

View Article Online

View Journal

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Sadanandan and D. K. Gupta, *New J. Chem.*, 2020, DOI: 10.1039/C9NJ05166J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/njc

12

13 14

₹ 1 5

رة:82 26:32

⊉1

.926 .927

<u>3</u>8

29

02070Dewnloaded

260 January 2

38

39

<u>-</u>

ā41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Changing Stereo- And Regioselectivity In Copper(I)-Catalyzed 5-*Exo* Cyclization By Chelation And Rigidity In Aminoalkyl Radicals: Synthesis Towards Diverse Bioactive N-heterocycles

Sandhya Sadanandan*^a and Dharmendra Kumar Gupta*^b

The work reveals that chelate-type interaction in the transition state of a β -aminoalkyl radicals in copper(I)catalyzed 5-*exo-trig* radical cyclization step changes the usual stereochemistry of the *N*H-pyrrolidine ring predicted by Beckwith-Houk transition state model. Whereas, the rigidity in the fused β -aminoalkyl radical changes the Baldwin's predicted 5-*exo* to 6-*endo* cyclization mode preferentially forming piperidine ring over pyrrolidine ring *via* geometrically constraint transition state. The resultant diverse *N*H-pyrrolidines, pyrrolines and piperidines are sources for bioactive natural product Roseophilin and a drug Ritalin among others.

Introduction

Steric and stereoelectronic factors in a cyclizing alkenyl radical govern the Baldwin's rules for 5-exo and 6-endo cyclization modes to produce five- and/ or six-membered cyclic products including pyrrolidines and piperidines, respectively.¹ The conformational and steric factors in the cyclizing radical further control the stereochemical outcomes in the cyclized product(s) including N-heterocycles via Beckwith-Houk transition state model.¹ However, a suitably positioned substituent or a functionality in the cyclizing aminyl N-radical can change the 5-exo mode to 6-endo mode to give piperidine preferentially over pyrrolidine against Baldwin's rules.1i-j Similarly, an intramolecular hydrogen bonding² and lewis-acid (BF₃ and AIMe₃) coordinated quartenary-nitrogen³ in the cyclizing aminoalkyl C-radical can change the usual conformation in the Beckwith-Houk transition state model to change the usual stereochemistry of the pyrrolidine ring. However, these radical cyclzation methods are reductive in nature and require excess of radical initiator nBu₃SnH and Lewis acids for N-coordination.³ The ability of a catalytic copper complex to generate a radical and form a chelate ring in the transition state of the cyclising aminoalkyl radical⁴ to change the usual stereoselectivity in NH-pyrrolidine ring⁵⁻⁶ is not explored so far. Also, the ability of a fused aminoalkyl Cradical to change the regioselectivity from 5-exo- to 6-endo mode through a persistent radical rather than the usual carbocation (oxidized C-radical), is scarcely explored.^{4-5,6i}

Copper(I)-catalyzed atom transfer radical cyclization (ATRC)⁶⁻⁷ method is a catalytic, atom-economic, easy to

58 59 60 operate, cost-effective, high yielding and environmentally benign protocol which retains the valuable halogen atom(s) of a radical precursor in the cyclized product for further chemical transformations and biological applications. Our previous experiences in Cu(I)-catalyzed ATRC reactions with halo-alkenyl substrates led us to investigate the changes in usual regio- and stereoselectivity during 5-*exo* ATRC reactions of bidentate aminoalkyl radical precursors(capable of forming chelate ring with Cu-catalyst) and the fused- α/β -aminoalkyl radical precursors having different degrees of rigidities. A suitable Cu (I)-catalytic system capable of radical generation and complexation with aminoalkyl radical precursors, particularly at catalytic level, viable at industrial level, was explored. Shortmethods to transform resultant N-heterocycles towards bioactive natural products and medicines were also devised.

Results and Discussions

First, a pyridine-substituted β -chloroethyl allyl amine 2a (Scheme1), an aminoalkyl radical precursor with two coordinating centers capable of forming a chelate ring with Cu(I)-catalyst in the transition state, was synthesized by simple addition of CCl₃CO₂H-DMSO solution to a solution of *N*-allyl aldimine **1a** in DMSO at ambient temperature.^{5a} Next, the ATRC reactions of *N*H-amine **2a** (**Table 1**) were performed with varying amount of CuCl (5 %, to begin with) and commercially [2,2'-bipyridine available ligands (bpy), and tetramethylethylenediamine (TMEDA), pentamethyldiethylenetriamine (PMDETA) usually employed in Cu(I)-catalyzed ATRC protocols^{6b,d}] in different solvents at different temperatures under a nitrogen atmosphere, to explore a suitable catalyst. The progress of the reaction was monitored by thin layer chromatography (TLC) and was further confirmed by ¹H NMR of the aliquots taken directly from the reaction mass

^{a.} Department of chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, India-690525 ^{b.} Department of chemistry, Indian Institute of Technology, Delhi, India-110016

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

MeCN ^a All the reactions were performed with 1 mmol of 2a under a nitrogen atmosphere. ^b Mixture of diastereomers in ¹H NMR of the crude product.

MeCN

MeCN

RT

0 °C

reflux

5 h

6 h

3 h

^c Isolated yield after purification by column chromatography on basic alumina. ^d Not a clean reaction due to decompositions of the radical precursor

PMDETA was the most effective ligand in terms of product yield and catalyst loading (Table 1, entry 1-3). The reaction in a coordinating solvent acetonitrile (MeCN) was slightly better than chlorinated solvent 1,2-dichloroethane (DCE) in terms of product yield and reaction time due to higher solubility of the Cu-catalyst in acetonitrile (Table 1, entry 3-4).5a,8 Due to the tendency of a β-haloalkyl-NH-amine to decompose at high reaction temperature (SI Fig. S25-S28),⁹ the ATRC reactions of 2a were performed at lower temperatures. The ¹H NMR of the crude product obtained at 0° C was cleaner and had higher percentage of 3,4-trans-diastereomer 4a (SI Fig. S27-28) than at 25 °C and reflux though a longer reaction time was required to complete this reaction (Table 1, entry 5-6). An attempt was made to lower the catalyst loading to minimum (Table 1, entry 7, SI Fig 29) by using AIBN⁷ as a reducing agent for catalystregeneration, a method successfully employed in our previous work.^{7b} However, this method was found ineffective in this case due to the presence of pyridine substituent (internal base) in 2a causing the decomposition of 2a.7b

40 % CuCl / PMDETA (1:1)

40 % CuCl / PMDETA (1:1)

5 % CuCl / PMDETA (1:1) / AIBN (0.250)

The cyclization of 1-pyridyl NH-amine 2a furnished the pyrrolines 4a-a' directly as a 3:2 (4a Trans : Cis 4a', SI Fig. S27-28) diastereomeric mixture under the optimized reaction conditions (Table1 entry-6). The intermediate 2-pyridyl-NH-

pyrrolidine 3a-a' (Scheme 1) could not be detected or isolated. A considerable amount of the product 4a-a' was also recovered from the aqueous phase during the work up by treating it with aqueous ammonia solution and extracting with ethyl acetate. This was due to the pyrrolines 4a-a' being bidentate ligands like N-alkyl pyridinemethanimines (N-RPMI)^{6b,d} which could form a 5-membered C-N-Cu-N-C chelate ring¹⁰ and went into the aqueous solution. The 3,4-trans and 3,4-cis stereochemistry was assigned unambiguously to the major 4a and minor 4a' diastereomers, respectively on the basis of dihedral angle between protons at C-3 and C-4 in the ¹H NMR of **4a-a'** mixture.

80 %

82 %

52 % d

55:45

60:40

50:50

The preferential formation of major 3,4-trans diastereomer 4a over 3,4-cis 4a' might occur via 5-exo ATRC of 2a (2,4-trans-3a> 2,4-cis-3a') followed by their dehydrochlorination and tautomerization. This assumption was experimentally studied by undertaking a DBU-mediated dehydrochlorination and tautomerization of NH-pyrrolidines 3c-d^{5a} (Scheme 2) having known 2,4-trans geometry which were previously synthesized by us under the same reaction condition (Table 1, entry-6). The reaction of crude 2,4-trans pyrrolidines 3c-d with DBU at 25-30 °C and subsequent purification of crude products by column chromatography afforded 3,4-trans-pyrrolines 4c-d (SI Fig.

5

6

7

1

3

4

5

6

7

8

9

10

11

12

13

14 Ma 5

رة:82 26:32

⊉1

Raris Desearces

.926 .927

<u>3</u>8

29

1 2020 Develoaded

230 Jaunatry 2

38

bished 0

ā41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

Journal Name

S32-35). The corresponding minor 3,4-*cis*-diastereomers were perhaps too little, to be isolated by column chromatography. The higher acidity of the hydrogen at C-2 in 4-NO₂-phenyl derivative **3c** than **3d** probably facilitated a quick elimination of HCl. Slight basic reaction condition possibly tautomerized the 2,3-dihydro-1*H*-pyrrole intermediates to stable 3,4-dihydro-2*H*-pyrrole (or pyrrolines **4c-d**), also reported by kempe et al.¹¹ Disappearance of CCl₂ peak, appearance of an olefinic carbon in ¹³C NMR and no disappearance of any peak belonging to *N*H-proton in the ¹H NMR of the compound in CDCl₃ on shaking with D₂O confirmed the formation of pyrrolines **4a-a',c-d**.

3,4-trans-**4c** (78 %), 3,4-trans-4d (62 %)

Reaction Conditions: i) CCI₃CO₂H, DMSO, 40 °C, 1 h. ii) CuCI/PMDETA, 40 mol %, 0 °C, MeCN, N₂ atm., 5 h.

iii) DBU (1 eq), Toluene, RT, 3 h (3c), 6 h (3d).

Scheme 2: Comparision of impacts of co-coordinative interaction between (pyridine)N—Cu--NH and (Thiophene)S—Cu--NH on 2,4-*trans*stereochemistry of NH-pyrrolidine rings

3-chloro-pyrrolines of type (**4a-a',c-d**) aromatize easily to be chloro-NH-pyrroles under basic condition to give ward to be Pyrrolnitrin, an antifungal and antibiotic extracted from Pseudomonas Pyrrocinia and other Pseudomonas species.¹¹ These pyrrolines also give useful chiral 3-chloro-NHpyrrolidines on simple reduction with sodium borohydride, as thoroughly demonstrated by Kimpe et al.¹¹

A weak coordinative interaction of sulphur(thiophene) with copper has been reported by Li and co-workers,^{5b} and was also observed by us in Cu(I)-promoted radical cyclization of β haloethyl allyl thioethers to tetrahydrothiophenes.^{9b} Thus an insignificant change in the usual 2,4-trans stereochemistry in the thiophene- (α) substituted *N*H-pyrrolidine was expected. The Cu(I)-catalyzed radical cyclization of 2b led to the formation of usual major 2,4-trans-NH-pyrrolidine 3b and negligible amount of minor 2,4-cis-NH-pyrrolidine 3b' (SI Fig. S30-31) under the optimized reaction condition of 2a (Table 1, entry-6). Considerably high change in the 2,4-trans geometry to 2,4-cis geometry in the cyclization of 2a (Scheme 1) than 2b (Scheme 2) might be due to stronger chelate type interaction in the transition state of pyridine substitutedpyrrolidine (of type **5**)^{5c-e} than a weaker one (of type **6**)^{5b} in thiophene substituted pyrrolidine as shown in Scheme 2. The recovery of more pyridine substituted pyrrolidine **3a-a'** (or **4a-a'**≈40%) than thiophene pyrrolidine 3b-b' (~5%) from aqueous phases during work up by addition of aqueous ammonia and extraction with ethyl acetate (experimental section), proved the presence of greater chelate type interactions in the transition state of cyclizing aminoalkyl radical of 2a than 2b.

Stereocontrol Studies

The effect of chelate type interaction of type 5 (scheme 2) in changing the usual 2,4-*trans*-stereochemistry of the *N*H-pyrrolidine was further extended by performing Cu(I)-catalyzed ATRC reaction on bidentate 2,2,2-trichloroethyl allyl *N*H-amines 8 having coordinating keto, amide and nitro group in a side chain at C-2 (**Table 2**). The functionalized precursors 8a-e were prepared by Aza-Michael addition of allyl amines to Michael acceptors **7a-d** with slight modifications of our previous method on Thio-Michael addition reactions.^{9b}

Treatment of NH-amines **8a-e** with CuCl/PMDETA (60 mol %) at 0 °C for 6-8 h followed by purification by column chromatography (basic alumina) furnished the side chain functionalized 3,3-dichloro-NH-pyrrolidines **9a-e** in high isolated yields (**Table 2**, 79-85 %). Ratio of diastereomers was determined from the ¹H NMR of the aliquots taken from the reaction mass after completion of the reactions as indicated by TLC. The structures of unknown *N*H-pyrrolidines were supported by ¹H NMR, ¹³C NMR, IR spectroscopy and mass spectrometry. With expected carbonyl group-dependent minor differences in the structures, the gross NMR spectral features of **9a-b,d (SI Fig. S36-43)** were largely similar to those of the phenyl ketone-substituted 2,4-*trans-N*H-pyrrolidine **9c**^{5a} which was previously synthesized by us using the same reaction conditions (**Table 2**).

New Journal of Chemistry Accepted Manuscript

Reaction Conditions: i) THF or tert-But/ cat base, RT, 4-24 h. ii) CuCl/PMDETA (1:1, 60 mol %), MeCN, 0 °C, 6-8 h.

