-1,3-
diarylation product (9) in a good yield by slightly optimizing 
the reaction conditions. Heck product, rather than arylboration 
product, were isolated from the reaction with allybenzene as the 
substrate (10). This result indicated that the C-B bond could 
only be constructed from π-allyl-palladium species, rather than 
from the π-benzyl-palladium intermediates in this catalytic 
system.8c Additionally, the arylboration products could also be 
anticipated with acyclic conjugated dienes (1g and 1h), albeit 
with poor selectivity between 1,2- and 1,4-regioisomers under 
the current reaction conditions, which offers a different 
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regioselectivity from the previous dual metal catalysis 
methods.9f-9g While the 1,3-cyclohexadiene 1i afforded the 
single cis-1,4-arylboation product 13 with a good yield.
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Scheme 2. Stereospecific Transformations

To illustrate the potential of this 1,3-arylboration to create 
diverse structures, we conducted subsequent transformations of 
several products. As illustrated in Scheme 2, saturated product 
14 was obtained first after hydrogenation of the olefin. Then the 
C-B bonds were reacted with a benzoquinone and an aryl 
aldehyde, providing 1518 and 1619 respectively. The C-B bonds 
were converted to hydroxyl groups by oxidation with H2O2, 
resulting in a series of cyclic allylalcohols (17). The alcohols 
were further transformed to 18 by selective oxidation of the 
double bond, 19 by a Mitsunobo reaction with phthalimide,20 
and a plethora of saturated alcohols 20a-20c via hydrogenation. 
In addition, a 5-arylsubstituted cyclohexenone 21 was provided 
by a selective oxidation of the alcohol. Notably, except the 
direct hydrogenation reaction (14), all other transformations are 
stereospecific processes.
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Scheme 3. Synthesis of Bioactive Molecule

Finally, the synthetic utility of this palladium-catalyzed 
arylboration reaction is further demonstrated in an efficient 
synthesis of anti-diabetic agent 26,2f, 21 using commercially 
available 22 as the starting material (Scheme 3).

In summary, we have developed a novel strategy to access 
1,3-disustituted cyclohexanes from benzene. This strategy 
integrates the classical Birch reduction with a newly developed 
palladium-catalyzed arylboration. 1,2-Arylboration of 1,5-

COD and 4-VCH, the downstream specific transformation and 
the rapid synthesis of pharmaceutically relevant molecule 
address the synthetic potentials of this protocol, and provide 
valuable additions to the FBDD libraries. Therefore, we believe 
this chemistry will greatly advance complex molecules 
synthesis and medicinal chemistry candidates. 
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