
LETTER1306

Synthesis of Imidazolo[5,4-b]carbazole-4,10-quinones
Synthesis of Imidazolo[5,4-b]carbazole-4,10-quinonesGwénaëlle Desforges, Cécile Bossert, Cyril Montagne, Benoît Joseph*
Laboratoire de Chimie Organique 1, UMR-CNRS 5181, Université Claude Bernard – Lyon 1, CPE – Bâtiment 308, 43 Boulevard du 
11 novembre 1918, 69622 Villeurbanne cedex, France
Fax +33(0)472431214; E-mail: benoit.joseph@univ-lyon1.fr
Received 15 January 2004

SYNLETT 2004, No. 7, pp 1306–130803.06.2004
Advanced online publication: 10.05.2004
DOI: 10.1055/s-2004-822923; Art ID: G01904ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: The preparation of imidazolo[5,4-b]carbazole-4,10-
quinones 9 is described. The key steps of the synthesis are selective
halogen-metal exchanges on the imidazole 3 and subsequent addi-
tion to carbonyl groups of ethyl-3-formylindole-2-carboxylate 4.
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The carbazole-1,4-quinone skeleton is encountered in nat-
ural products such as murrayaquinone A,1 calothrixins A
and B,2 koeniginequinones A and B,3 clausenaquinone-A4

and related synthetic derivatives (isoellipticine quinone,
indolocarbazole quinone, benzo[b]carbazole quinone).5–7

These compounds are a subject of interest because of their
remarkable biological activities such as anticancer, anti-
bacterial and antimalarial effects. The pharmacological
interest of the carbazole-1,4-quinone derivatives required
the development of diverse synthetic approaches (palladi-
um catalysed reactions, Diels–Alder reactions and anionic
reactions, among others).8–10

In this report, we describe the preparation of new imida-
zolo[5,4-b]carbazole-4,10-quinones from 4,5-diiodo-imi-
dazoles 3 and ethyl-3-formylindole-2-carboxylate (4).
Our synthetic strategy was based on the ease of effecting
halogen-metal exchanges on the imidazole nucleus to pro-
duce successively two nucleophilic entities. A similar
pathway was envisaged by Gribble but failed for the syn-
thesis of isoellipticine quinone.5 This approach contrasts
with the usual way involving a ‘combined directed ortho-
metalation and cross-coupling strategy’ (Figure 1).11

Figure 1

The starting materials 3 for the current work were synthe-
sised by adapting standard methods. Commercially avail-
able imidazole 1 was diiodinated with I2–KI–NaOH, and

the resulting 4,5-diiodide 2 was N-protected in the pres-
ence of K2CO3 and EtOCH2Cl in DMF to give 3a12 in 52%
yield. Deprotonation at position-2 of 3a with LDA (1.1
equiv), followed by addition of freshly recrystallised
hexachloroethane afforded 3b13 in 95% yield
(Scheme 1).14

Scheme 1 Reagents and conditions: i) I2 (2.2 equiv), KI (2.2 equiv),
NaOH aq, r.t., 1 h, 98%; ii) EtOCH2Cl (1.4 equiv), K2CO3, DMF, r.t.,
48 h, 52%; iii) a) LDA (1.1 equiv), THF, –78 °C, 30 min; b) Cl3CCCl3

(1.4 equiv), THF, –78 °C, 16 h, 95% 

Selective halogen-metal exchange at position-5 of 3a was
initially carried out with EtMgBr (1.1 equiv) at 0 °C,15

then indole 416 was added to the solution to afford a mix-
ture of alcohol 5a and lactone 6 in 52% combined yield
(Scheme 2, Table 1 entry 1). Replacement of the Grignard
reagent by BuLi (1 equiv) at –78 °C led to the lone alcohol
5a in 49% optimised yield.

Scheme 2 Reagents and conditions: i) Method A : EtMgBr (1.1
equiv), THF, 0 °C to r.t., 40 min, then 4 (1.1 equiv), r.t., 1 h; Method
B : BuLi (1 equiv), THF, –78 °C, 5 min, then 4 (1.2 equiv), THF, –78
°C, 45 min; ii) EtONa (2.2 equiv), EtOH, r.t., 1 h, 85%
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It is noteworthy that better coupling yield (83%, drawing
not shown) was obtained when the reaction was per-
formed between N-Boc-3-formylindole and imidazole 3a
under the same conditions.

Alternatively, treatment of 6 with EtONa gave 5a in 85%
yield. Following the BuLi-mediated coupling methodolo-
gy, compound 5b was prepared from 3b and 4 in 50%
yield.

The alcohols 5 were oxidised using MnO2 to give the ke-
tones 7 in 66–84% yield (Scheme 3). The halogen-metal
exchange-cyclisation sequence on 7 was carried out in the
presence of BuLi in THF at –78 °C because no exchange
was observed with EtMgBr. The quinones 8 were ob-
tained in moderate yields (48–52%).17 The in situ generat-
ed lithium ethoxide is responsible for the removal of the
Boc group. A one-pot synthesis of quinone 8a was inves-
tigated by successive addition of BuLi (1.1 equiv twice)
on 5a. Unfortunately, the reaction failed to generate more
than traces of 8a. Final EOM deprotection in acidic medi-
um afforded the final tetracyclic derivatives 9 in fair
yield.18

Quinones 9 are also important intermediates in the synthe-
sis of imidazolo analogues of ellipticine (Scheme 4).

Thus, treatment of 9a with MeLi and then with NaBH4
5,6

afforded 1019 in 35% yield (unoptimised). Surprisingly,
we were not able to remove the ethoxymethyl protecting
group in compound 10 using several acidic conditions
such as aq HCl in 1,4-dioxane, aq HBr or HBr in HOAc.
Further experiments are planned to perform this deprotec-
tion.

In summary, we have described the preparation of a new
series of compounds using an unusual strategy based on
selective halogen-metal exchanges on the imidazole
nucleus. Cytotoxic properties of compounds 8–10 will be
the subject of forthcoming investigations.20
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Scheme 4 Reagents and conditions: i) MeLi (10 equiv), THF, reflux, 3 h; ii) NaBH4 excess, EtOH, reflux, 18 h, 35%
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