Entry	2,2,2- trichloroethyl allylamines ^{<i>a</i>}		Halogenated <i>N</i> H-Pyrrolidines ^b	
	Structure	Yield % (time)	Stereochemistry ^c	Yield ^d % (Time)
1	8a O CCl ₃ H	80 % (6 h)	$\begin{array}{c} \mathbf{9a} \qquad \mathbf{Cl} \qquad \mathbf{9a'} \qquad \mathbf{Cl} \\ 0 \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad \mathbf{Cl} \qquad 0 \qquad \mathbf{Cl} \qquad$	83 % (6 h)
2	8b O CCl ₃ H	80 % (6 h)	$\begin{array}{c} \mathbf{9b} \\ 0 \\ \mathbf$	80 % (7 h)
3	8c O CCI ₃ Ph	82 % (5 h)	9c CI 9c' CI Ph H Ph Ph H Ph H H H 100 : 0 at 0 °C and 95 : 05 at RT	85 % (6 h)
4	8d O CCl ₃ N H	76 % (24 h)	$\begin{array}{c} 9d \\ O \\ O \\ O \\ O \\ H \\ T4:26 \end{array} \\ \begin{array}{c} O \\ O \\ O \\ H \\ T4:26 \end{array} \\ \begin{array}{c} O \\ O \\ O \\ H \\ H \\ T4:26 \end{array} \\ \begin{array}{c} O \\ O \\ O \\ H \\ H \\ T4:26 \end{array} \\ \begin{array}{c} O \\ O \\ O \\ H \\ H \\ T4:26 \end{array} $	81 % (8 h)
5	8e CCI ₃	83 % (4 h)	$\begin{array}{c} \mathbf{9e} \qquad \begin{array}{c} \mathbf{CI} \qquad \mathbf{9e'} \qquad \begin{array}{c} \mathbf{CI} \\ \mathbf{CI} \qquad 1 \\ \mathbf{CI} \qquad 1 \\ 0_{2N} \\ 22 : 78 \end{array} \\ \begin{array}{c} 22 : 78 \end{array} $	79 % (8 h)

^aThe reactions were performed with 10 mmol of the Michael acceptor **7a-d** with allyl amines for **8a-e** and were purified by column chromatography using neutral alumina.

^bThe reactions were performed with CuCl/PMDETA (60 mol %) at 0°C in MeCN using 1 mmol of radical precursorsunder a N₂ atm.

^{c1}H NMR spectrum of crude mass was used for the determination of diastereomeric ratio in *N*H-pyrrolidines.

^d The products **9a-e**were purified by column chromatography using basic alumina.

Table 3. Copper (I)-catalyzed radical cyclization of radical precursors for regiocontrol studies

View Article Online DOI: 10.1039/C9NJ05166J

ARTICLE

New Journal of Chemistry Accepted Manuscript

Reaction Conditions: i) Triethyl amine, DCM, 0 °C-RT, 2-3 h. ii) CuCl, TMEDA/PMDETA, DCE/MeCN, reflux, 6 h.

Entry	2,2,2-trichloroethyl allylamines ^a		Halogenated N-protected pyrrolidines/piperidines ^b	
	Structure	Yield % (time)	Stereochemistry/Regioselectivity ^{c,e}	Yield ^d % (time)
1	10a CCI ₃ N CO ₂ Me	80 % (5 h)	11a CI 11a [*] CI CI C	88 % (12 h)
2	10b CI MeO ₂ C N CO ₂ Me	45 % (7 h)	$11b CI \\ \downarrow \\ V \\ CO_2Me \\ CO_2Me \\ CO_2Me \\ CO_2Me \\ T0:30 $	70 % (12 h)
3	10c	75 % (3 h)	$\begin{array}{c} 11c \\ H \\ CO_2Me \\ 20 : 80 \end{array}$	68 % (12 h)
4	10d Cl ₃ C	58 % (3 h)	11d (1)	80 % (6 h)
5	10e Cl ₃ c	46 % (4 h)	11e $H \to 0$ $CI \to 0$ $CI \to 08:92$	75 % (6 h)

^a The reactions were performed with 10 mmol of the starting materials and products were purified by column chromatography using neutral alumina. **10a** was prepared by reaction of 2,2,2-trichloroethyl allyl NH-amine^{5a} with methyl chloroformate (1 eq) in DCM in the presence of triethyl amine. ^b The reactions were performed with CuCl/TMEDA/PMDETA (25-60 mol %) at RT/reflux in DCE/MeCN using 1 mmol of **10a-e** under a N₂ atm. ^{c1}H NMR spectrum of crude mass was used for the determination of stereochemistry and pyrrolidine-piperidine ratio in cyclization products. ^d The products **11a-e** were purified by column chromatography using neutral alumina. ^e Previously known structurally different α -carbon radical precursors **10b**^{6h} and **10c**^{6h} were reacted with 25 mol % CuCl/PMDETA at RT in DCE. under N₂ atmosphere to compare their regioselectivity with that of β -carbon radical precursors **10a** and **10d-e**, respectively.

The formation of minor 2,4-cis diastereomers in pyrrolidines 9a-b than 9c (Table 1) suggests some effective 6membered C=O--Cu(I/II)-NH chelate type interaction with MeC=O than the bulky PhC=O group possibly due to high steric hindrance posed by the bulky phenyl group in the transition state. Methyl substituents at the terminal double bond in 8b seemed not to affect this NH-Cu-O=C interaction. The amide group in the side chain of 8d interacted with Cu-catalyst to produce the minor diastereomer. The minor isomers detected in ¹H NMR of the crude products had almost similar Rf with major products, thus could not be isolated by simple column chromatography. The impact of this interaction was most prominent in the precursor 8e due to the presence of nitro group in the side chain arguably due to its anionic nature (O-N⁺-O⁻) resulting into relatively stronger O=N-O⁻-Cu--NH interaction in the transition state (SI Fig. S44-45).

1 2 3

4

5

6

7

8

9

10

11

12

13

14

₹ 1 5

رة 18:52 9:53

⊉1

.926 .927

<u>3</u>8

29

2020 Develoaded

38

39

. 7

ā41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

12

Figure 1. ORTEP diagram of *N*-tosyl-NO₂-pyrrolidine 12

Determination of the stereochemistry of the major products 9a-d by 2D NOE or NOESY-spectroscopy was not unambiguous because the relevant proton signals were not well separated (SI). A method to determine the stereochemistry of NH-pyrrolidines through corresponding Ntosyl-pyrrolidines has been employed in many halogenated and functionalized NH-pyrrolidines without affecting their chiral centers. $^{\rm 5a}$ Thus, the stereochemistry in ${\bf 9e}$ was confirmed from X-ray single crystal structure of its N-tosyl-pyrrolidine 12 (SI Fig. S54-55) prepared under milder reaction conditions (Scheme 3). The ORTEP diagram of tosylation product 12 (Fig. 1) of nitro-functionalized NH-pyrrolidine 9e showed it has 2,4cis geometry of nitro-methylene substituent at C-2 position and chloromethyl substituent at C-4. On the basis of single crystal data of 12 and NMR measurements, the stereochemistry of minor isomers in the inseparable (or

undetected in ¹H NMR of crude products) diastereoneric mixtures of 9a-a', b-b', d-d' were assigned 2, 4-cis geometry. The major isomers were assigned 2,4-trans geometry on the basis of 2,4-trans geometry of 9c5a due t o structural similarity and use of same radical reaction conditions (Table 2).

Regiocontrol Studies

No 6-endo radical cyclization products (piperidine ring) could be detected in ¹H NMR of the crude products **3a-d** or **9a-e** and could not be isolated by column chromatography also. This indicated an occurrence of a regioselective cyclization of precursors 2a-d and 8a-e by 5-exo mode which is widely accepted in the cyclization of 3-aza-5-hexenyl (β -carbon) radicals in the allyl NH-amines.^{1,5a} In order to study the changes in the known regioselectivity from 5-exo to 6-endo modes in N-heterocycles synthesis, different carbon radical centered α/β -haloalkyl alkenyl amines, and the fused- α/β haloalkyl alkenyl amines having different degrees of rigidities in the rings, were synthesized (Table 3).

First, a comparison in the regioselectivity was done by performing Cu(I)-catalyzed ATRC reactions on 3-aza-5-hexenyl (β -carbon) radical precursor **10a** and 2-aza-5-hexenyl (α carbon) radical precursor 10bunder the same reaction conditions using relatively stronger catalyst CuCl/PMDETA (25 mol %) and milder reaction condition (at room temperature) in a coordinating solvent MeCN. The ATRC reaction of precursor 10a led to the formation of pyrrolidine 11a (SI Fig. S46-47) exclusively whereas precursor 10b afforded a mixture of pyrrolidine **11b** and piperidine **11b**^{*} in 70:30 ratio. A less regioselectivity in the 5-exo cyclization of acyclic 2-aza-5hexenyl (α -carbon) radical of precursor **10b** giving a mixture of pyrrolidine **11b** and piperidine **11b*** in similar ratiois documented in the Cu(I)/bpy-catalyzed ATRC reaction in DCE at reflux.^{6h} This insignificant impact on regioselectivity is possibly due to the independent nature of cyclizing 2-aza-5hexenyl (α -carbon) radical of **10b** and its MeOCO-protected nitrogen atom could not interact with the Cu-catalyst to alter this 5-exo mode.

An increase in ratio of 6-endo cyclization mode **11c*** over 5-exo mode 11c was observed when 2-aza-5-alken-l-y1 radical precursor **10c** was fused with pyrrolidinone ring.^{6h} Thus, cyclization reaction of **10c** was performed with CuCl/PMDETA (25 mol %) at room temperature in acetonitrile and compared the changes in regio- and stereoselectivity of **11c-c**^{*} obtained with Cu(I)/bpy catalyst at reflux in DCE.^{6h} The reaction led to the formation of a mixture of fused-pyrrolidine 11c and fusedpiperidine **11c**^{*} in almost similar ratio (20:80).

An Ineffective role of the Cu-catalyst and the protectednitrogen atom of the radical precursors **10a-c** in deciding the regioselectivity indicated towards the dominant role of cyclic template in changing the regioselectivity. Thus, an exclusive 6endo mode of cyclization to piperidine ring in the small ring fused-3-aza-5-alkenyl radical using a highly strained β -lactam template 10d-e (Table 3) was envisaged.

 Journal Name

Scheme 4. Probable mechanism for pyrrolidine and piperidine synthesis

This journal is © The Royal Society of Chemistry 20xx

PloNew Journal of Chemistryins

View Article Online DOI: 10.1039/C9NJ05166J

Radical cyclization of precursor **10d** occurred completely with 80 mol % CuCl/bpy, 40 mol % of CuCl/TMEDA and 25 mol % CuCl/PMDETA in DCE solvent in 6, 6 and 5 h, respectively at reflux. However, a trace of reduced starting material of **10d** in ¹H NMR of the crude product of **11d-d*** was observed in MeCN solvent with 25 mol % CuCl/PMDETA at reflux. The TMEDA and PMDETA showed similar results and thus, the use of cheaper and easily accessible TMEDA over PMDETA and DCE over MeCN were preferred.

¹H NMR of the crude product **11d-d**^{*} showed an occurrence of almost exclusive 6-*endo* radical cyclization (\approx 96 %, **SI Fig. S48-49**) in precursor **10d** with TMEDA ligand in DCE at reflux to afford major β -lactam fused piperidines **11d**^{*} along with minor pyrrolidine product **11d**. Piperidine moieties **11d**^{*}-e^{*} were obtained in high yield (75-80 %, **SI Fig. S50-53**) after purification of the crude product by column chromatography. Both the Cu(I)CI/TMEDA and Cu(I)CI/PMDETA catalysts showed similar regioselectivity indicates towards no participation of Cu-catalyst in determining the regioselectivity due to the absence of an effective Cu-O=C-N interaction in **10d-e** (like **10a-c**). Thus, the change in the regioselectivity was mainly due to the inclusion of a rigid β -lactam template in precursors **10d-e**.

Figure 2. ORTEP diagram of β-lactam fused piperidine11d*

The structures of **11d*-e*** were supported by ¹H NMR, ¹³C NMR, IR and HRMS, and the stereochemistry of the major piperidines **11d*-e*** was determined from X-ray single crystal structure of **11d***. The ORTEP diagram of piperidine **11d*** is shown in **figure 2**.

Mechanistic Pathways to Stereo- and Regiocontrol

Mechanistically, first the Cu(I)Cl-catalyst reversibly abstracts a chlorine atom from a 2,2,2-trichloroethyl allylamine precursor **A** (Scheme 4) to generate 2,2dichloroethyl allylamine radical **B** along with Cu(II)Cl₂ complex *via* a concerted inner-sphere electron transfer (ET) process.^{7a,6b,d} The radical **B** undergoes 5-*exo-trig* and/or 6*endo-trig* radical cyclization to form 5-*exo* pyrrolidine radical (**F-H**, **K**, **Q**) and 6-*endo* piperidine radical (**N**), respectively. These cyclized radicals then abstract chlorine atom from Cu(II)Cl₂-complex to produce the final ATRC products (I, L,O, R) along with active Cu(I)Cl-catalyst which participate again in the next ATRC reaction with another radical precursor.¹²

Stereoselective formation of 2,4-trans-diastereomers in 1substituted-NH-pyrrolidines were speculated on the basis of Beckwith–Houk transition state model.¹ The bulky coppercomplex bonded to nitrogen atom is expected to occupy preferably sterically less demanding position in chair like transition state^{4b} thus the formation of a chair-equatorial conformation(C) in the transition state was anticipated. However, a high A^{1,2}-strain arising due to steric-repulsion between bulky copper-complex and α -substituent in conformation (C) may cause its conformational change to a energetically more favorable boat-axial conformation (D). This conformational change may occur as the boat-axial conformation is nearly ca.1 kcal/ mol higher in energy than its corresponding chair-equatorial conformation (C).^{1b} The change in this conformation (C) to chair-equatorial conformation (E) is another possiblity, however, it is energetically unfavourable due to the stronger 1,3-axial interaction $(A^{1,3}$ strain) between bulky axial copper-complex and a halogen atom. Thus it is hard to predict whether the chair-equatorial (C) or boat-axial conformation (D) contributes the most to the preferential formation of the 2,4-trans-NH-pyrrolidines (I) at present. Pyridyl(N), NO₂, CONMe₂ or CH₃CO groups in the side chain at C-2 position, together with NH-group of the cyclizing radical, may act as a bidentate ligand and interact with Cu-catalyst to form a chelate (J) in transition state. This interaction may bring these groups in an equatorial orientation in a boat-like conformation $(\mathbf{C} \rightarrow \mathbf{J} \rightarrow \mathbf{K})$ leading to a development of 2,4-cisstereochemistry in the corresponding NH-pyrrolidine (L). Coordinative interaction of a copper complex with a NH- and other functionality of a molecule forming a chelate ring in the cyclizing radical is well known.^{5d} Complexing agents-mediated conversion of one conformation to another leading to a stereoselective synthesis of pyrrolidines and other heterocycles, is not uncommon.13

A rigid β -lactam ring in the radical precursor arguably restrains double bond and dichloromethyl radical group to attain a energetically favorable chair like conformation (**P**) in the transition state. This angle strain results into the formation of a more favoured chair like (piperidine type) conformation (**M**)¹⁴ resulting into preferential formation of β -lactam fused piperidine (**O**) than corresponding pyrrolidine (**R**) after chlorine atom transfer from CuCl₂-complex to 6-*endo-trig* (**N**) and 5*exo-trig* (**Q**) cyclized radicals, respectively. Such preferential regioselectivity of 6-*endo* over the 5-*exo* mode of cyclization has also been observed by Alabugin et al.^{14a-b} They found that the 6-*endo* cyclization is kinetically favored in smaller (and strained) cycles and thus, a smaller cycle changes the regioselectivity of closure and such effects are known for a number of cyclizations.

Synthetic Applications

60

3

4

5

6

7

8

9

10

11

12

13

14

₹ 1 5

رة:82 26

⊉1

Raris Desearces

.926 .927

<u>3</u>8

29

1 2020 Develoaded

260 Jauman 2

38

39

. 7 2 10

ā41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Journal Name

A very low catalyst loading is always preferred in any synthetic chemical reactions particularly for Industrial applications to incur lesser-cost and lesser-operational issues. Thus, an attempt was made to reduce the Cu(I)-catalyst by using AIBN as a reducing agent.⁷ Use of 0.2 equivalent of AIBN in ATRC reaction of 10e, reduced the amount of Cu (I)CI/TMEDA catalyst to 5 mol % at reflux to afford 11e*. The treatment of 6-endo ATRC product **11e*** with nBu₃SnH using a frequently used method for dehalogenative reduction of halogenated N-heterocycles¹⁵ afforded a known 1-azabicyclo[4.2.0]octan-8-one 13 (Scheme 5) in good yield. Further reaction of 13 with methanolic hydrochloric acid at room temperature using a reported method generally employed for the hydrolysis of the same 1316 afforded a D-threomethylphenidate hydrochloride 1417, marketed under the name Ritalin.

Reaction Conditions:

i) CuCl/TMEDA (1:2, 5 mol %), AIBN (0.2 eq), DCE, reflux, 4 h, $\rm N_2$ atm.

ii) *n*Bu₃SnH (4.5 eq), AIBN (0.5 eq), Toluene, reflux, 5 h.

iii) MeOH.HCI, rt, 6 h.

iv) CuCl/PMDETA (1:1, 10 mol%), AIBN (0.3 eq), DCE, reflux, 4 h, N₂ atm.

v) DBU (2.5 eq), Toluene, reflux, 24 h, N_2 atm.

Scheme 5. Synthetic applications of halogenated and functionalized pyrrolidines and piperidine

Synthetic application of halogenated *N*H-pyrrolidines was demonstrated by converting 3,3-dichloro-*N*H-pyrrolidines **3b** and **17** into a corresponding β -chloro-*N*H-pyrrole **15** and **18**, respectively. This unit of type **18** is present in some bioactive pyrroles such as antileukemic Roseophilin **29**¹⁸ (**Figure 3**). Again, an attempt was made to reduce the catalyst loading (to begin with 1 mol %) and use the ATRC product as such in the next step (after simple work up) to produce highly useful β chloro-*N*H-pyrrole unit **15** and **18** in single operation. Use of 0.3 equivalent of AIBN, reduced the amount of Cu (I)Cl/PMDETA catalyst to 10 mol % at reflux to afford **3b** and **17**. On treatment with DBU, the chlorinated **NALpyrKolldine 3b** and **17** underwent double dehydrochlorinations-isomerization in single operation to give **NH-pyrrole 15** and **18**, respectively.

Figure 3. Examples of bioactive halogen- and heteroarylsubstituted and functionalized *N*-heterocycles and their derivatives

Close similarity in structures of functionalized NHpyrrolidines 3 and 9 (Table 2-3) with molecules shown in figure **3** make them direct variants of existing natural products¹⁹ such as cyclochlorotine,^{19a} islanditoxin,^{19b} and Astin A-C **19**,^{19c} pharmaceuticals²⁰ 20 and materials.²¹ Further, such 3-chloropyrrolidines are constant sources for structure activity relaionship (SAR) studies,²² inter- and intra-molecular substitution reactions,²³ selective dehalogenation²⁴ and functional group transformations²⁵ to give pyrrolidine-based drug Derifenacin,23a natural product Ioline alkaloid23d and (-)-Trechelanthamidine.²⁵ Gatto, Göttlich and co-workers reported the antibiotic activity β -chloropiperidine based 593A drug substance **21**.²⁶ Side chain functionalized pyrrolidines with their NH and/or side chain functionalities undergo interand intra-molecular reactions to give natural products (22-24 in Fig. 3)²⁷ and pharmaceuticals.²⁸ Tilve and co-workers exploited pyrrolidine 25 in the synthesis of (-)-hygrine, (-)-nonhygrine, (-)-pseutohygroline and (-)-hygroline via Nef reaction

Journal Name

ARTICLE

1 2

3

4

5

6

7

8

9

10 11

12

13

14

₹ 1 5

35:8ئ 26:92

⊉1

BurkDesertes

.926 .927

<u>3</u>8

29

2020 Downloaded

23.Jamiatry 2 2.2 9 52

38

bished 0

₫1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 of nitro-group in the side chain.²⁹ An intramolecular cyclization of methyl ketone in norhygrine **23** gives alkaloid ipalbidine **26**.³⁰ Ruspoline **24** converts to alkaloid **27** with simple reduction of ketone group and subsequent dehydration forming olefinic bond.³¹ Reduction of ketone group of **23** to alcohol followed by its coupling with sugar moiety gives hygroline **28**.³⁰

Conclusions

In conclusion, present work describes a mild and general method for the synthesis of 1-hetero-aryl substituted and functionalized NH-pyrrolidines. With the introduction of a heteroaryls or side chain functionality at C-2, bidentate NHprecursors may interact with copper-catalyst to change the usual 2,4-trans-conformation in the Beckwith-Houk transition state leading to the formation of a 2,4-cis diastereomer. This conformational shift was not noticeable with the introduction of S-heterocycles and became considerable with N-heteroaryl (pyridyl) due to strong (py)N--Cu--NH chelate type interaction. Side chain methyl-ketone, amide and nitro groups at C-2 in the NH-radical precursor changed the usual 2,4-trans geometry to 2,4-cis via =O--Cu--NH chelate type interaction in the transition state than the hindered ketone-functionality. β -lactam template in the precursors alters the 5-exo cyclization mode to 6-endo cyclization mode to form pharmaceutically important piperidine ring against Baldwin's rule. Difficult to prepare in single operation, hetero-aryl substituted, halogenated and functionalized NH-pyrrolidines and piperidine rings are potential building blocks for carbapenam, pyrroline and β chloropyrrole units useful in natural products synthesis and SAR studies for drug development. Decrease in cheap and recyclable Cu (I)-catalyst loading even to 5-10 mol % was easily achievable in the synthesis of drug (Ritalin) and a sub-unit of natural product (Roseophilin), establishes potential industrial applications of this methodology.

Experimental

General Information:

IR spectra were recorded on an FT-IR spectrometer by taking solid samples as KBr pellets and liquids as thin films on KBr disks. NMR spectra were recorded on a 300 MHz FT NMR spectrometer in CDCl₃ with TMS as internal standard. Multiplicities are indicated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet of doublet). DEPT spectra were routinely recorded to identify different types of carbons. Mass spectra were recorded on a high-resolution mass spectrometer (ESI-TOF) in positive-ion mode. Melting points were determined on an electrically heated apparatus by taking the samples in a glass capillary sealed at one end and are uncorrected. The progress of the reaction was monitored by TLC using a glass plate coated with a TLC grade silica gel. Iodine was used for visualizing the spots. For column chromatography, silica gel, basic and neutral alumina was used as the stationary phase and *n*-hexane-ethyl acetate mixtures were used as the mobile phase. Solvents were evaporated on a rotary evaporated under reduced pressure using an aspirator. Aliphatic, aromatic and heteroaromatic aldehydes, chloral hydrates,K₂CO₃, trichloroacetic acid, DMSO and MgSO₄ were commercially available and were used as received. THF was dried over KOH pellets overnight and distilled over stored over sodium wires. DCM was dried by distilling over anhydrous P₂O₅.

Preparation of α -substituted 2,2,2-trichloroethyl allyl NHamines 2a-b:

General procedure: Schiff's bases 1a-b were prepared by stirring mole equivalents of aldehydes and amine in DCM in the presence of anhydrous MgSO4 at room temperature for 6-8 h, which on filtration and subsequent concentration on rotary evaporator,³² was used as such in the next step. To a solution of freshly prepared aldimine **1a-b** (10 mmol) in DMSO (10 mL) was added portion wise a solution of trichloroacetic acid (3.268 g, 20 mmol) in DMSO (20 mL) at 40 °C (4.902 g, 30 mmol at 50°C for 1a) with stirring during 1 h. After the disappearance of the imine as indicated by TLC (1 h), the solution was poured into ice-cold water and extracted with ethyl acetate/n-hexane mixture (50:50 v:v). The combined organic extract was washed with brine (3x50 mL), dried (Na₂SO₄) and filtered. The solvent of the filtrate was evaporated under reduced pressure. The crude product thus obtained was purified by column chromatography on small pad of neutral alumina using *n*-hexane (or mixture of ethyl acetate in *n*-hexane 0-3 %, v/v in case of 2a) as the solvent for elution to obtain 2,2,2-trichloroethyl allyl NH-amines 2a-b in good to high yields.

N-(2,2,2-trichloro-1-(pyridin-2-yl)ethyl)prop-2-en-1-amine 2a: Light red liquid, 52 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 3.13 (s, br, 1H, NH, D₂O-exchangeable merged with dd at δ 3.16), 3.16 (dd, 1H, *J* = 13.8, 6.3 Hz, allylic CH₂), 3.35 (dd, 1H, *J* = 13.8, 5.7 Hz, allylic CH₂), 4.41 (s, 1H, NCH), 5.07-5.15 (m, 2H, allylic =CH₂), 5.77-5.87 (m, 1H, allylic =CH), 7.27 (t, 1H, *J* = 6.3 Hz, pyridyl CH), 7.48 (d, 1H, *J* = 7.8 Hz, pyridyl CH), 7.68 (t, 1H, *J* = 7.6 Hz, pyridyl CH), 8.62 (d, 1H, *J* = 4.2 Hz, pyridyl CH) ppm; ¹³C NMR (CDCl₃, 75 MHz); δ 50.9 (CH₂), 75.9 (CH), 102.3 (C), 117.0 (CH₂), 123.5 (CH), 126.1 (CH), 135.8 (CH), 135.9 (CH), 149.0 (CH), 155.2 (C) ppm; IR (KBr): v_{max} 3323(m, br), 3076(m), 2924(m), 1644(w), 1583(s), 1468(s), 1432(s), 1299(w), 1148(m), 1119(m), 995(s), 921(s), 799(s), 752(s) cm⁻¹; HRMS (ESI+): m/z [M + Na]⁺ calcd for C₁₀H₁₁Cl₃N₂Na 286.9880, found 286.9875.

```
I(M + Na]<sup>-</sup> calcd for C<sub>10</sub>H<sub>11</sub>Cl<sub>3</sub>N<sub>2</sub>Na 286.9880, found 286.9875.

N-(2,2,2-trichloro-1-(thiophen-2-yl)ethyl)prop-2-en-1-amine

2b: Colorless liquid, 82 % yield; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz): δ

2.24 (s, br, 1H, NH, D<sub>2</sub>O-exchangeable), 3.08 (dd, 1H, J = 14.1,

6.9 Hz, allylic CH<sub>2</sub>), 3.29 (dd, 1H, J = 14.1, 4.5 Hz, allylic CH<sub>2</sub>),

4.54 (s, 1H, NCH), 5.09-5.15 (m, 2H, allylic =CH<sub>2</sub>), 5.75-5.87 (m,

1H, allylic =CH), 6.95 (dd, 1H, J = 5.1, 1.8 Hz, thienyl CH), 7.19 (s,

br, 1H, thienyl CH), 7.26 (d, 1H, J = 1.8 Hz, thienyl CH) ppm; <sup>13</sup>C

NMR (CDCl<sub>3</sub>, 75 MHz): δ 50.9 (CH<sub>2</sub>), 75.9 (CH), 102.3 (C), 117.0

(CH<sub>2</sub>), 126.07 (CH), 126.09 (CH), 128.5 (CH), 132.9 (CH), 138.2

(C) ppm; IR (KBr): v_{max} 3345(m, br), 3080(m), 2923(m), 1685(m),

1642(w), 1610(m), 1505(w), 1462(s), 1325(m), 1292(m),

1230(s), 112(s), 1014(s), 925(s), 806(s), 709(s) cm<sup>-1</sup>; HRMS
```

Journal Name

60

(ESI+): m/z [M + H]⁺ calcd for $C_9H_{11}CI_3NS$ 269.9672, found 269.9675.

Preparation of the functionalized trichloroethyl allyl NHamines 8a-e: First the required Michael acceptors 7a-d were synthesized using methods reported in our previous works with slight modifications.^{5a,9b} 5 mol% CuCl/PMDETA-catalyzed atom transfer radical addition of CCl₄ to 1-phenylprop-2-en-1one in the presence of AIBN (20 mol %) followed by DBUmediated dehydrochlorination furnished previously known Michael acceptor 7b.33 Use of NEt₃ as a base to dehydrochlorinate similar ATRA adducts at reflux in toluene has been reported earlier also.³⁴ Previously known (E)-4,4,4trichlorobut-2-enoic acid³³ gives (E)-4,4,4-trichlorobut-2-enoyl chloride on treatment with oxalyl chloride in DCM at 0 °C which on subsequent treatment with one equivalent of dimethyl amine (anhydrous) in DCM in the presence of triethyl amine furnished previously known (E)-4,4,4-trichloro-N,Ndimethylbut-2-enamide 7c35 in 45 % yield. The Michael addition of allyl amines with different Michael acceptors occurred under slightly different reaction conditions due to their differential reactivity.^{9b} The Michael acceptor **7a-b**^{9b} and 7d^{9b} containing the keto and nitro groups, respectively were found to react smoothly with allyl amine in THF solvent whereas the Michael acceptor 7c containing the amide group required a protic solvent methanol and a mild base to react.

General method: A solution of allyl amine (or 3-methylbut-2en-1-amine, 10 mmol) and the Michael acceptor 7a-b,d9b(10 mmol) in dry THF (30 mL) was stirred at room temperature (25-30 °C). After completion of the reaction (4-6 h) as indicated by TLC, the solvent was removed on a rotary evaporator to obtain almost pure products in quantitative yields. The crude products were further purified by column chromatography on a small pad of neutral alumina using a mixture of ethyl acetate in *n*-hexane (0-3%, v:v) as the solvent for elution to obtain the functionalized acyclic precursor 8a-c,e. The amide precursor 8d was prepared as above by taking t-butanol (30 mL) as the solvent and triethyl amine (0.42 mL, 0.336 g, 3 mmol) as the catalyst and stirring the solution at room temperature (25-30 °C) for 24 h. Purification of the crude product by column chromatography on a small pad of neutral alumina gave 8d. These precursors were obtained in high yields 80-83 % as mentioned in Table 2.

2,4,4,4-Tetrachloro-1-phenylbutan-1-one: Yellow liquid, 81% yield; ¹H NMR (CDCl₃, 300 MHz): δ 3.33 (d, 1H, *J* = 15.3, 2.7 Hz, CH₂), 4.17 (dd, 1H, *J* = 15.3, 6.9 Hz, CH₂), 5.50 (t, 1H, *J* = 6.9, 2.7 Hz, CH), 7.52 (t, 2H, *J* = 6.9 Hz, aryl CH), 7.63 (t, 1H, *J* = 7.1 Hz, aryl CH), 8.06 (d, 2H, *J* = 7.8 Hz, aryl CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 50.7 (CH₂), 56.7 (CH), 96.1 (C), 128.9 (CH), 129.1 (CH), 133.7 (C), 134.2 (CH), 190.9 (C) ppm; IR (KBr): v_{max} 3063(w), 2938(m), 1695(s), 1591(m), 1449(m), 1419(w), 1367(w), 1312(m), 1245(m), 1179(m), 1046(m), 957(s), 850(s), 750(s), 692(s) cm⁻¹; HRMS (ESI+): m/z [M + Na]⁺ calcd for C₁₀H₈Cl₄ONa 306.9221, found 306.9213.

57 (E)-4,4,4-trichloro-N,N-dimethylbut-2-enamide 7c: Yellow
 58 liquid, 80 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 2.91 (s, 3H,
 59 CH₃), 2.96 (s, 3H, CH₃), 6.30 (d, 1H, *J* = 14.4 Hz, CH), 7.25 (d, 1H,

$$\begin{split} J &= 14.4 \text{ Hz}, \text{ CH} \text{ ppm; } {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3, 75 \text{ MHz}): \\ \delta_{ie}37.0(4\text{GH}_3), \\ 37.3 (\text{CH}_3), \\ 90.1 (\text{C}), 120.1 (\text{CH}), 136.2 (\text{CH}); \\ 164.4 \text{ (CP)} \text{ ppm; } \text{fr} \\ (\text{KBr}): \\ v_{\text{max}} 3063(\text{w}), 2938(\text{m}), 1695(\text{s}), 1591(\text{m}), 957(\text{s}), 850(\text{s}), \\ 750(\text{s}), \\ 692(\text{s}) \text{ cm}^{-1}; \\ \text{HRMS} (\text{ESI+}): \\ \text{m/z} [\text{M} + \text{Na}]^+ \text{ calcd for} \\ \text{C}_6\text{H}_8\text{Cl}_3\text{NONa} 237.9564, \\ \text{found } 237.9570. \end{split}$$

4-(Allylamino)-5,5,5-trichloropentan-2-one8a: Colorless liquid, 80 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 1.76 (s, br, 1H, *N*H, D₂O-exchangeable), 2.23 (s, 3H, CH₃), 3.03 (dd, 1H, *J* = 17.4, 9.6 Hz, CH₂CO), 3.26 (dd, 1H, *J* = 17.4, 2.4 Hz, CH₂CO), 3.45 (dd, 1H, *J* = 12.9, 6.9 Hz, allylic CH₂), 3.56 (dd, 1H, *J* = 12.9, 7.8 Hz, allylic CH₂), 4.01 (dd, 1H, *J* = 9.6, 2.4 Hz, CHN), 5.12-5.25 (m, 2H, =CH₂), 5.76-5.90 (m, 1H, =CH-) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 30.8 (CH₃), 38.5 (CH₂), 47.6 (CH₂), 59.3 (CH), 104.3 (C), 118.8 (CH₂), 132.9 (CH), 203.4 (C) ppm; IR (KBr): *v*_{max} 3377(m, br), 3080(w), 2952(m), 1741(s), 1644(w), 1439(m), 1358(m), 1175(s), 923(m), 795(s) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₈ H₁₃Cl₃NO 244.0057, found 244.0050.

5,5,5-trichloro-4-((3-methylbut-2-en-1-yl)amino)pentan-2-

one *8b*: Colorless liquid, 80 % yield; ¹H NMR (CDCl₃, 300 MHz); δ 1.70 (s, 3H, CH₃), 1.75 (s, 3H, CH₃), 2.25 (s, 3H, CH₃CO), 2.30 (s, br, 1H, NH, D₂O-exchangeable), 3.04 (dd, 1H, *J* = 16.8, 9.9 Hz, CH₂CO), 3.25 (1H, *J* = 17.1, 2.4 Hz, CH₂CO), 3.48-3.63 (m, 2H, allylic CH₂), 3.96 (dd, 1H, *J* = 9.9, 2.7 Hz, NCH), 5.22-5.25 (m, 1H, =CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 18.8 (CH₃), 26.7 (CH₃), 31.8 (CH₃), 39.6 (CH₂), 48.6 (CH₂), 60.2 (CH), 102.9 (C), 116.8 (CH), 138.2 (C), 201.2 (CO) ppm; IR (KBr): v_{max}3365 (m, br), 2971(m), 2924(s), 1720(s), 1668(w), 1418(m), 1362(s), 1243(m), 1149(m), 845(m), 768(s) cm⁻¹; HRMS (ESI+): m/z [M+H]⁺ calcd for C₁₀H₁₇Cl₃NO 272.0370, found 272.0262.

3-(Allylamino)-4,4,4-trichloro-1-phenylbutan-1-one 8c^{5a} : Colorless liquid, 82% yield; ¹H NMR (CDCl₃, 300 MHz): δ 1.93 (s, br, 1H, NH, D₂O-exchangeable), 3.26 (dd, 1H, J = 18.0, 9.0 Hz, allylic CH₂), 3.49-3.63 {m, 2H, (1H, CH₂CO and 1H, allylic CH₂)}, 3.76 (dd, 1H, J = 18.0, 3.0 Hz, CH₂CO), 4.13 (dd, 1H, J = 18.0, 3.0 Hz, CHN), 4.99-5.15 (m, 2H, =CH₂), 5.74-5.87 (m, 1H, =CH-), 7.51 (t, 2H, J = 7.5 Hz, aromatic CH), 7.62 (t, 1H, J = 7.5 Hz, aromatic CH), 7.99 (d, 2H, J = 6.0 Hz, aromatic CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 42.4 (CH₂), 52.0 (CH₂), 69.6 (CH), 105.4 (C), 116.3 (CH₂), 128.2 (CH), 128.7 (CH), 133.5 (CH), 136.2 (CH), 136.4 (C), 196.4 (C) ppm; IR (KBr): v_{max} 3375(m, br), 2921(m), 1686(s), 1590(w), 1449(w), 1352(w), 1272(m), 993(m), 795(m), 755(m) cm⁻¹; HRMS (ESI+): m/z [M + Na]⁺ calcd for C₁₃H₁₄C₁₃NONa 328.0020, found 328.0033.

3-(Allylamino)-4,4,4-trichloro-N,N-dimethylbutanamide8d:

Colorless liquid, 76 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 1.89 (s, br, 1H, *N*H, D₂O-exchangeable), 2.65 (dd, 1H, *J* = 15.0, 9.9 Hz, CH₂CO), 3.20 (dd, 1H, *J* = 15.6, 9.3 Hz, CH₂CO), 3.21 (s, 6H, CH₃), 3.58-3.72 (m, 2H, allylic CH₂), 3.88-3.95 (m, 1H, CHN). 5.13-5.33 (m, 2H, =CH₂), 5.87-5.96 (m, 1H, =CH-) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 39.3 (CH₃), 39.4 (CH₃), 42.4 (CH₂), 52.0 (CH₂), 69.5 (CH), 105.5 (C), 116.3 (CH₂), 136.2 (CH) 166.4 (CO) ppm; IR (KBr): *v*_{max} 3377(m, br), 3080(w), 2952(m), 1705(s), 1604(w), 1439(m), 1358(m), 1274(s), 1175(s), 1024(m), 923(m), 795(s) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₁₀ H₁₆Cl₃N₂O 273.0323, found 273.0328.

N-(1,1,1-trichloro-3-nitropropan-2-yl)prop-2-en-1-amine 8e: Light yellow liquid, 83 % yield; ¹H NMR (CDCl₃, 300 MHz): δ

Journal Name

ARTICLE

1 2

3

4

5

6

7

8

9

10

11

12

13

14 Ma 5

رة 18:32 26:82

⊉1

BrisDecardes

Ž9

2020 Downloaded

bished 0

ā41

42

43

60

1.82 (s, br, 1H, NH, D₂O-exchangeable), 3.53 (dd, 1H, J = 14.1, 6.0 Hz, allylic CH), 3.70 (dd, 1H, J = 14.1, 5.7 Hz, CH), 4.26 (dd, 1H, J = 9.6, 3.3 Hz, CHN), 4.51 (dd, 1H, J = 13.2, 9.6 Hz, CH₂NO₂), 5.06 (dd. 1H, J = 13.2, 3.3 Hz, CHNO₂ partially overlapped multiplet at δ 5.11-5.24), 5.11-5.24 (m, 2H, olefinic CH₂), 5.72-5.85 (m, 1H, olefinic CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 51.2 (CH₂), 71.0 (CH₂), 77.4 (CH), 101.7 (C), 117.1 (CH₂), 135.5 (CH) ppm; IR (KBr): v_{max} 3382(m, br), 3081(w), 2926(m), 1643(w), 1561(s), 1472(w), 1425(m), 1379(s), 1162(m), 996(m), 926(m), 802(m), 636(s) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₆H₁₀Cl₃N₂O₂ 246.9808, found 246.9802.

PreparationofMethylallyl(2,2,2-trichloroethyl)carbamate10a:This precursor was prepared byacylation reaction of 2,2,2-trichloroethyl allyl NH-amine withmethyl chloroformate (1 eq) in DCM solvent in the presence oftriethyl amine base (1 eq). 5a

Colorless liquid, 80 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 3.78 (s, 3H, CH₃), 4.32-4.48 (m, 4H, CH₂), 5.07-5.20 (m, 2H, allylic =CH₂), 5.76-5.90 (m, 1H, allylic =CH-) ppm; ¹³C NMR (CDCl₃, 75 MHz): d 52.7 (CH₂), 53.8 (CH₂), 57.7 (CH₃), 100.3 (C), 117.5 (CH₂), 137.1 (CH), 155.5 (C) ppm; IR (KBr): v_{max} 3079 (w), 2924(m), 1645(w), 1462(m), 1294(m), 1232(s), 1150(m), 1112(s), 1012(s), 924(s), 802(s), 745(s) cm⁻¹; HRMS (ESI+): m/z [M + Na]⁺ calcd for C₇H₁₀Cl₃NO₂Na 267.9669, found 267.9665.

Preparation of β-lactam fused 2,2,2-trichloroethyl allylamines 9a-b. These precursors were prepared by reaction of aldimine and *in situ* generated ketene by a reported procedure with slight modification.³⁶

A mixture of N-(2,2,2-trichloroethylidene)prop-2-en-1amine³⁶(Schiff's base, 10 mmol) with triethylamine (20 mmol) in DCM at 0°C (at 10°C in case of **10b**), is added drop wise a solution of phenoxyacetyl chloride (2-phenylacetyl chloride in case of **10b**) (20 mmol) in DCM and stirred at room temperature for 2-3 h. Solvent was removed under vacuum and ethylacetate (200 mL) was taken into the residue. Washed organic layer with water (2x50 mL), concentrated the organic layer under vacuum and the purified the crude product on column chromatography using alumina (neutral) and*n*-hexane: ethylacetate (3 %, v:v) as eluent to obtain the precursor **10a-b** in good isolated yields.

1-Allyl-3-phenoxy-4-(trichloromethy)azetidin-2-one 11d: 44 pinkish crystals, mp 93 °C (n-hexane/DCM), 58 % yield;¹H NMR 45 (CDCl₃, 300 MHz) δ 3.90 (dd, 1H, J = 15.6, 7.5 Hz, CH₂), 4.41 46 (dd, 1H, J = 15.6, 7.5 Hz, CH₂), 4.73 (d, 1H, J = 4.8, CH), 5.30-47 5.34 (m, 3H, olefinic CH₂), 5.39 (d, 1H, J = 4.8 Hz, OCH), 5.77-48 5.88 (m, 1H, olefinic CH), 7.02-7.10 (m, 3H, aryl CH), 7.26-49 7.31(m, 2H, aryl CH) ppm; ^{13}C NMR (CDCl_3, 75 MHz) δ $\,$ 43.9 50 (CH2), 71.8 (CH), 84.7 (OCH), 96.8 (C), 116.7 (CH), 119.8 (CH2), 51 123.1 (CH), 129.6 (CH), 130.2 (CH), 157.01 (C), 164.5 (C) ppm. 52 IR(KBr) v_{max} 3033(s), 2959(s), 2921(s), 1720(s), 1413(m), 53 1360(s), 1175(m), 816(s), 772(s) ppm. HRMS (ESI+):m/z [M + 54 H]*calcd for C₁₃H₁₃Cl₃NO₂ 320.0006, found 320.001 55

 56
 1-allyl-3-phenyl-4-(trichloromethy)azetidin-2-one 11e: pinkish

 57
 crystals, mp 48 °C, (n-hexane/DCM), 46 % yield;¹H NMR (CDCl₃,

 58
 300 MHz):δ 3.82 (dd, 1H, J = 15.6, 7.8 Hz, CH₂), 4.31 (dd, 1H, J

 59
 = 15.36, 4.2 Hz, CH₂), 4.32 (d, 1H, J = 3.6 Hz, CH), 4.66 (d, 1H, J

= 3.9 Hz, CH), 5.23-5.32 (m, 3H, =CH₂), 5.70-5.83 (m, $^{1}_{4Hc,\overline{c}}$ GH₁), 7.30-7.35 (m, 3H, aryl CH), 7.45-7.56 (m, $^{1}_{2H}$; $^{1}_{4H}$ WCH) % $^{1}_{6H}$ McCH (CDCl₃, 75 MHz): δ 42.9 (CH₂), 58.9 (CH), 70.7 (CH), 97.8 (C), 119.7 (CH₂), 127.6 (CH), 128.2 (CH), 128.6 (CH), 132.2 (CH), 137.2 (C), 163.5 (C) ppm; IR(KBr):v_{max} 3033(s), 2959(s), 2921(s), 1720(s), 1413(m), 1360(s), 1175(m), 816(s), 772(s) ppm. HRMS (ESI+):m/z [M + Na]⁺calcd for C₁₃H₁₂Cl₃NONa(M+Na)⁺ 325.9877, found 325.9890.

Halogen atom transfer radical cyclization of 2,2,2trichloroethyl allyl amines 2a-b: General method: A flamedried two-neck round-bottom flask was charged with CuCl (40 mg, 0.40 mmol) and degassed acetonitrile (20 mL) under a N₂ atmosphere using Schlenk technique. The suspension was cooled to 0 °C and PMDETA (0.070 g, 0.8 mL, 0.4 mmol) was injected into it. The mixture was stirred for 10 minutes at the same temperature. N-(2,2,2-trichloroethyl)prop-2-en-1-amine 2a-b (1 mmol) was added to this mixture and stirring was continued further at the same temperature. After the disappearance of the starting material as indicated by TLC monitoring and confirmed by ¹H NMR (4-6 h) of the aliquots taken directly from the reaction mass. The solvent was removed under reduced pressure. Ethyl acetate (100 mL) was added to the residual mass. The organic phase was washed with brine (3x25 mL). [In case of low yield, the combined aqueous layer was treated with dilute aqueous ammonia (20 mL) and extracted with ethyl acetate (2x20 mL) to recover the product from the aqueous layer went with copper complex]. The combined organic layer was dried (Anhydrous Na₂SO₄), filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on a small basic alumina column using different mixture of ethyl acetate in n-hexane (10-40 %, v:v) as eluent. The 1-substituted NHpyrrolidines **3b** and pyrroline**4a-a**' were obtained in high yields. 2-(3-Chloro-4-(chloromethyl)-4,5-dihydro-3H-pyrrol-2-

yl)pyridine 4a-a': obtained as a light red liquid in 78 % yield as diastereomeric mixture (*Trans: Cis* = 3:2). ¹H NMR (CDCl₃, 300 MHz): δ [2.92-2.97 (m) (minor isomer) + 3.05-3.11 (m) (major isomer), 1H, C<u>H</u>CH₂], [3.41 (dd, J = 11.1, 7.5 Hz) (minor isomer) + 3.53 (dd, J = 11.1, 6.6 Hz)(major isomer), 1H, NCH₂], [3.69-3.80 (m) (major isomer + minor isomer), 1H, NCH₂], [3.87 (dd, J = 10.8, 8.4 Hz) (minor isomer) + 4.05 (d, J = 17.7 Hz)(major isomer), 1H, CH₂Cl], 4.27-4.42 [(m)(minor isomer)(major isomer), 1H, CH_2Cl_1 , [5.43 (s) (major isomer) + 5.60 (d, J = 6.3Hz) (minor isomer), 1H, CHCl], 7.32 (t, 1H, J = 4.8 Hz, CH), 7.73 (t, 1H, J = 7.5 Hz, CH), 8.16 (d, 1H, J = 6.6 Hz, CH), 8.64 (d, 1H, J = 4.2 Hz, CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 42.1 (CH₂), 45.0 (CH₂), 46.9 (CH), 50.1 (CH), 60.6 (CH), 61.1 (CH), 62.8 (CH₂), 63.5 (CH₂), 122.6 (CH), 122.9 (CH), 125.3 (CH), 125.4 (CH), 136.59 (CH), 136.62 (CH), 149.3 (CH), 149.4 (CH), 150.4 (C), 171.4 (C), 173.0 (C) ppm: IR (KBr);v_{max}3064(m), 2953(s), 2855(s), 1620(s), 1579(s), 1467(s), 1440(s), 1344(s), 1294(m), 1042(m), 981(m), 987(m), 799(s), 742(s) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for $C_{10}H_{10}Cl_2N_2H$ 229.0294, found 229.0294.

3,3-Dichloro-4-(chloromethyl)-2-(thien-2-yl)pyrrolidine 3b: Colorless liquid, 83 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 1.84 (s, br, 1H, *N*H, D₂O-exchangeable), 3.15-3.18 (m, 2H, NCH₂ and

12 | J. Name., 2012, 00, 1-3

3

4

5

6

7

8

9

10

11

12

13

14 Ma 5

35:8ئ 26:92

⊉1

Raris Decartes

.926 .927

<u>3</u>8

29

Journal Name

C<u>H</u>CH₂), 3.63-3.75 {m, 2H, (1H, CH₂N and 1H, CH₂Cl)}, 3.96-3.99 (m, 1H, CH₂Cl), 4.63 (s, 1H, CH), 7.00 (t, 1H, J = 4.5 Hz, CH), 7.27 (d, 1H, J = 4.5 Hz, CH), 7.34 (d, 1H, J = 4.8 Hz, CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 43.5 (CH₂), 48.8 (CH₂), 54.9 (CH), 75.3 (CH), 94.3 (C), 127.0 (CH), 127.1 (CH), 128.5 (CH), 137.3 (C) ppm; IR (KBr): v_{max} 3353(br, m), 2962(s), 1610(m), 1503(w), 1430(s), 1252(m), 1152(s), 1070(m), 1011(s), 927(m), 807(s), 709(s) cm⁻¹;HRMS (ESI+): m/z [M + H]⁺ calcd for C₉H₁₁Cl₃NS 269.9672, found 269.9682.

The side chain functionalized NH-pyrrolidines 9a-e were prepared from the corresponding amines **8a-e** as above, except that 60 mol % each of CuCl and PMDETA were taken and the reaction mixture was stirred at 0°C for 6-10 h.

1-(3,3-dichloro-4-(chloromethyl)pyrrolidin-2-yl)propan-2-one 9a-a': Reddish liquid, 83 % yield as diastereomeric mixture (70:30); ¹H NMR (CDCl₃, 300 MHz): δ 2.19 (s, 4.5H, CH₃, major and minor isomers), 2.30 (br, s, 1.5 H, NH, D₂O-exchangeable), 2.60 (dd, 0.5H, J = 9.0, 1.5 Hz, CH₂CO, minor isomer), 2.69 (dd, 1H, J = 7.8, 1.2 Hz, CH₂CO, major isomer), 2.80-2.92 (m, 1.5H, COCH₂, major and minor isomer), 2.94-3.01(m, 3H, (1.5H, CHCH₂ and 1.5H, NCH₂)(major + minor isomer}], 3.38-3.50 (m, 1.5H, CH₂Cl(major + minor isomer)}, 3.59 (t, 1H, J = 10.4 Hz, NCH₂ major isomer), 3.76 (dd, 0.5H, J = 9.6, 3.0 Hz, NCH₂ minor isomer), 3.82-3.95 [(m, 3H, NCH (major and minor isomer) and CH₂Cl (major and minor isomer)] ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 30.2 (CH₃), 30.4 (CH₃), 42.0 (CH₂), 43.4 (CH₂), 44.0 (CH₂), 44.6 (CH₂), 47.6 (CH₂), 48.4 (CH₂), 55.4 (CH), 55.8 (CH), 67.1 (CH), 67.3 (CH), 92.6 (C), 93.9 (C), 205.6 (C), 205.8 (C) ppm; IR (KBr): v_{max} 3367 (m, br), 2923(m), 1715 (s), 1558(s), 1421(m), 1377(s), 921(s), 832(s), 764(m) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₈H₁₃Cl₃NO 244.0057, found 244.0047.

230 Jaunatry 2 1-(3,3-dichloro-4-(2-chloropropan-2-yl)pyrrolidin-2-yl)propan-2-one 9b-b': Reddish liquid, 80 % yield as diastereomeric mixture (72:28); ¹H NMR (CDCl₃, 300 MHz): δ 1.94 (s, 7.5H, CH₃, major and minor isomers), 2.22 (br, s, 1.25H, NH, D₂O-38 exchangeable, major and minor isomers), 2.25 (s, 3.75H, CH₃, **3**9 . 2 3 10 major and minor isomers), 2.80 (dd, 0.25H, J = 10.8, 2.4 Hz, ā41 CH₂CO minor isomer), 2.88 (dd, 1H, J = 17.1, 8.1 Hz, CH₂CO major isomer), 2.92-3.11 (m, 1.25H, CH₂CO major and minor 42 isomer), 3.17-3.40 (m, 3.75H, (1.25H, $C\underline{H}CH_2$ and 2.50H, 43 NCH₂)(major + minor isomer}], 4.12 (dd, 0.25H, J = 10.8, 4.8 Hz, 44 NCH, minor isomer), 4.18 (dd, 1H, J = 13.2, 7.8 Hz, NCH, major 45 isomer) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 29.2 (CH₂), 29.9 46 (CH₂), 30.2 (CH₃), 30.3 (CH₃), 30.6 (CH₃), 34.3 (CH₃), 34.5 (CH₃), 47 44.9 (CH₂), 49.8 (CH₂), 55.6 (CH), 57.6 (CH), 63.9 (CH), 64.3 (CH), 48 71.2 (C), 71.5 (C), 93.3 (C), 93.6 (C), 202.7 (C), 202.8 (C) ppm; IR 49 (KBr): v_{max} 3367 (m, br), 2923(m), 17.16 (s), 1558(s), 1421(m), 50 1377(s), 921(s), 832(s), 764(m) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ 51 calcd for $C_{10}H_{17}Cl_3NO$ 272.0370, found 272.0380. 52

53 2-(3,3-Dichloro-4-(chloromethyl)pyrrolidin-2-yl)-1-

54**phenylethanone** 9c^{5a}: Colorless liquid, 85%; ¹H NMR (CDCl₃,55300 MHz): δ 2.24 (s, br, 1H, NH, D₂O-exchangeable), 2.92 (d,561H, J = 10.5, 9.6 Hz, COCH₂), 3.02-3.13 (m, 1H, CHCH₂), 3.20-573.32 (m, 1H, COCH₂), 3.48-3.62 (m, 2H, NCH₂), 3.68 (t, 1H, J =5810.4 Hz, CH₂Cl), 4.01 (dd, 1H, J =591H, J = 9.6, 1.8 Hz, CHN), 7.49 (t, 2H, J = 7.5 Hz, aromatic CH),60

7.60 (t, 1H, J = 7.5 Hz, aromatic CH), 8.00 (d, $2H_{re}\sqrt{Rticle}\partial_rHz_{s}$ aromatic CH) ppm; ¹³C NMR (CDCl₃, 75 Θ (H2); 1659/39(2)(CH2); 42.4 (CH₂), 47.9 (CH₂), 56.1 (CH), 67.7 (CH), 93.2 (C), 128.1 (CH), 128.2 (CH), 133.5 (CH), 136.3 (C), 197.3 (C) ppm; IR (KBr): v_{max} 3326 (m, br), 2924(s), 2854(s), 1682(s), 1627(s), 1580(s), 1398(s), 1283(s), 1072(s), 1005(m), 827(s), 756(s) cm⁻¹;HRMS (ESI+): m/z [M + H]⁺ calcd for C₁₃H₁₄Cl₃NONa 328.0038, found 328.0033.

2-(3,3-dichloro-4-(chloromethyl)pyrrolidin-2-yl)-N,N-

dimethylacetamide 9d-d': Reddish liquid, 81 % yield as diastereomeric mixture (74:26); ¹H NMR (CDCl₃, 300 MHz): δ 2.0 (br, s, 1.25 H, NH, D₂O-exchangeable), 2.47-2.58 (m, 1.25 H, CH₂CON, major and minor isomer), 2.86-2.93 (m, 1.25H, CH₂CON, major and minor isomer), 3.0-3.11 (m, 10H 2xCH₃, CHCH₂ andNCH₂, major and minor isomer), 3.45-3.61 (m, 2.5H, NCH₂ and CH₂Cl)(major + minor isomer}], 3.64-3.72 (m, 1.25H, CICH₂ major and minor isomers), 3.82 (dd, 1H, J = 16.8, 5.7 Hz, NCH major isomer), 4.00 (dd, 0.25H, J = 12.9, 4.8 Hz, NCH (minor isomer) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 30.2 (CH₂), 30.4 (CH₂), 38.7 (CH₃), 38.9 (CH₃), 41.9 (CH₂), 51.17 (CH₂), 51.20 (CH₂), 54.3 (CH), 54.6 (CH), 57.8 (CH), 58.8 (CH), 95.3 (C), 95.4 (C), 164.7 (C), 164.9 (C) ppm; IR (KBr): v_{max} 3367 (m, br), 2923(m), 1705 (s), 921(s), 832(s), 764(m) cm⁻¹; HRMS (ESI+): $m/z [M + H]^+$ calcd for C₉H₁₆Cl₃N₂O 273.0323, found 273.0330. 3,3-dichloro-4-(chloromethyl)-2-(nitromethyl)pyrrolidine 9ee': Reddish liquid as diastereomeric mixture of diastereomers (22:78), 79 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 2.08 (s, br, 1H, NH, D₂O-exchangeable), 2.97-3.13 [m, 2H, (1H, CHCH₂ and 1H, NCH₂)(major and minor isomer}], 3.49-3.68 [m, 2H, (1H, NCH₂ and 1H, CH₂Cl)(major and minor isomer)], 3.95 (m, 1H, CH₂Cl)(major and minor isomer), 4.29-4.47 (m, 1H, NCH)(major and minor isomer), [4.38-4.46 (m, CH₂NO₂)(minor isomer) + 4.56 (dd, 1H, J = 13.5, 9.3 Hz)(major isomer), 1H, CH₂NO₂)], [4.79-4.90 (m)(major isomer) + 4.90-5.02 (m)(minor isomer), 1H, CH₂NO₂) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 41.5 (CH₂), 42.8 (CH₂), 48.1 (CH₂), 48.3 (CH₂), 55.3 (CH), 56.4 (CH), 68.7 (CH), 69.2 (CH), 76.1 (CH₂), 77.1 (CH₂), 90.1 (C), 90.9 (C) ppm; IR (KBr): v_{max} 3367 (m, br), 2923(m), 1558(s), 1421(m), 1377(s), 921(s), 832(s), 764(m) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₆H₁₀Cl₃N₂O₂ 246.9802, found 246.9806.

N-protected Pyrrolidine 11a: The amine precursor 10a was cyclized with 25 mol % CuCl/PMDETA at RT in MeCN under N_2 atmosphere for 12 hrs. $^{9\rm b}$

Methyl 3,3-dichloro-4-(chloromethyl)pyrrolidine-1carboxylate 11a: Colorless liquid, 88% yield; ¹H NMR (CDCl₃, 300 MHz): δ 3.02-3.29 (m, 1H, CH), 3.32-3.51 (m, 1H, CH₂), 3.55-3.60 (m, 1H, CH₂), 3.82-3.86 (2xs, 5H, CH₂ & CH₃), 3.96-4.03 (m, 1H, CH₂), 4.04-4.10 (m, 1H, CH₂) ppm; ¹³CNMR (CDCl₃, 75 MHz): δ 43.0 (CH₂), 51.2 (CH₂), 56.1 (CH), 56.2 (CH₃), 67.1 (CH₂), 90.7 (C) 156.0 (CO) ppm; IR (KBr): v_{max} 2976(s), 1690(s), 1368(m), 1150(s), 1070(s), 807(s), 718(s) cm.⁻¹; HRMS (ESI+): m/z (M+ Na)*calcd for C₇H₁₀Cl₃NO₂ 267.9669, found 267.9675. Preparation of Pyrrolines 4c-d: These were obtained by stirring an equimolar mixture of crude NH-pyrrolidines 3c-d^{5a} (1 mmol) with DBU (1 mmol) base at room temperature in toluene (30 mL) for 3-6 h, followed by filtration, washing the

Vanus

hemistry Acceb

Journal Name

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ₹ 1 5 128 کتا ک ⊉1 Raris Decartes 2 4 2 2 .926 .927 <u>3</u>8 **2**9 233Jaunatra 223 99 52 38 **3**9 . 2 3 10 **₫**1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

60

filtrate with brine (2x25 mL) and purification by column chromatography on small pad of neutral alumina using 10-20 % 341.9826, found 341.9832 ethyl acetate/n-hexane (v:v) as eluent.

4-Chloro-3-(chloromethyl)-5-(4-nitrophenyl)-3,4-dihydro-2H-

ARTICLE

pyrrole 4c:Yellow solid, 78 % yield; mp 84 °C (n-hexane): ¹H NMR (CDCl₃, 300 MHz): δ 3.09-3.11 (m, 1H, methine CH), 3.51 (dd, 1H, J = 11.4, 7.5 Hz, NCH₂), 3.71 (dd, 1H, J = 11.4, 5.4 Hz, NCH₂), 4.07 (dd, 1H, J = 17.7, 2.1 Hz, CH₂Cl), 4.45 (dd, 1H, 17.7, 7.2 Hz, CH₂Cl), 5.19 (s, 1H, CHCl), 8.09 (d, 2H, J = 8.4 Hz, aromatic CH), 8.28 (d, 2H, J = 8.4 Hz, aromatic CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 44.8 (CH₂), 50.4 (CH), 61.1 (CH), 63.1 (CH₂), 123.7 (CH), 129.2 (CH), 137.0 (C), 149.1 (C), 168.2 (C) ppm; IR (KBr): v_{max}2962(w), 1591(m), 1521(s), 1441(w), 1347(s), 1108(w), 1012(m), 973(w), 864(m), 844(w), 713(m), 713(m) cm⁻¹;HRMS (ESI+): m/z [M + H]⁺ calcd for $C_{11}H_{11}Cl_2N_2O_2$ 273.0196, found 273.0200.

4-Chloro-3-(chloromethyl)-5-phenyl-3,4-dihydro-2H-pyrrole

4d:yellow solid, 62 % yield, mp 48-49 °C (n-hexane); ¹H NMR (CDCl₃, 300 MHz): δ 3.01-3.10 (m, 1H, C<u>H</u>CH₂), 3.35 (dd, 1H, J = 11.7, 7.5 Hz, NCH₂), 3.56 (dd, 1H, J = 11.7, 5.7 Hz, NCH₂), 3.83 (dd, 1H, J = 15.0, 3.0 Hz, CH₂Cl), 4.25 (dd, 1H, J = 15.0, 7.2 Hz, CH₂Cl), 5.27 (s, 1H, CHCl), 7.26-7.38 (m, 5H, phenyl CH) ppm; ¹³C NMR (CDCl₃, 75 MHz):δ 43.8 (CH₂), 49.5 (CH), 60.1 (CH), 62.1 (CH₂), 126.3 (CH), 128.3 (CH), 130.3 (CH), 132.8 (C), 162.2 (C) ppm; IR (KBr): v_{max}2962(w), 2955(m), 2924(m), 1520(s), 1440(w), 1346(s), 1010(w), 973(w), 865(m), 700(m), 670(m) cm⁻¹;HRMS (ESI+): m/z $[M + H]^+$ calcd for C₁₁H₁₂Cl₂N 228.0241, found 228.0250.

Halogen atom transfer radical cyclization (ATRC) of β -lactam fused precursor 10d-e: Preparation of 1-azabicyclo[4.2.0]octan-8-one 11d*-e*

A flame-dried, two-necked, round-bottom flask was charged with CuCl (40 mg, 0.4 mmol), and degassed DCE (30 mL) under a N2 atmosphere using Schlenk techniques. Into this suspension were injected TMEDA (0.093 g, 0.8 mmol), starting material 10d-e (0.320 g, 1 mmol) was added and the mixture was stirred at reflux. After completion of reaction as indicated by TLC monitoring after 6 hrs, the reaction mixture was evaporated under reduced pressure and the residual mass was added ethyl acetate(100 mL) and washed with brine (2x20 mL), dried (anhydrous Na₂SO₄), concentrated under reduced pressure and purified by column chromatography (neutral alumina, *n*-hexane / Ethylacetate = 70:30 v/v followed by recrystallization from n-hexane-DCM gave β -lactam fused piperidines11d*-e* in high isolated yields (75-80 %).

3,5,5-trichloro-7-phenoxy-1-aza-bicyclo[4.2.0]octan-8-one

11d*: Light pink crystal(n-hexane-DCM), Mp 78.5 °C, 80 % yield; ¹H NMR (CDCl₃, 300MHz):δ 2.51 (dd, 1H, J = 14.1, 11.7 Hz, CH₂), 2.98 (dd, 1H, J = 13.8, 11.4 Hz, CH₂), 3.13-3.18 (m, 1H, NCH₂), 3.93 (s,1H, CHCCl₂), 4.19-4.33 (m, 2H, CHCl+NCH₂), 5.51 (s,1H, CH-O), 7.05-7.11 (m, 3H, CH), 7.27-7.36 (m, 2H, CH) ppm;¹³C NMR (CDCl₃, 75 MHz): δ 44.8 (CH₂), 48.3 (CH), 52.1 (CH₂), 66.0 (CH), 83.2 (C), 84.5 (CH), 115.6 (CH), 122.8 (CH), 129.7 (CH), 156.9 (C.), 162.1 (C) ppm. IR(KBr) vmax 2974(s), 1775(s), 58 1595(s), 1491(s), 1446(s), 1398(s), 1284(s), 1237(s), 892(s), 59

753(s)cm⁻¹.HRMS(ESI+): m/z (M+ Na)⁺calcd for C13H12C13NO2 DOI: 10.1039/C9NJ05166J

X-ray crystal structure data of lactam 11d*

Formula sum:C₁₃H₁₂Cl₃NO₂,Formula weight:110.54 g/mol; Crystal system: monoclinic; Space group: P 21/c; Unit cell dimensions: a = 12.302(3) Å b = 13.884(3) Å c = 8.368(2) Å, α = $90.00(0)^{\circ}\beta = 101.188(4)^{\circ}\gamma = 90.00(0)^{\circ}$; Cell volume = 1402.1(6) Å³, Z = 4; Density calculated = 1.519 g/cm³; R_{AII} = 0.086. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (CCDC 1504483).

3,5,5-trichloro-7-phenyl-1-aza-bicyclo[4.2.0]octan-8-one 11e*: LightPink crystal (n-hexane-DCM), mp 58.5 °C, 75 % yield; ¹H NMR (CDCl₃, 300MHz): δ 2.47-2.55 (m, 1H, CH₂), 2.94-3.02 (m, 1H, CH₂CCl₂), 3.01-3.18 (m, 1H, CH₂CCl₂), 3.71 (s, 1H, NCH), 4.19-4.33 (m, 2H, CHCl+NCH₂), 4.27 (s, 1H, CHCO), 7.25-7.38 (m, 3H, aryl CH), 7.48-7.57 (m, 2H, aryl CH) ppm;¹³C NMR (CDCl₃, 75 MHz): δ 44.7 (CH₂), 48.3 (CH), 52.9 (CH₂), 59.0 (CH), 65.9 (CH), 83.4 (C), 128.3 (CH), 129.1 (CH), 129.3 (CH), 161.6 (C) ppm; IR(KBr):v_{max} 2974(s), 1775(s), 1595(s), 1491(s), 1446(s), 1398(s), 1284(s), 1237(s), 892(s), 753(s)cm.⁻¹ HRMS(ESI+): m/z [M + Na]⁺ calcd for C₁₃H₁₂C₁₃NO₂ 325.9877, found 325.9880.

Preparation of 3,3-dichloro-4-(chloromethyl)-2-(nitromethyl)-1-tosylpyrrolidine 12: Tosylation of the crude product 9e was done using a method reported in the literature^{5a} for tosylation of 2-cyanomethylene–NH-pyrrolidine under a mild condition. A mixture of pyrrolidines (1 mmol), Tosyl chloride (1 mmol) and K₂CO₃ (1.5 equiv) in dry THF (50 mL) was stirred for 16 hrs at 10-15 °C. After disappearance of starting material as indicated by TLC, the reaction mixture was concentrated under rotary evaporator. Ethylacetate (100 mL) was added to the reaction mixture and washed with brine (2x25 mL), dried (anhydrous Na₂SO₄), concentrated and recrystallized (DCM: *n*-hexane) to obtain tosylatedpyrrolidine12 (58 %).

3,3-Dichloro-4-(chloromethyl)-2-(nitromethyl)-1-

tosylpyrrolidine 12: White crystals, 58 % yield, mp 78 °C (DCM: n-hexane); ¹H NMR (CDCl₃, 300 MHz): δ 2.40-2.47 (m, 1H, CHCH₂), 2.49 (s, 3H, CH₃), 3.40 (t, 1H, J = 11.4 Hz, CHCl), 3.50-3.58 (m, 1H, CH₂Cl), 3.78-3.87 (m, 2H, CH₂N), 4.70 (dd, 1H, J = 4.8, 3.2 Hz, CHN), 4.93-5.11 (m, 2H, CH₂NO₂), 7.44 (d, 2H, J = 7.8 Hz, CH), 7.76 (d, 2H, J = 7.8 Hz, CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): 21.6 (CH₃), 39.6 (CH₂), 50.9 (CH₂), 54.4 (CH), 69.9 (CH₂), 75.3 (CH), 88.9 (C), 127.9 (C), 130.4 (CH), 131.8 (CH), 145.4 (C) ppm; IR (KBr): v_{max} 3049(m), 2996(m), 15976(w), 1552(s), 1420(m), 1358(s), 1164(s), 1099(s), 1048(m), 999(m), 778(m), 665(s), 559(s) cm⁻¹;HRMS (ESI+): m/z [M + Na]⁺ calcd for C₁₃H₁₅Cl₃N₂O₄SNa 422.9710, found 422.9715.

X-ray crystal structure data of 12

Formula sum: C₁₃H₁₅Cl₃N₂O₄S, Formula weight:401.69 g/mol; Crystal system: triclinic; Space group: P-1; Unit cell dimensions: a = 8.1177(13) Å b = 13.574(2) Å c = 16.277(3) Å α = 107.443(3)° $\beta = 90.128(3)^{\circ} \gamma = 90.166(3)^{\circ};$ Cell volume = 1711.1(5) Å³, Z = 4; Density calculated = 1.559 g/cm^3 ; $R_{AII} = 0.085$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (CCDC 1504482).

Journal Name

AIBN and its Synthetic application towards Ritalin 14. The NHpyrrolidines**11e***was prepared from the corresponding amines 10e using general ATRC procedure as above for 10d-e, except that 5 mol % each of CuCl and 10 mol% of TMEDA were taken in DCE along with 20 mol % AIBN and the reaction mixture was stirred at reflux 6 hrs. The reaction mixture was evaporated under reduced pressure and to the residual mass was added ethyl acetate (100 mL), washed with brine (2x20 mL), dried (anhydrous Na₂SO₄), concentrated under reduced pressure and purified by column chromatography (neutral alumina, nhexane / Ethylacetate = 70:30 v/v) to obtain 11e* in high isolated yields (75%) which was used in the next step as such for dehalogenative reduction. Dehalogenative reduction of11e* to 13 was done using a reported method for reduction of trichlorinated N-heterocycles.¹⁵ Bu₃SnH (1.32 g, 1.22 mL, 4.5 mmol) and AIBN (80 mg, 0.5 mmol) were added to a stirred solution of piperidine 11e* (0.305 g, 1 mmol) in dry, degassed toluene (40 mL) under nitrogen atmosphere. The reaction was heated to reflux and then maintained the temperature for 1 h. The reaction mass was cooled to room temperature. The solvent was removed in vacuum on rotary evaporator. The resultant residue was triturated with diethyl ether (40x2 mL) and stirred vigorously with an aqueous potassium fluoride solution (10 % by weight, 50 mL) for 12 hours. The organic and aqueous layers were then separated. The aqueous layer was then extracted with ethyl acetate (60 mL). The combined organic layer was washed with water (30 mL), brine (30 mL), dried (anhydrous Na₂SO₄) and concentrated in vacuum. The purification of the crude product with silica gel column chromatography using *n*-hexane-ethylacetate) gave a previously known compound 13 (80 mg, 40 %) as solid, m.p. 88 °C. This compound on reaction with methanolic hydrochloric acid is known in literature to give Ritalin 14in single step, was used as such in the next step for preparation of 14 with slight modifications.¹⁶⁻¹⁷ A solution of β -lactam 13 (80 mg) in MeOH (20 mL) was cooled to 0 °C. Then anhydrous $\ensuremath{\mathsf{HCl}}$ gas was purged into the solution for 10 minutes till its saturation. The reaction mass was then stirred at 0-5 °C for 15 min. The temperature of the reaction mixture was raised to room temperature and stirred further till the complete disappearance of starting material on TLC plate in 6hrs. The solvent was removed under vacuum to obtain the solid hydrochloride salt. This was triturated twice with diethyl ether (25 mL). The solid was filtered and washed with diethyl ether (10 mL). This solid was further recrystallized in MeOH-diethyl ether to obtain previously known compound 14 as white crystals in 80 % yield having mp 220 °C matching with ¹H NMR spectrum reported in literature.¹⁶⁻¹⁷

Synthesis of β -lactam fused piperidine 11e^{*} in the presence of

Synthesis of 1-heteroarylsubstituted NH-pyrrolidine 3b and 17 in the presence of AIBN and their synthetic application in the preparation of 3-chloro-NH-pyrroles 15 and 18.

The *N*H-pyrrolidines **3b**and **17** was prepared from the corresponding amines **2bor 16**^{5a} which was previously synthesized by us using same route for **2a**, respectively using general ATRC procedure as above for **3a-b**, except that 10 mol % 60

ARTICLE

anu

New Journal of Chemist

each of CuCl and PMDETA were taken along with 30 mol% AIBN and the reaction mixture was stirred at her and the section mixture was stirred at her and the section with the section of the section at the section of the section at the section a the crude product after usual work up was taken up as such for next step of aromatization step. This reaction was performed by following a method reported in our previous work^{9h-1} in which 3,3-dichloro-4-chloromethyl-tetrahydrofurans were aromatized by DBU. A solution of the chlorinated pyrrolidine 3b or 175a (1mmol) and DBU (0.38 mL, 2.5 mmol) in dry toluene (30 mL) was heated at reflux for 24 h. The reaction mass was cooled to room temperature and ethyl acetate (100 mL) was added. The solution was washed successively with saturated solution of NH₄Cl (20 mL) and with brine (2x20 mL). The organic phase was dried (anhydrous Na₂SO₄), filtered and evaporated to obtain the crude product. The purification of the crude product by column chromatography on a neutral alumina column using a mixture of ethyl acetate and n-hexane (10-20 %, v:v) as the mobile phase gave the pure product 15 and **18** in good yield (45-46 %).

3-Chloro-4-(chloromethyl)-2-(thiophen-2-yl)-1H-pyrrole 15: Viscous liquid, 45 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 2.21 (s. 3H, CH₃), 6.51 (d, 1H, *J* = 1.2 Hz, pyrrolic CH), 7.20 (t, 1H, *J* = 4.5 Hz, thienyl CH), 7.39 (d, 1H, *J* = 5.1 Hz, thienyl CH), 7.49 (s, 1H, thienyl CH), 8.67 (br, s, 1H, NH, D₂O-exchangeable) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 9.9 (CH₃), 109.8 (C), 118.2 (CH), 124.3 (C), 126.3 (CH), 126.7 (CH), 127.7 (C), 128.3 (C), 138.5 (C) ppm; IR (KBr): v_{max} 3363(s, br), 2927(m), 1697(s), 1576(m), 1526(s), 1451(s), 1248(s), 1097(m), 1027(s), 830(s), 723(m) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₉H₈Cl₁N₁ONa 219.9958, found 219.9970.

3-Chloro-4-(chloromethyl)-2-(furan-2-yl)-1H-pyrrole Viscous liquid in 46 % yield; ¹H NMR (CDCl₃, 300 MHz): δ 2.11 (s. 3H, CH₃), 6.42 (s, 1H, pyrrole CH), 6.54-6.57 (m, 2H, furyl CH), 7.08 (br, s, 1H, NH, D₂O-exchangeable), 7.38-7.39 (m, 1H, furyl CH) ppm; ¹³C NMR (CDCl₃, 75 MHz): δ 10.3 (CH₃), 108.8 (C), 111.2 (CH), 112.2 (CH), 116.5 (CH), 124.3 (C), 126.3 (C), 140.0 (CH), 150.3 (C) ppm; IR (KBr): v_{max} 3363(s, br), 2927(m), 1697(s), 1576(m), 1526(s), 1451(s), 1248(s), 1097(m), 1027(s), 830(s), 723(m) cm⁻¹; HRMS (ESI+): m/z [M + H]⁺ calcd for C₉H₈Cl₁NNa 204.0187, found 204.0190.

Conflicts of interest

There are no conflicts of interests to declare.

Acknowledgements

Financial assistance to Dharmendra Kumar Gupta by CSIR New Delhi is gratefully acknowledged

Notes and References

 Literature for 5-exo-trig Vs 6-endo-Trig in radical reactions in general: a) K. Gilmore, R. K. Mohamad and I. V. Alabugin, WIRES Comput. Mol. Sci., 2016, 6, 487—514; b) I. V. Alabugin and K. Gilmore, Chem. Commun., 2013, 49, 11246-11250; c) A. N. Hancock and C. H. Schiesser, Chem. Commun., 2013, 49, 9892-9895; d) Y.-Y. Yu, Y. Fu, M. Xie, L. Liu and Q.-X. Guo, Org.

Accepted

nemis

ew Journa

Journal Name

2 3 4 5 6 7 8 9 10 11 12 13 14 ₹5 رة:82 26 ⊉1 Raris Descartes 2 4 2 2 .926 927 28 **2**9 1 2 3 2020 Development 230 Jamaara 200 Ja 38 **3**9 . 7 2 10 ā41 42 43 44 45 46 47 48 49 50 51 52 53 54

55

56

57

58

59 60 ARTICLE

1

Chem., 2007, **72**, 8025-8032; e) A. G. Leach, R. Wang, G. E. Wohlhieter, S. I, Khan, M. E. Jung and K. N. Houk, *J. Am. Chem. Soc.*, 2003, **125**, 4271-4278; f) C. Chatgilialoglu, C. Ferreri, M. Lucarini, A. Venturini and A. A. Zavitsas, *Chem. Eur. J.*, 1997, **3**, 376-387; g) D. C. Spellmeyer and K. N. Houk, *J. Org. Chem.*, 1987, **52**, 959–974; For pyrrolidine and piperidine, and their stereochemistry: h) Y. Li and Y. Hu, *Angew. Chem. Int. Ed.*, 2007, **46**, 2489–2492; *Angew. Chem. Int. Ed.*, 2007, **119**, 2541-2544. and references therein; i) F. Liu, K. Liu, X. Yuan and C. Li, *J. Org. Chem.* 2007, **72**, 10231-10234; j) H. Lu, Q. Chen andC. Li, *J. Org. Chem.* 2007, **72**, 1589–1592 (and references therein).

- 2 M. Besev and L. Engman, Org. Lett., 2002, 4, 3023-3025.
- 3 M.-P. Bertrand, S. Gastaldi and R. Nouguier, *Tetrahedron*, 1998, **54**, 12829–12940.
- 4 Interaction of Cu(I)-complex with nitrogen in transition states: a) M. Noack and R. Göttlich, *Chem. Commun.*, 2002, 536–537; b) R. Göttlich, *Synthesis*, 2000, 1561–1564; c) H. Nagashima, N. Ozaki, M. Ishii and K. Itoh, *J. Org. Chem.*, 1993, 58, 464–470.
- a) R. N. Ram and D. K. Gupta, *Adv. Synth. Cat.*, 2016, **358**, 3254–3264 and references therein; b) X. Zhang, X. Li, Y. Zeng, S. Zheng and L. Meng, *Dalton Trans.*, 2015, *44*, 1283-1291 (thiophene S-Cu interaction); c) S. Sung, D. C. Braddock, A. Armstrong, C. Brennan, D. Sale, A. J. P. White and R. P. Davies, *Chem. Eur. J.*, 2015, **21**, 7179-7192; d) M. Basato, M. Bortolussi, E. Faggin, C. Tubaro and A. C. Veronese, *Inorg. Chim. Acta*, 2009, **362**, 531–536; e) H. Rao, H. Fu, Y. Jiang and Y. Zhao, *J. Org. Chem.*, 2005, **70**, 8107-8109.
- 6 Reviews on radical based pyrrolidine synthesis: a) G. Coussanes, X. Vila, F. Diaba and J. Bonjoch, Synthesis, 2017, 49, 1481-1499; b) A. J. Clark, Eur. J. Org. Chem., 2016, 2231-2243; c) A. Studer and D. P. Curran, Angew. Chem. Int. Ed., 2016, 55, 58-102; d) A. J. Clark, Chem. Soc. Rev., 2002, 31, 1-11; e) W. A. Bowman, A. J. Fletcher and G. B. S. Potts, J. Chem. Soc. Perkin Trans., 12002, 2747-2762; References for pyrrolidines synthesis: using Cu (I)-catalyst; f) M. N. C. Balili and T. Pintauer, Dalton Trans., 2011, 40, 3060-3066; g) C. Ricardo and T. Pintauer, Chem. Commun., 2009, 3029–3031; h) J. H. Udding, C. J. M. Tuijp, H. Hiemstra and W. N. Speckamp, Tetrahedron, 1994, 50, 1907–1918; i) J. H. Udding, C. (Kees) J. M. Tuijp, H. Hiemstra and W. N. Speckamp, J. Soc. Perkin Trans. II ,1992,857-858; using Chem. Bu₃SnH/AIBN reagent: j) Y. Guindon, B. Guérin and S. R. Landry, Org. lett., 2001, 3, 2293-2296; using Et₃B reagent: k) T. Tsuritani, H. Shinokubo and K. Oshima, Org. Lett., 2001, 3, 2709-2711.
- 7 Review: a) T. Pintauer and T. K. Matyjaszewski, *Chem. Soc. Rev.*, 2008, **37**, 1087-1097; References: b) R. N. Ram, S. Sadanandan and D. K Gupta, *Adv. Synth. Catal.* 10.1002/adsc.201900938; c) F. Bellesia, A. J. Clark, F. Felluga, A. Gennaro, A. A. Isse, F. Roncaglia and F. Ghelfi, *Adv. Synth. catal.*, 2013, **355**, 1649–1660; d) F. Diaba, A. Martínez-Laporta, J. Bonjoch, A. Pereira, J. M. Muñoz-Molina, P. J. Pérez, and T. R. Belderrain, *Chem. Commun.*, 2012, **48**, 8799-8801; e) R. Casolari, F. Felluga, V. Frenna, F. Ghelfi, U. M. Pagnoni, A. F. Parsons and D. Spinelli, *Tetrahedron*, 2011, **67**, 408-416; f) A. J. Clark and P. Wilson, *Tetrahedron lett.*, 2008, **49**, 4848-4850.
 - 8 a) R. N. Ram, N. Kumar and D. K. Gupta, Adv. Synth. Catal., 2017, 359, 432-442. b) R. N. Ram, D. K. Gupta and V. K. Soni, Eur. J. Org. Chem., 2016, 3434–3440; c) R. N. Ram, V. K. Soni and D. K. Gupta, Tetrahedron, 2012, 68, 9068–9075; d) R. N. Ram, D. K. Gupta and V. K. Soni, J. Org. Chem., 2016, 81, 1665–1674; e) R. N. Ram and V. K. Soni, Adv. Synth. Catal., 2016, 358, 276–282; f) R. N. Ram, R. K. Tittal and S. Upreti, Tetrahedron Lett., 2007, 48, 7994–7997; g) R. N. Ram, N.

Kumar and N. Singh, J. Org. Chem., 2010, **75**, 7408–7411. h) R. N. Ram and N. Kumar, *Tetrahedror*

- 9 a)A. Lukasiewicz, *Tetrahedron*, 1965, 21, 193–202; b) A. Lukasiewikz and J. Lesinska, *Tetrahedron*, 1965, 21, 3247–3253; c) A. Lukasiewikz, *Tetrahedron*, 1964, 20, 1–12.
- 10 A. Hoffmann, O. Bienemann, I. S. Vieira and S. Herres-Pawlis, *Polymers*, 2014, **6**, 995-1007.
- 11 a) G. Verniest, S. Claessens and N. D. Kimpe, *Tetrahedron*, 2005, 61, 4631-4637 (β-chloro-pyrroles); b) W. Aelterman, N. D. Kimpe, V. Tyvorskii and O. Kulinkovich, *J. Org. Chem.*, 2001, 66, 53–58 (for β-chloro-pyrrolidines and β-chloro-pyrroles); c) N. D. Kimpe, K. A. Tehrani, C. Stevens, P. De Cooman, *Tetrahedron* 1997, 53, 3693-3706 (aromatization and bioactive molecules).
- 12 a) T. Pintauer, *Eur. J. Inorg. Chem.*, 2010, 2249–2460; b) W. T. Eckenhoff and T. Pintauer, *Catal. Rev.*, 2010, **52**, 1–59.
- 13 Complexing agent mediated conformational changes: in pyrrolidine a) E. S. Sherman, P. H. Fuller, D. Kasi and S. R. Chemler, J. Org. Chem., 2007, 72, 3896–3905; b) M.-P. Bertrand, S. Gastaldi and R. Nouguier, Tetrahedron, 1998, 54, 12829-12940; Other heterocycles: c) M. P. Sibi and J. Ji, J. Am. Chem. Soc., 1996, 118, 3063-3064.
- 14 a) S. f. Vasilevsky, B. Gold, T. F. Mikhailovskaya and I. V. Alabugin, *J. Phys. Org. Chem.*, 2012, **25**, 998–1005; b) I. V. Alabugin and M. Manoharan, *J. Am. Chem. Soc.* 2005, **127**, 12583-12594;c) P. M. Esch, I. M. Boska, H. Hiemstra, R. F. De Boer and W. N. Speclcamp, *Tetrahedron*, 1991, **47**, 4039-4062.
- 15 R. Giovannini and M. Petrini, Synlett., 1998, 90–92.
- 16 a) R. Gérardy, M. Winter, A. Vizza and J.-C. M. Monbaliu *React. Chem. Eng.*, 2017, 2, 149-158; b) J. M. Axten, L. Krim, H. F. Kung and J. D. Winkler, *J. Org. Chem.*, 1998, 63, 9628-9629 (Ritalin).
- 17 A. Gutman, I. Zaltsman, A. Shalimov, M. Sotrihin and G. Nisnevich WO2004080583, 2004 (Ritalin).
- 18 a) P. E. Harrington and M. A. Tius, J. Am. Chem. Soc. 2001, 123, 8509-8514; b) A. Fürstner and H. Weintritt, J. Am. Chem. Soc., 1998, 120, 2817-2815 (Roseophilin).
- 19 a) K. K. Schumacher, J. Jiang and M. M. Joullié, *Tetrahedron: Asymmetry*, 1998,9, 47-53; b) H. Yoshioka, K. Nakatsu, M. Sato and T. Tatsuno, *Chem. Lett.*, 1973, 1319–1322; c) A. C. Ghosh and M. Ramgopal, *J. Heterocycl. Chem.*, 1980,17, 1809–1812.
- 20 M. Quibell, J. P. Watts and N. S. Flinn, WO Patent WO 2009112826, 2009.
- 21 M. D. Shoulders, I. A. Guzei and R. T. Raines, *Biopolymers*, 2008, **89**, 443–454.
- 22 For structure-activity relationship studies and drug design: see a) Y. Liao, Z. Zhao and G. L. Araldi, WO Patent WO 2003053923 A2, 2003; b) J. Aebi, D. Blum, D. Bur, A. Chucholowski, H. Dehmlow, E. K. Kitas and B. M. Loeffler, WO Patent WO 200206222 AI, 2002; c) J. Chiba, S. limura, Y. Yoneda, Y. Sugimoto, T. Horiuchi, F. Muro, Y. Ochiai, T. Ogasawara, M. Tsubokawa and Y. Iigou, *Chem. Pharma. Bull.*, 2006, **54**, 1515–1529; d) K. Tomita, Y. Tsuzuki, K.-I. Shibamori, M. Tashima, F. Kajikawa, Y. Sato, S. Kashimoto, K. Chiba and K. Hino, *J. Med. Chem.*, 2002, **45**, 5564–5575.
- 23 a) R. M. Satyanarayan, R. S. Thirumalai and M. Venkatesh, WO Patent WO 2008126106, 2008; b) H. Elokdah, D. Li, G. McFarlane, R. C. Bernotas, A. J. Robichaud, R. L. Magolda, G. M. Zhang, D. Smith and L. E. Schechter, *Bioorg. Med. Chem.*, 2007, **15**, 6208-6226; c) Y. Berger, H. Dehmlow, D. Blum-Kaelin, E. A. Kitas, B.–M. Loeffler, J. D. Aebi and L. Juillerat-Jeanneret, *J. Med. Chem.*, 2005, **48**, 483–498; d) J. J. Tufariello, H. Meckler and K. Winzenberg, *J. Org. Chem.* 1986, **51**, 3556–3567.

Journal Name

New Journal of Chemistry Accepted Manuscript

View Article Online DOI: 10.1039/C9NJ05166J

24 a) T. K. M. Shing and K. H.So, *Org. Lett.*, 2011, **13**, 2916–2919;
b) Y. Nishimura, S. Kondo and H. Umezawa, *J. Org. Chem.*, 1985,**50**, 5210–5214.

- 25 H. Ishibashi, N. Uemura, H. Nakatani, M. Okazaki, T. Sato, N. Nakamura and M. Ikeda, *J. Org. Chem.*, 1993, **58**, 2360-2368.
- 26 I. Zuravka, R. Roesmann, A. Sosic, W. Wende, A. Pingoud, B. Gatto and R. Gcttlich, *ChemMedChem.*, 2014, 9, 2178-2185.
- 27 Synthetic applications of -NH- and side chain functionalities of a pyrrolidine: a) T. Taniguchi, T. Fujii and H. Ishibashi, Org. Biomol. Chem., 2011, 9, 653–655 (NO₂); b) M. A. Tan, M. Kitajima, N. Kogure, M. G. Nonato and H. Takayama, J. Nat. Prod., 2010, 73, 1453-1455 (NH); c) D. Maximilian, S. B. Renate and B. Siegfried, Synlett., 2007, 2599–2601 (NH); e) H. Konno, S. Kusumoto, S. Kanai, Y. Yamahana, K. Nosaka and K. Akaji, Heterocycles, 2006, 68, 2579-2585 (-CO-)
- 28 a) S. Hanessian and A. K. Chattopadhyay, Org. Lett., 2014, 16, 232–235; b) A. Boto, Y. De León, J. A. Gallardo and R. Hernández, Eur. J. Org. Chem., 2005, 3461–3468.
- 29 F.G transformations: C. Bhat and S. G. Tilve, *Tetrahedron Lett.*, 2011, **52**, 6566-6568 (CH₂NO₂ to C=O).
- 30 Review: C. Bhat and S. G. Tilve, RSC Adv., 2014, 4, 5405–5452.
- 31 a) Review: F. Bellina and R. Rossi, *Tetrahedron*, 2006, 62, 7213–7256;
 b) A. Y. Bitar and A. J. Frontier, *Org. Lett.*, 2009, 11, 49–52 (Roseophilin).
- 32 C. Becker, C. Hoben and H. Kunza, *Adv. Synth. Catal.*, 2007, **349**, 417–424.
- 33 A. Guirado, B. Martiz, R. Andreu and D. Bautista, *Tetrahedron*, 2009, **65**, 5958–5963.
- 34 P. Martin, E. Steiner, J. Streith, T. Winkler and D. Bell, *Tetrahedron*, 1985, **41**, 4057–4078.
- 35 V. N. Kost, T. V. Vasil'eva and R. K. Freidlina, *Dokl. Akad. Nauk. BSSR*, 1963, **7**, 614-618.
- 36 V. V. Govande and A. R. A. S. Deshmukh, *Tetrahedron Lett.*, 2004, **45**, 6563–6566.

This journal is © The Royal Society of Chemistry 20xx

Table of Contents

 $\begin{array}{l} \mathsf{R}^1=\mathsf{N}\ \&\ S\text{-heteroaryls},\ \mathsf{CO}_2\mathsf{Me},\ \mathsf{CH}_2\mathsf{EWG}\ (\mathsf{EWG}=\mathsf{CONMe}_2,\ \mathsf{COR},\ \mathsf{NO}_2),\ \mathsf{H}\\ \mathsf{R}^1\mathsf{-}\mathsf{R}^2=\mathsf{R}\mathsf{CHCO},\ \mathsf{R}^2=\mathsf{H},\ \mathsf{CO}_2\mathsf{Me},\ \mathsf{R}^3\ \&\ \mathsf{R}^4=\mathsf{H},\ \mathsf{alkyl} \end{array}$

Chelation, rigidity and carbon-radical positions in aminoalkyl precursors disturb the usual 2,4trans diastereoselectivity and 5-exo mode in Cu(I)-catalyzed ATRC